1932

Abstract

Understanding climate change, its effect on terrestrial and marine ecosystems, and possible ways to prevent future climate disasters is a major challenge for society, involving specialists in climate science, terrestrial and marine ecology, paleontology, and sedimentary geology. One approach is to study the deep-time record, especially when the time involved in a particular climatic change can be calibrated. Cyclostratigraphy is a useful tool for this. Throughout Earth's history, different scales of orbital cycles have had significant impacts on atmosphere-ocean dynamics; these impacts are preserved in the ecological and sedimentary record. Most characterizations of these cycles are based on the sedimentary record. But fossil records of past biota, corresponding to individual organisms and communities, have proven very useful in cyclostratigraphic research: From semidiurnal cycles mainly recorded in fossil skeletons to million-year-scale cycles involving mass extinctions, various cases illustrate their worth. This article reviews the use of the fossil record to recognize several cycles, from ecological timescales (≤1.0 yr to 10 kyr cycles; calendar and solar bands) to geological timescales (>10 kyr cycles; Milankovitch and galactic bands).

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-120412-145922
2014-05-30
2024-10-07
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-earth-120412-145922
Loading
/content/journals/10.1146/annurev-earth-120412-145922
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error