1932

Abstract

The influence of the continental lithosphere and its root (or keel) on the continental drift of Earth is a key element in the history of plate tectonics. Previous geodynamic studies of mantle flow suggested that the cratonic root is moderately mechanically coupled with the underlying mantle, and stable continental drift on Earth's timescales occurs when the effective viscosity contrast between the continental lithosphere and the underlying mantle is approximately 103. Both geodynamics and seismological studies indicate that mechanically weak mobile belts (i.e., orogenic or suture zones) that surround cratons may play a role in the longevity of the cratonic lithosphere over geologically long timescales (i.e., over 1,000 million years) because they act as a buffer region against the high-viscosity cratons. Low-viscosity asthenosphere, characterized by slow seismic velocities, reduces the basal drag force acting on the cratonic root, which may also contribute to the longevity of the cratonic lithosphere.

  • ▪   The role of the continental lithosphere and its root on the continental drift is reviewed from recent geodynamic and seismological studies.
  • ▪   The cratonic root is moderately mechanically coupled with the underlying mantle and deformed by mantle flow over geological timescales.
  • ▪   Orogenic belts or suture zones that surround cratons act as a buffer to protect cratons and are essential for their longevity.
  • ▪   Low-viscosity asthenosphere may reduce the basal drag acting on the cratonic root and also contribute to its stability and longevity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-091620-113028
2021-05-30
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/earth/49/1/annurev-earth-091620-113028.html?itemId=/content/journals/10.1146/annurev-earth-091620-113028&mimeType=html&fmt=ahah

Literature Cited

  1. Abt DL, Fischer KM, French SW, Ford HA, Yuan H, Romanowicz BA 2010. North American lithospheric discontinuity structure imaged by Ps and Sp receiver functions. J. Geophys. Res. Solid Earth 115:B9B09301
    [Google Scholar]
  2. Adam C, Yoshida M, Suetsugu D, Fukao Y, Cadio C 2014. Geodynamic modeling of the South Pacific superswell. Phys. Earth Planet. Inter. 229:24–39
    [Google Scholar]
  3. Alvarez W. 1982. Geological evidence for the geographical pattern of mantle return flow and the driving mechanism of plate tectonics. J. Geophys. Res. Solid Earth 87:B86697–710
    [Google Scholar]
  4. Alvarez W. 1990. Geologic evidence for the plate‐driving mechanism: the continental undertow hypothesis and the Australian-Antarctic discordance. Tectonics 9:51213–20
    [Google Scholar]
  5. Alvarez W. 2001. Eastbound sublithosphere mantle flow through the Caribbean gap and its relevance to the continental undertow hypothesis. Terra Nova 13:5333–37
    [Google Scholar]
  6. Alvarez W. 2010. Protracted continental collisions argue for continental plates driven by basal traction. Earth Planet. Sci. Lett. 296:3–4434–42
    [Google Scholar]
  7. Argus DF, Gordon RG, Demets C 2011. Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochem. Geophys. Geosyst. 12:11Q11001
    [Google Scholar]
  8. Artemieva IM. 2006. Global 1° × 1° thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution. Tectonophysics 416:1–4245–77
    [Google Scholar]
  9. Artemieva IM. 2011. The Lithosphere: An Interdisciplinary Approach Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  10. Artemieva IM, Mooney WD. 2001. Thermal structure and evolution of Precambrian lithosphere: a global study. J. Geophys. Res. Solid Earth 106:B816387–414
    [Google Scholar]
  11. Artemieva IM, Mooney WD. 2002. On the relations between cratonic lithosphere thickness, plate motions, and basal drag. Tectonophysics 358:1–4211–31
    [Google Scholar]
  12. Aulbach S, Griffin WL, O'Reilly SY, McCandless TE 2004. Genesis and evolution of the lithospheric mantle beneath the Buffalo Head Terrane, Alberta (Canada). Lithos 77:1–4413–51
    [Google Scholar]
  13. Aulbach S, Mungall JE, Pearson DG 2016. Distribution and processing of highly siderophile elements in cratonic mantle lithosphere. Rev. Mineral. Geochem. 81:1239–304
    [Google Scholar]
  14. Bird P. 2003. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4:31027
    [Google Scholar]
  15. Bodin T, Sambridge M, Gallagher K, Rawlinson N 2012. Transdimensional inversion of receiver functions and surface wave dispersion. J. Geophys. Res. Solid Earth 117:B2B02301
    [Google Scholar]
  16. Bodin T, Yuan H, Romanowicz BA 2014. Inversion of receiver functions without deconvolution—application to the Indian craton. Geophys. J. Int. 196:21025–33
    [Google Scholar]
  17. Boyd FR. 1989. Compositional distinction between oceanic and cratonic lithosphere. Earth Planet. Sci. Lett. 96:1–215–26
    [Google Scholar]
  18. Brown M, Johnson T, Gardiner NJ 2020. Plate tectonics and the Archean Earth. Annu. Rev. Earth Planet. Sci. 48:291–320
    [Google Scholar]
  19. Burgos G, Montagner J-P, Beucler E, Capdeville Y, Mocquet A, Drilleau M 2014. Oceanic lithosphere-asthenosphere boundary from surface wave dispersion data. J. Geophys. Res. Solid Earth 119:21079–93
    [Google Scholar]
  20. Burke K. 2011. Plate tectonics, the Wilson cycle, and mantle plumes: geodynamics from the top. Annu. Rev. Earth Planet. Sci. 39:1–29
    [Google Scholar]
  21. Burov EB. 2011. Rheology and strength of the lithosphere. Mar. Petrol. Geol. 28:81402–43
    [Google Scholar]
  22. Calò M, Bodin T, Romanowicz BA 2016. Layered structure in the upper mantle across North America from joint inversion of long and short period seismic data. Earth Planet. Sci. Lett. 449:164–75
    [Google Scholar]
  23. Chapple WM, Tullis TE. 1977. Evaluation of the forces that drive the plates. J. Geophys. Res. Solid Earth 82:141967–84
    [Google Scholar]
  24. Coltice N, Gérault M, Ulvrová M 2017. A mantle convection perspective on global tectonics. Earth-Sci. Rev. 165:120–50
    [Google Scholar]
  25. Coltice N, Husson L, Faccenna C, Arnould M 2019. What drives tectonic plates?. Sci. Adv. 5:10eaax4295
    [Google Scholar]
  26. Conrad CP, Bilek S, Lithgow-Bertelloni C 2004. Great earthquakes and slab pull: interaction between seismic coupling and plate-slab coupling. Earth Planet. Sci. Lett. 218:1–2109–22
    [Google Scholar]
  27. Conrad CP, Lithgow-Bertelloni C. 2002. How mantle slabs drive plate tectonics. Science 298:5591207–9
    [Google Scholar]
  28. Conrad CP, Lithgow-Bertelloni C. 2006. Influence of continental roots and asthenosphere on plate-mantle coupling. Geophys. Res. Lett. 33:5L05312
    [Google Scholar]
  29. Cooper CM, Conrad CP. 2009. Does the mantle control the maximum thickness of cratons. ? Lithosphere 1:267–72
    [Google Scholar]
  30. Debayle E, Dubuffet F, Durand S 2016. An automatically updated S‐wave model of the upper mantle and the depth extent of azimuthal anisotropy. Geophys. Res. Lett. 43:2674–82
    [Google Scholar]
  31. Debayle E, Kennett BLN. 2000. The Australian continental upper mantle: structure and deformation inferred from surface waves. J. Geophys. Res. Solid Earth 105:B1125423–50
    [Google Scholar]
  32. Debayle E, Kennett BLN, Priestley K 2005. Global azimuthal seismic anisotropy and the unique plate-motion deformation of Australia. Nature 433:7025509–12
    [Google Scholar]
  33. DeMets C, Gordon RG, Argus DF, Stein S 1994. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett. 21:202191–94
    [Google Scholar]
  34. Doin M-P, Fleitout L, Christensen U 1997. Mantle convection and stability of depleted and undepleted continental lithosphere. J. Geophys. Res. Solid Earth 102:B22771–87
    [Google Scholar]
  35. Eaton DW, Darbyshire F, Evans RL, Grütter H, Jones AG, Yuan X 2009. The elusive lithosphere–asthenosphere boundary (LAB) beneath cratons. Lithos 109:1–21–22
    [Google Scholar]
  36. Fischer KM, Ford HA, Abt DL, Rychert CA 2010. The lithosphere-asthenosphere boundary. Annu. Rev. Earth Planet. Sci. 38:551–75
    [Google Scholar]
  37. Fishwick S, Heintz M, Kennett BLN, Reading AM, Yoshizawa K 2008. Steps in lithospheric thickness within eastern Australia, evidence from surface wave tomography. Tectonics 27:4TC4009
    [Google Scholar]
  38. Fishwick S, Reading AM. 2008. Anomalous lithosphere beneath the Proterozoic of western and central Australia: a record of continental collision and intraplate deformation. ? Precambrian Res 166:1–4111–21
    [Google Scholar]
  39. Ford HA, Fischer KM, Abt DL, Rychert CA, Elkins-Tanton LT 2010. The lithosphere–asthenosphere boundary and cratonic lithospheric layering beneath Australia from Sp wave imaging. Earth Planet. Sci. Lett. 300:3–4299–310
    [Google Scholar]
  40. Forsyth D, Uyeda S. 1975. On the relative importance of the driving forces of plate tectonics. Geophys. J. R. Astron. Soc. 43:1163–200
    [Google Scholar]
  41. Gaherty JB, Jordan TH. 1995. Lehmann discontinuity as the base of an anisotropic layer beneath continents. Science 268:52161468–71
    [Google Scholar]
  42. Gerya T. 2014. Precambrian geodynamics: concepts and models. Gondwana Res 25:2442–63
    [Google Scholar]
  43. Ghosh A, Holt WE. 2012. Plate motions and stresses from global dynamic models. Science 335:6070838–43
    [Google Scholar]
  44. Ghosh A, Holt WE, Wen L 2013. Predicting the lithospheric stress field and plate motions by joint modeling of lithosphere and mantle dynamics. J. Geophys. Res. Solid Earth 118:1346–68
    [Google Scholar]
  45. Gordon RG. 1998. The plate tectonic approximation: plate nonrigidity, diffuse plate boundaries, and global plate reconstructions. Annu. Rev. Earth Planet. Sci. 26:615–42
    [Google Scholar]
  46. Gung Y, Panning M, Romanowicz B 2003. Global anisotropy and the thickness of continents. Nature 422:6933707–11
    [Google Scholar]
  47. Gurnis M. 1988. Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature 332:695–99
    [Google Scholar]
  48. Hawkesworth CJ, Cawood PA, Dhuime B, Kemp TIS 2017. Earth's continental lithosphere through time. Annu. Rev. Earth Planet. Sci. 45:169–98
    [Google Scholar]
  49. Heron PJ. 2018. Mantle plumes and mantle dynamics in the Wilson cycle. Geol. Soc. Lond. Spec. Publ. 470:87–103
    [Google Scholar]
  50. Höink T, Jellinek AM, Lenardic A 2011. Viscous coupling at the lithosphere-asthenosphere boundary. Geochem. Geophys. Geosyst. 12:10Q0AK02
    [Google Scholar]
  51. Höink T, Lenardic A. 2008. Three-dimensional mantle convection simulations with a low-viscosity asthenosphere and the relationship between heat flow and the horizontal length scale of convection. Geophys. Res. Lett. 35:10L10304
    [Google Scholar]
  52. Höink T, Lenardic A, Richards M 2012. Depth-dependent viscosity and mantle stress amplification: implications for the role of the asthenosphere in maintaining plate tectonics. Geophys. J. Int. 191:130–41
    [Google Scholar]
  53. Holmes A. 1931. Radioactivity and earth movements. Trans. Geol. Soc. Glasgow 18:559–606
    [Google Scholar]
  54. Jordan TH. 1975. The continental tectosphere. Rev. Geophys. 13:31–12
    [Google Scholar]
  55. Jordan TH. 1978. Composition and development of the continental tectosphere. Nature 274:544–48
    [Google Scholar]
  56. Jordan TH, Moorbath SE, Windley BF 1981. Continents as a chemical boundary layer. Philos. Trans. R. Soc. A 301:1461359–73
    [Google Scholar]
  57. Julià J, Ammon CJ, Herrmann RB, Correig AM 2000. Joint inversion of receiver function and surface wave dispersion observations. Geophys. J. Int. 143:199–112
    [Google Scholar]
  58. Kaban MK, Mooney WD, Petrunin AG 2015. Cratonic root beneath North America shifted by basal drag from the convecting mantle. Nat. Geosci. 8:10797–800
    [Google Scholar]
  59. Karato S-I. 1992. On the Lehmann discontinuity. Geophys. Res. Lett. 19:222255–58
    [Google Scholar]
  60. Karato S-I. 2012. On the origin of the asthenosphere. Earth Planet. Sci. Lett. 321–22:95–103
    [Google Scholar]
  61. Karato S-I, Jung H. 1998. Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth Planet. Sci. Lett. 157:3–4193–207
    [Google Scholar]
  62. Karato S-I, Olugboji TM, Park J 2015. Mechanisms and geologic significance of the mid-lithosphere discontinuity in the continents. Nat. Geosci. 8:7509–14
    [Google Scholar]
  63. Kawakatsu H, Kumar P, Takei Y, Shinohara M, Kanazawa T et al. 2009. Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates. Science 324:5926499–502
    [Google Scholar]
  64. Kay M. 1944. Geosynclines in continental development. Science 99:2580461–62
    [Google Scholar]
  65. Kay M. 1947. Geosynclinal nomenclature and the craton. AAPG Bull 31:71289–93
    [Google Scholar]
  66. Kay M. 1951. North American Geosynclines Washington, DC: Geol. Soc. Am.
    [Google Scholar]
  67. Kennett BLN, Iaffaldano G. 2013. Role of lithosphere in intra-continental deformation: central Australia. Gondwana Res 24:3–4958–68
    [Google Scholar]
  68. Kennett BLN, Yoshizawa K, Furumura T 2017. Interactions of multi-scale heterogeneity in the lithosphere: Australia. Tectonophysics 717:193–213
    [Google Scholar]
  69. Kind R, Li X. 2015. Deep Earth structure—transition zone and mantle discontinuities. Seismology and the Structure of the Earth G Schubert 655–82 Oxford, UK: Elsevier
    [Google Scholar]
  70. King S. 2005. Archean cratons and mantle dynamics. Earth Planet. Sci. Lett. 234:1–21–14
    [Google Scholar]
  71. Klootwijk C. 2013. Middle–Late Paleozoic Australia–Asia convergence and tectonic extrusion of Australia. Gondwana Res 24:15–54
    [Google Scholar]
  72. Kober L. 1921. Der Bau der Erde Berlin, Ger.: Gebrüder Borntraeger
    [Google Scholar]
  73. Kohlstedt DL, Evans B, Mackwell SJ 1995. Strength of the lithosphere: constraints imposed by laboratory experiments. J. Geophys. Res. Solid Earth 100:B917587–602
    [Google Scholar]
  74. Lambeck K, Johnston P. 1998. The viscosity of the mantle: evidence from the analysis of glacial rebound phenomena. The Earth's Mantle, Composition, Structure and Evolution I Jackson 461–502 London: Cambridge Univ. Press
    [Google Scholar]
  75. Lebedev S, Nolet G, Meier T, van der Hilst RD 2005. Automated multimode inversion of surface and S waveforms. Geophys. J. Int. 162:3951–64
    [Google Scholar]
  76. Lee C-TA, Luffi P, Chin EJ 2011. Building and destroying continental mantle. Annu. Rev. Earth Planet. Sci. 39:59–90
    [Google Scholar]
  77. Lehmann I. 1961. S and the structure of the upper mantle. Geophys. J. R. Astron. Soc. 4:Suppl. 1124–38
    [Google Scholar]
  78. Lenardic A, Moresi L-N. 1999. Some thoughts on the stability of cratonic lithosphere: effects of buoyancy and viscosity. J. Geophys. Res. Solid Earth 104:B612747–58
    [Google Scholar]
  79. Lenardic A, Moresi L-N, Muhlhaus H 2000. The role of mobile belts for the longevity of deep cratonic lithosphere: the crumple zone model. Geophys. Res. Lett. 27:81235–38
    [Google Scholar]
  80. Lenardic A, Moresi L-N, Muhlhaus H 2003. Longevity and stability of cratonic lithosphere: insights from numerical simulations of coupled mantle convection and continental tectonics. J. Geophys. Res. Solid Earth 108:B62303
    [Google Scholar]
  81. Liao J, Gerya T. 2014. Influence of lithospheric mantle stratification on craton extension: insight from two-dimensional thermo-mechanical modeling. Tectonophysics 631:50–64
    [Google Scholar]
  82. Luguet A, Behrens M, Pearson DG, König S, Herwartz D 2015. Significance of the whole rock Re–Os ages in cryptically and modally metasomatised cratonic peridotites: constraints from HSE–Se–Te systematics. Geochim. Cosmochim. Acta 164:441–63
    [Google Scholar]
  83. Luguet A, Pearson DG. 2019. Dating mantle peridotites using Re-Os isotopes: the complex message from whole rocks, base metal sulfides, and platinum group minerals. Am. Mineral. 104:2165–89
    [Google Scholar]
  84. Marone F, Gung Y, Romanowicz BA 2007. Three-dimensional radial anisotropic structure of the North American upper mantle from inversion of surface waveform data. Geophys. J. Int. 171:1206–22
    [Google Scholar]
  85. Meert JG. 2012. What's in a name? The Columbia (Paleopangaea/Nuna) supercontinent. Gondwana Res 21:4987–93
    [Google Scholar]
  86. Müller RD, Roest WR, Royer J-Y, Gahagan LM, Sclater JG 1997. Digital isochrons of the world's ocean floor. J. Geophys. Res. 102:B23211–14
    [Google Scholar]
  87. Müller RD, Sdrolias M, Gaina C, Roest WR 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochem. Geophys. Geosyst. 9:4Q04006
    [Google Scholar]
  88. Myers JS, Shaw RD, Tyler IM 1996. Tectonic evolution of Proterozoic Australia. Tectonics 15:61431–46
    [Google Scholar]
  89. Nance RD, Murphy JB, Santosh M 2014. The supercontinent cycle: a retrospective essay. Gondwana Res 25:14–29
    [Google Scholar]
  90. Pastor-Galán D, Nance RD, Murphy JB, Spencer CJ 2018. Supercontinents: myths, mysteries, and milestones. Geol. Soc. Lond. Spec. Publ 470:39–64
    [Google Scholar]
  91. Paul J, Ghosh A, Conrad CP 2019. Traction and strain-rate at the base of the lithosphere: an insight into cratonic survival. Geophys. J. Int. 217:21024–33
    [Google Scholar]
  92. Pearson DG, Carlson RW, Shirey SB, Boyd FR, Nixon PH 1995. Stabilisation of Archaean lithospheric mantle: a Re–Os isotope study of peridotite xenoliths from the Kaapvaal craton. Earth Planet. Sci. Lett. 134:3–4341–57
    [Google Scholar]
  93. Pearson DG, Shirey SB, Bulanova GP, Carlson RW, Milledge HJ 1999. Re-Os isotope measurements of single sulfide inclusions in a Siberian diamond and its nitrogen aggregation systematics. Geochim. Cosmochim. Acta 63:5703–11
    [Google Scholar]
  94. Pearson DG, Wittig N. 2008. Formation of Archaean continental lithosphere and its diamonds: the root of the problem. J. Geol. Soc. 165:5895–914
    [Google Scholar]
  95. Petrunin AG, Kaban MK, Rogozhina I, Trubitsyn V 2013. Revising the spectral method as applied to modeling mantle dynamics. Geochem. Geophys. Geosyst. 14:93691–702
    [Google Scholar]
  96. Richards MA, Yang W-S, Baumgardner JR, Bunge H-P 2001. Role of a low-viscosity zone in stabilizing plate tectonics: implications for comparative terrestrial planetology. Geochem. Geophys. Geosyst. 2:81026
    [Google Scholar]
  97. Richter FM. 1988. A major change in the thermal state of the Earth at the Archaean-Proterozoic boundary: consequences for the nature and preservation of continental lithosphere. J. Petrol. 1988:139–52
    [Google Scholar]
  98. Ritsema J, van Heijst HJ, Woodhouse J 2004. Global transition zone tomography. J. Geophys. Res. Solid Earth 109:B2B02302
    [Google Scholar]
  99. Rolf T, Capitanio FA, Tackley PJ 2018. Constraints on mantle viscosity structure from continental drift histories in spherical mantle convection models. Tectonophysics 746:339–51
    [Google Scholar]
  100. Rudnick RL, Walker RJ. 2009. Interpreting ages from Re–Os isotopes in peridotites. Lithos 112:Suppl. 21083–95
    [Google Scholar]
  101. Rychert CA, Shearer PM. 2009. A global view of the lithosphere-asthenosphere boundary. Science 324:5926495–98
    [Google Scholar]
  102. Selway K, Ford HA, Kelemen P 2015. The seismic mid-lithosphere discontinuity. Earth Planet. Sci. Lett. 414:45–57
    [Google Scholar]
  103. Şengör AMC. 2003. The reinvention and christening of the concept of geosyncline in America. The Large-Wavelength Deformations of the Lithosphere: Materials for a History of the Evolution of Thought from the Earliest Times to Plate Tectonics AMC Şengör 123–33 Washington, DC: Geol. Soc. Am.
    [Google Scholar]
  104. Shapiro SS, Hager BH, Jordan TH 1999. Stability and dynamics of the continental tectosphere. Lithos 48:1115–33
    [Google Scholar]
  105. Shirey SB, Richardson SH, Harris JW 2004. Integrated models of diamond formation and craton evolution. Lithos 77:1–4923–44
    [Google Scholar]
  106. Simon NSC, Carlson RW, Pearson DG, Davies GR 2007. The origin and evolution of the Kaapvaal cratonic lithospheric mantle. J. Petrol. 48:3589–625
    [Google Scholar]
  107. Sleep NH. 2003. Survival of Archean cratonal lithosphere. J. Geophys. Res. Solid Earth 108:B62302
    [Google Scholar]
  108. Sleep NH. 2005. Evolution of the continental lithosphere. Annu. Rev. Earth Planet. Sci. 33:369–93
    [Google Scholar]
  109. Stille H. 1936. Tektonische Beziehungen zwischen Nordamerika und Europa. International Geological Congress, Report of the XVI Session, United States of America 1933 W Lindgren 829–38 Washington, DC: G. Banta
    [Google Scholar]
  110. Sun W, Kennett BLN. 2017. Mid-lithosphere discontinuities beneath the western and central North China Craton. Geophys. Res. Lett. 44:31302–10
    [Google Scholar]
  111. Sun W, Kennett BLN, Zhao L, Fu L-Y 2018. Continental lithospheric layering beneath stable, modified, and destroyed cratons from seismic daylight imaging. Lithospheric Discontinuities H Yuan, B Romano-wicz 155–76 Washington, DC: AGU
    [Google Scholar]
  112. Taira T, Yoshizawa K. 2020. Upper mantle discontinuities beneath Australia from trans-dimensional Bayesian inversions using multi-mode surface waves and receiver functions. Geophys. J. Int. 223:32085100
    [Google Scholar]
  113. Turcotte DL, Schubert G. 2014. Geodynamics London: Cambridge Univ. Press
    [Google Scholar]
  114. van der Lee S, Nolet G 1997. Upper mantle S velocity structure of North America. J. Geophys. Res. Solid Earth 102:B1022815–38
    [Google Scholar]
  115. van Summeren J, Conrad CP, Lithgow-Bertelloni C 2012. The importance of slab pull and a global asthenosphere to plate motions. Geochem. Geophys. Geosyst. 13:2Q0AK03
    [Google Scholar]
  116. Wainwright AN, Luguet A, Fonseca ROC, Pearson DG 2015. Investigating metasomatic effects on the 187Os isotopic signature: a case study on micrometric base metal sulphides in metasomatised peridotite from the Letlhakane kimberlite (Botswana). Lithos 232:35–48
    [Google Scholar]
  117. Wang H, van Hunen J, Pearson DG, Allen MB 2014. Craton stability and longevity: the roles of composition-dependent rheology and buoyancy. Earth Planet. Sci. Lett. 391:224–33
    [Google Scholar]
  118. Wenker S, Beaumont C. 2018. Effects of lateral strength contrasts and inherited heterogeneities on necking and rifting of continents. Earth Planet. Sci. Lett. 746:46–63
    [Google Scholar]
  119. Wessel P, Luis J, Uieda L, Scharroo R, Wobbe F et al. 2019. The Generic Mapping Tools version 6. Geochem. Geophys. Geosyst. 20:115556–64
    [Google Scholar]
  120. Yoshida M. 2010. Preliminary three-dimensional model of mantle convection with deformable, mobile continental lithosphere. Earth Planet. Sci. Lett. 295:1–2205–18
    [Google Scholar]
  121. Yoshida M. 2012. Dynamic role of the rheological contrast between cratonic and oceanic lithospheres in the longevity of cratonic lithosphere: a three-dimensional numerical study. Tectonophysics 532–535:156–66
    [Google Scholar]
  122. Yoshida M. 2013. Mantle temperature under drifting continents during the supercontinent cycle. Geophys. Res. Lett. 40:4681–86
    [Google Scholar]
  123. Yoshida M, Hamano Y. 2015. Pangea breakup and northward drift of the Indian subcontinent reproduced by a numerical model of mantle convection. Sci. Rep. 5:8407
    [Google Scholar]
  124. Yoshida M, Santosh M. 2018. Voyage of the Indian subcontinent since Pangea breakup and driving force of supercontinent cycles: insights on dynamics from numerical modeling. Geosci. Front. 9:51279–92
    [Google Scholar]
  125. Yoshizawa K. 2014. Radially anisotropic 3-D shear wave structure of the Australian lithosphere and asthenosphere from multi-mode surface waves. Phys. Earth Planet. Inter. 235:33–48
    [Google Scholar]
  126. Yoshizawa K, Ekström G. 2010. Automated multimode phase speed measurements for high-resolution regional-scale tomography: application to North America. Geophys. J. Int. 183:31538–58
    [Google Scholar]
  127. Yoshizawa K, Kennett BLN. 2004. Multimode surface wave tomography for the Australian region using a three-stage approach incorporating finite frequency effects. J. Geophys. Res. Solid Earth 109:B2B02310, doi:10.1029/2002JB002254
    [Google Scholar]
  128. Yoshizawa K, Kennett BLN. 2015. The lithosphere‐asthenosphere transition and radial anisotropy beneath the Australian continent. Geophys. Res. Lett. 42:103839–46
    [Google Scholar]
  129. Yuan H, Romanowicz BA. 2010. Lithospheric layering in the North American craton. Nature 466:73101063–68
    [Google Scholar]
  130. Yuan H, Romanowicz BA. 2018. Introduction—lithospheric discontinuities. Lithospheric Discontinuities H Yuan, BA Romanowicz 1–3 Washington, DC: AGU
    [Google Scholar]
/content/journals/10.1146/annurev-earth-091620-113028
Loading
/content/journals/10.1146/annurev-earth-091620-113028
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error