As holometabolous insects that occupy distinct aquatic and terrestrial environments in larval and adult stages and utilize hematophagy for nutrient acquisition, mosquitoes are subjected to a wide variety of symbiotic interactions. Indeed, mosquitoes play host to endosymbiotic, entomopathogenic, and mosquito-borne organisms, including protozoa, viruses, bacteria, fungi, fungal-like organisms, and metazoans, all of which trigger and shape innate infection-response capacity. Depending on the infection or interaction, the mosquito may employ, for example, cellular and humoral immune effectors for septic infections in the hemocoel, humoral infection responses in the midgut lumen, and RNA interference and programmed cell death for intracellular pathogens. These responses often function in concert, regardless of the infection type, and provide a robust front to combat infection. Mosquito-borne pathogens and entomopathogens overcome these immune responses, employing avoidance or suppression strategies. Burgeoning methodologies are capitalizing on this concerted deployment of immune responses to control mosquito-borne disease.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adelman ZN, Blair CD, Carlson JO, Beaty BJ, Olson KE. 1.  2001. Sindbis virus-induced silencing of dengue viruses in mosquitoes. Insect Mol. Biol. 10:3265–73 [Google Scholar]
  2. Ahmed A, Martin D, Manetti AG, Han S-J, Lee W-J. 2.  et al. 1999. Genomic structure and ecdysone regulation of the prophenoloxidase 1 gene in the malaria vector Anopheles gambiae. PNAS 96:2614795–800 [Google Scholar]
  3. Ahmed AM, Hurd H. 3.  2006. Immune stimulation and malaria infection impose reproductive costs in Anopheles gambiae via follicular apoptosis. Microbes Infect 8:2308–15 [Google Scholar]
  4. Akorli J, Gendrin M, Pels NAP, Yeboah-Manu D, Christophides GK, Wilson MD. 4.  2016. Seasonality and locality affect the diversity of Anopheles gambiae and Anopheles coluzzii midgut microbiota from Ghana. PLOS ONE 11:6e0157529 [Google Scholar]
  5. Aliota MT, Fuchs JF, Rocheleau TA, Clark AK, Hillyer JF. 5.  et al. 2010. Mosquito transcriptome profiles and filarial worm susceptibility in Armigeres subalbatus. PLOS Negl. Trop. Dis. 4:4e666 [Google Scholar]
  6. Aliota MT, Peinado SA, Velez ID, Osorio JE. 6.  2016. The wMel strain of Wolbachia reduces transmission of Zika virus by Aedes aegypti. Sci. Rep. 6:28792 [Google Scholar]
  7. Andreadis TG. 7.  2005. Evolutionary strategies and adaptations for survival between mosquito-parasitic microsporidia and their intermediate copepod hosts: a comparative examination of Amblyospora connecticut and Hyalinocysta chapmani (Microsporidia: Amblyosporidae). Folia Parasitol 52:1–223–35 [Google Scholar]
  8. Barletta ABF, Nascimento-Silva MCL, Talyuli OAC, Oliveira JHM, Pereira LOR. 8.  et al. 2017. Microbiota activates IMD pathway and limits Sindbis infection in Aedes aegypti. Parasites Vectors 10:1103 [Google Scholar]
  9. Barros FSM, Vasconcelos SD, Arruda ME, Confalonieri UEC, Luitgards-Moura JF, Honório NA. 9.  2006. Tetrahymenidae infection in mosquito populations in a malaria-endemic region of the Amazon. J. Invertebr. Pathol. 91:199–201 [Google Scholar]
  10. Bartholomay LC, Farid HA, Ramzy RM, Christensen BM. 10.  2003. Culex pipiens: characterization of immune peptides and the influence of immune activation on development of Wuchereria bancrofti. Mol. Biochem. Parasitol. 130:143–50 [Google Scholar]
  11. Bartholomay LC, Fuchs JF, Cheng L, Beck ET, Vizioli J. 11.  et al. 2004. Reassessing the role of defensin in the innate immune response of the mosquito. Aedes aegypti. Insect Mol. Biol. 13:2125–32 [Google Scholar]
  12. Bartholomay LC, Waterhouse RM, Mayhew GF, Campbell CL, Michel K. 12.  et al. 2010. Pathogenomics of Culex quinquefasciatus and meta-analysis of infection responses to diverse pathogens. Science 330:600088–90 [Google Scholar]
  13. Baton LA, Robertson A, Warr E, Strand MR, Dimopoulos G. 13.  2009. Genome-wide transcriptomic profiling of Anopheles gambiae hemocytes reveals pathogen-specific signatures upon bacterial challenge and Plasmodium berghei infection. BMC Genom 10:1257 [Google Scholar]
  14. Baxter RH, Chang C-I, Chelliah Y, Blandin S, Levashina EA, Deisenhofer J. 14.  2007. Structural basis for conserved complement factor-like function in the antimalarial protein TEP1. PNAS 104:2811615–20 [Google Scholar]
  15. Becnel JJ, White SE, Moser BA, Fukuda T, Rotstein MJ. 15.  et al. 2001. Epizootiology and transmission of a newly discovered baculovirus from the mosquitoes Culex nigripalpus and C. quinquefasciatus. J. Gen. Virol. 82:2275–82 [Google Scholar]
  16. Becnel JJ, White SE, Shapiro AM. 16.  2003. Culex nigripalpus nucleopolyhedrovirus (CuniNPV) infections in adult mosquitoes and possible mechanisms for dispersal. J. Invertebr. Pathol. 83:2181–83 [Google Scholar]
  17. Becnel JJ, White SE, Shapiro AM. 17.  2005. Review of microsporidia-mosquito relationships: from the simple to the complex. Folia Parasitol 52:1–241–50 [Google Scholar]
  18. Beerntsen BT, Luckhart S, Christensen BM. 18.  1989. Brugiamalayi and Brugia pahangi: inherent difference in immune activation in the mosquitoes Armigeres subalbatus and Aedes aegypti. J. Parasitol. 75:176–81 [Google Scholar]
  19. Bhattacharya T, Newton ILG, Hardy RW. 19.  2017. Wolbachia elevates host methyltransferase expression to block an RNA virus early during infection. PLOS Pathog 13:6e1006427 [Google Scholar]
  20. Bian G, Joshi D, Dong Y, Lu P, Zhou G. 20.  et al. 2013. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science 340:6133748–51 [Google Scholar]
  21. Blandin SA, Levashina EA. 21.  2007. Phagocytosis in mosquito immune responses. Immunol. Rev. 219:8–16 [Google Scholar]
  22. Blandin SA, Marois E, Levashina EA. 22.  2008. Antimalarial responses in Anopheles gambiae: from a complement-like protein to a complement-like pathway. Cell Host Microbe 3:6364–74 [Google Scholar]
  23. Blandin SA, Moita LF, Köcher T, Wilm M, Kafatos FC, Levashina EA. 23.  2002. Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Rep 3:9852–56 [Google Scholar]
  24. Blandin SA, Shiao S-H, Moita LF, Janse CJ, Waters AP. 24.  et al. 2004. Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell 116:5661–70 [Google Scholar]
  25. Blandin SA, Wang-Sattler R, Lamacchia M, Gagneur J, Lycett G. 25.  et al. 2009. Dissecting the genetic basis of resistance to malaria parasites in Anopheles gambiae. Science 326:5949147–50 [Google Scholar]
  26. Blanford S, Chan BHK, Jenkins N, Sim D, Turner RJ. 26.  et al. 2005. Fungal pathogen reduces potential for malaria transmission. Science 308:57281638–41 [Google Scholar]
  27. Blanford S, Jenkins NE, Read AF, Thomas MB. 27.  2012. Evaluating the lethal and pre-lethal effects of a range of fungi against adult Anopheles stephensi mosquitoes. Malar. J. 11:1365 [Google Scholar]
  28. Boete C, Paul RE, Koella JC. 28.  2004. Direct and indirect immunosuppression by a malaria parasite in its mosquito vector. Proc. Biol. Sci. 271:15481611–15 [Google Scholar]
  29. Bolling BG, Weaver SC, Tesh RB, Vasilakis N. 29.  2015. Insect-specific virus discovery: significance for the arbovirus community. Viruses 7:94911–28 [Google Scholar]
  30. Brey PT, Lebrun RA, Papierok B, Ohayon H, Vennavalli S, Hafez J. 30.  1988. Defense reactions by larvae of Aedes aegypti during infection by the aquatic fungus Lagenidium giganteum (Oomycete). Cell Tissue Res 253:1245–50 [Google Scholar]
  31. Bryant WB, Michel K. 31.  2014. Blood feeding induces hemocyte proliferation and activation in the African malaria mosquito, Anopheles gambiae Giles. J. Exp. Biol. 217:81238–45 [Google Scholar]
  32. Bryant WB, Michel K. 32.  2015. Anopheles gambiae hemocytes exhibit transient states of activation. Dev. Comp. Immunol. 55:119–29 [Google Scholar]
  33. Caragata EP, Dutra HLC, Moreira LA. 33.  2016. Exploiting intimate relationships: controlling mosquito-transmitted disease with Wolbachia. 323207–18
  34. Carissimo G, Pondeville E, McFarlane M, Dietrich I, Mitri C. 34.  et al. 2015. Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota. PNAS 112:2E176–85 [Google Scholar]
  35. Castillo JC, Brown MR, Strand MR. 35.  2011. Blood feeding and insulin-like peptide 3 stimulate proliferation of hemocytes in the mosquito Aedes aegypti. PLOS Pathog 7:10e1002274 [Google Scholar]
  36. Castillo JC, Ferreira ABB, Trisnadi N, Barillas-Mury C. 36.  2017. Activation of mosquito complement antiplasmodial response requires cellular immunity. Sci. Immunol. 2:71–10 [Google Scholar]
  37. Castillo JC, Robertson AE, Strand MR. 37.  2006. Characterization of hemocytes from the mosquitoes Anopheles gambiae and Aedes aegypti. Insect Biochem. Mol. Biol. 36:12891–903 [Google Scholar]
  38. Cator LJ, George J, Blanford S, Murdock CC, Baker TC. 38.  et al. 2013. “Manipulation” without the parasite: Altered feeding behaviour of mosquitoes is not dependent on infection with malaria parasites. Proc. Biol. Sci. 280:176320130711 [Google Scholar]
  39. Cerenius L, Lee BL, Söderhäll K. 39.  2008. The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol 29:6263 [Google Scholar]
  40. Chapman HC. 40.  1974. Biological control of mosquito larvae. Annu. Rev. Entomol. 19:33–59 [Google Scholar]
  41. Charles JF, de Barjac H. 41.  1983. Action of crystals of Bacillus thuringiensis var. israelensis on the midgut of Aedes aegypti L. larvae, studied by electron microscopy. Ann. Microbiol. 134A:2197–218 [Google Scholar]
  42. Chen CC, Chen CS. 42.  1995. Brugia pahangi: effects of melanization on the uptake of nutrients by microfilariae in vitro. Exp. Parasitol. 81:172–78 [Google Scholar]
  43. Chen CC, Laurence BR. 43.  1987. Selection of a strain of Anopheles quadrimaculatus with high filaria encapsulation rate. J. Parasitol. 73:2418–19 [Google Scholar]
  44. Christensen BM. 44.  1981. Observations on the immune response of Aedes trivittatus against Dirofilaria immitis. Trans. R. Soc. Trop. Med. Hyg. 75:3439–43 [Google Scholar]
  45. Christensen BM, Forton KF. 45.  1986. Hemocyte-mediated melanization of microfilariae in Aedes aegypti. J. Parasitol. 72:2220–25 [Google Scholar]
  46. Christensen BM, Huff BM, Miranpuri GS, Harris KL, Christensen LA. 46.  1989. Hemocyte population changes during the immune response of Aedes aegypti to inoculated microfilariae of Dirofilaria immitis. J. Parasitol. 75:1119–23 [Google Scholar]
  47. Christensen BM, Li J, Chen CC, Nappi AJ. 47.  2005. Melanization immune responses in mosquito vectors. Trends Parasitol 21:4192–99 [Google Scholar]
  48. Christophides GK, Zdobnov E, Barillas-Mury C, Birney E, Blandin S. 48.  et al. 2002. Immunity-related genes and gene families in Anopheles gambiae. Science 298:5591159–65 [Google Scholar]
  49. Clark TB, Brandl DG. 49.  1976. Observations on the infection of Aedes sierrensis by a tetrahymenine ciliate. J. Invertebr. Pathol. 28:3341–49 [Google Scholar]
  50. Clark TB, Kellen WR, Fukuda T, Lindegren JE. 50.  1968. Field and laboratory studies on the pathogenicity of the fungus Beauveria bassiana to three genera of mosquitoes. J. Invertebr. Pathol. 11:11–7 [Google Scholar]
  51. Clayton AM, Dong Y, Dimopoulos G. 51.  2014. The Anopheles innate immune system in the defense against malaria infection. J. Innate Immun. 6:2169–81 [Google Scholar]
  52. Clem RJ. 52.  2016. Arboviruses and apoptosis: the role of cell death in determining vector competence. J. Gen. Virol. 97:51033–36 [Google Scholar]
  53. Coggins SA, Estévez-Lao TY, Hillyer JF. 53.  2012. Increased survivorship following bacterial infection by the mosquito Aedes aegypti as compared to Anopheles gambiae correlates with increased transcriptional induction of antimicrobial peptides. Dev. Comp. Immunol. 37:3–4390–401 [Google Scholar]
  54. Collins FH, Sakai RK, Vernick KD, Paskewitz S, Seeley DC. 54.  et al. 1986. Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science 234:4776607–10 [Google Scholar]
  55. Daniels CW. 55.  1898. On transmission of proteosoma to birds by the mosquito: a report to the malaria committee of the royal society. Proc. R. Soc. London 64:402–11443–54 [Google Scholar]
  56. Demaio J, Pumpuni CB, Kent M, Beier JC. 56.  1996. The midgut bacterial flora of wild Aedes triseriatus, Culex pipiens, and Psorophora columbiae mosquitoes. Am. J. Trop. Med. Hyg. 54:2219–23 [Google Scholar]
  57. Dennison NJ, Jupatanakul N, Dimopoulos G. 57.  2014. The mosquito microbiota influences vector competence for human pathogens. Curr. Opin. Insect Sci. 3:6–13 [Google Scholar]
  58. Dong S, Kantor AM, Lin J, Passarelli AL, Clem RJ, Franz AWE. 58.  2016. Infection pattern and transmission potential of chikungunya virus in two New World laboratory-adapted Aedes aegypti strains. Sci. Rep. 6:24729 [Google Scholar]
  59. Dong Y, Manfredini F, Dimopoulos G, Tchuinkam T, Faas B. 59.  2009. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLOS Pathog 5:5e1000423 [Google Scholar]
  60. Dong Y, Morton JC Jr., Ramirez JL, Souza-Neto JA. Dimopoulos G. 60.  2012. The entomopathogenic fungus Beauveria bassiana activate toll and JAK-STAT pathway-controlled effector genes and anti-dengue activity in Aedes aegypti. Insect Biochem. Mol. Biol. 42:2126–32 [Google Scholar]
  61. Dutra HLC, Rocha MN, Dias FBS, Mansur SB, Caragata EP, Moreira LA. 61.  2016. Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes. 196771–74
  62. Eldering M, Morlais I, van Gemert G-J, van de Vegte-Bolmer M, Graumans W. 62.  et al. 2016. Variation in susceptibility of African Plasmodium falciparum malaria parasites to TEP1 mediated killing in Anopheles gambiae mosquitoes. Sci. Rep. 6:20440 [Google Scholar]
  63. Eng MW, van Zuylen MN, Severson DW. 63.  2016. Apoptosis-related genes control autophagy and influence DENV-2 infection in the mosquito vector. Aedes aegypti. Insect Biochem. Mol. Biol. 76:70–83 [Google Scholar]
  64. Erickson SM, Thomsen EK, Keven JB, Vincent N, Koimbu G. 64.  et al. 2013. Mosquito-parasite interactions can shape filariasis transmission dynamics and impact elimination programs. PLOS Negl. Trop. Dis. 7:9e2433 [Google Scholar]
  65. Federici BA. 65.  1995. The future of microbial insecticides as vector control agents. J. Am. Mosq. Control Assoc. 11:2260–68 [Google Scholar]
  66. Flatt T, Heyland A, Rus F, Porpiglia E, Sherlock C. 66.  et al. 2008. Hormonal regulation of the humoral innate immune response in Drosophila melanogaster. J. Exp. Biol. 211:162712–24 [Google Scholar]
  67. Foy BD, Myles KM, Pierro DJ, Sanchez-Vargas I, Uhlířová M. 67.  et al. 2004. Development of a new Sindbis virus transducing system and its characterization in three Culicine mosquitoes and two Lepidopteran species. Insect Mol. Biol. 13:189–100 [Google Scholar]
  68. Fraiture M, Baxter RHG, Steinert S, Chelliah Y, Frolet CC. 68.  et al. 2009. Two mosquito LRR proteins function as complement control factors in the TEP1-mediated killing of Plasmodium. Cell Host Microbe 5:3273–84 [Google Scholar]
  69. Franz AWE, Kantor AM, Passarelli AL, Clem RJ. 69.  2015. Tissue barriers to arbovirus infection in mosquitoes. Viruses 7:73741–67 [Google Scholar]
  70. Garver LS, Dong Y, Dimopoulos G. 70.  2009. Caspar controls resistance to Plasmodium falciparum in diverse Anopheline species. PLOS Pathog 5:3e1000335 [Google Scholar]
  71. Girard YA, Popov V, Wen J, Han V, Higgs S. 71.  2005. Ultrastructural study of West Nile virus pathogenesis in Culex pipiens quinquefasciatus (Diptera: Culicidae). J. Med. Entomol. 42:3429–44 [Google Scholar]
  72. Girard YA, Schneider BS, McGee CE, Wen J, Han VC. 72.  et al. 2007. Salivary gland morphology and virus transmission during long-term cytopathologic West Nile virus infection in Culex mosquitoes. Am. J. Trop. Med. Hyg. 76:1118–28 [Google Scholar]
  73. Goic B, Stapleford KA, Frangeul L, Doucet AJ, Gausson V. 73.  et al. 2016. Virus-derived DNA drives mosquito vector tolerance to arboviral infection. Nat. Commun. 7:12410 [Google Scholar]
  74. Golkar L, Lebrun RA, Ohayon H, Gounon P, Papierok B, Brey PT. 74.  1993. Variation of larval susceptibility to Lagenidium giganteum in three mosquito species. J. Invertebr. Pathol. 62:11–8 [Google Scholar]
  75. Gouagna LC, Bonnet S, Gounoue R, Verhave JP, Eling W. 75.  et al. 2004. Stage-specific effects of host plasma factors on the early sporogony of autologous Plasmodium falciparum isolates within Anopheles gambiae. Trop. Med. Int. Health 9:9937–48 [Google Scholar]
  76. Grassmick RA, Rowley WA. 76.  1973. Larval mortality of Culex tarsalis and Aedes aegypti when reared with different concentrations of Tetrahymena pyriformis. J. Invertebr. Pathol. 22:186–93 [Google Scholar]
  77. Gusmão DS, Santos AV, Marini DC, Bacci M Jr., Berbert-Molina MA, Lemos FJA. 77.  2010. Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in the midgut. Acta Trop 115:3275–81 [Google Scholar]
  78. Habtewold T, Povelones M, Blagborough AM, Christophides GK. 78.  2008. Transmission blocking immunity in the malaria non-vector mosquito Anopheles quadriannulatus species A. PLOS Pathog 4:5e1000070 [Google Scholar]
  79. Han YS, Thompson J, Kafatos FC, Barillas-Mury C. 79.  2000. Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes. EMBO J 19:226030–40 [Google Scholar]
  80. Hardy JL, Houk EJ, Kramer LD, Reeves WC. 80.  1983. Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu. Rev. Entomol. 28:229–62 [Google Scholar]
  81. Hauck ES, Antonova-Koch Y, Drexler A, Pietri J, Pakpour N. 81.  et al. 2013. Overexpression of phosphatase and tensin homolog improves fitness and decreases Plasmodium falciparum development in Anopheles stephensi. Microbes Infect 15:12775–87 [Google Scholar]
  82. Hegde S, Rasgon JL, Hughes GL. 82.  2015. The microbiome modulates arbovirus transmission in mosquitoes. Curr. Opin. Virol. 15:97–102 [Google Scholar]
  83. Hillyer JF, Barreau C, Vernick KD. 83.  2007. Efficiency of salivary gland invasion by malaria sporozoites is controlled by rapid sporozoite destruction in the mosquito haemocoel. Int. J. Parasitol. 37:6673–81 [Google Scholar]
  84. Hillyer JF, Christensen BM. 84.  2002. Characterization of hemocytes from the yellow fever mosquito. Aedes aegypti. Histochem. Cell Biol. 117:5431–40 [Google Scholar]
  85. Hillyer JF, Christensen BM. 85.  2005. Mosquito phenoloxidase and defensin colocalize in melanization innate immune responses. J. Histochem. Cytochem. 53:6689–98 [Google Scholar]
  86. Hillyer JF, Estévez-Lao TY. 86.  2010. Nitric oxide is an essential component of the hemocyte-mediated mosquito immune response against bacteria. Dev. Comp. Immunol. 34:2141–49 [Google Scholar]
  87. Hillyer JF, Strand MR. 87.  2014. Mosquito hemocyte-mediated immune responses. Curr. Opin. Insect Sci. 3:14–21 [Google Scholar]
  88. Hoa NT, Keene KM, Olson KE, Zheng L. 88.  2003. Characterization of RNA interference in an Anopheles gambiae cell line. Insect Biochem. Mol. Biol. 33:9949–57 [Google Scholar]
  89. Hopwood JA, Ahmed AM, Polwart A, Williams GT, Hurd H. 89.  2001. Malaria-induced apoptosis in mosquito ovaries: a mechanism to control vector egg production. J. Exp. Biol. 204:162773–80 [Google Scholar]
  90. Horne KM, Vanlandingham DL. 90.  2014. Bunyavirus-vector interactions. Viruses 6:114373–97 [Google Scholar]
  91. Horton AA, Wang B, Camp L, Price MS, Arshi A. 91.  et al. 2011. The mitogen-activated protein kinome from Anopheles gambiae: identification, phylogeny and functional characterization of the ERK, JNK and p38 map kinases. BMC Genom 12:1574 [Google Scholar]
  92. Hurd H, Grant KM, Arambage SC. 92.  2006. Apoptosis-like death as a feature of malaria infection in mosquitoes. Parasitology 132:Suppl. 1S33–47 [Google Scholar]
  93. Hurd H, Taylor PJ, Adams D, Underhill A, Eggleston P. 93.  2005. Evaluating the costs of mosquito resistance to malaria parasites. Evolution 59:122560–72 [Google Scholar]
  94. Joshi D, Pan X, McFadden MJ, Bevins D, Liang X. 94.  et al. 2017. The maternally inheritable Wolbachia wAlbB induces refractoriness to Plasmodium berghei in Anopheles stephensi. Front. Microbiol. 8:366 [Google Scholar]
  95. Jupatanakul N, Sim S, Dimopoulos G. 95.  2014. The insect microbiome modulates vector competence for arboviruses. Viruses 6:114294–313 [Google Scholar]
  96. Keene KM, Foy BD, Sanchez-Vargas I, Beaty BJ, Blair CD, Olson KE. 96.  2004. RNA interference acts as a natural antiviral response to O'nyong-nyong virus (Alphavirus; togaviridae) infection of Anopheles gambiae. PNAS 101:4917240–45 [Google Scholar]
  97. Kelly EM, Moon DC, Bowers DF. 97.  2012. Apoptosis in mosquito salivary glands: Sindbis virus-associated and tissue homeostasis. J. Gen. Virol. 93:112419–24 [Google Scholar]
  98. Kerwin JL. 98.  2007. Oomycetes: Lagenidium giganteum. J. Am. Mosq. Control Assoc. 23:Suppl. 250–57 [Google Scholar]
  99. Kim W, Koo H, Richman AM, Seeley D, Vizioli J. 99.  et al. 2004. Ectopic expression of a cecropin transgene in the human malaria vector mosquito Anopheles gambiae (Diptera: Culicidae): effects on susceptibility to Plasmodium. J. Med. Entomol. 41:3447–55 [Google Scholar]
  100. King JG, Hillyer JF. 100.  2012. Infection-induced interaction between the mosquito circulatory and immune systems. PLOS Pathog 8:11e1003058 [Google Scholar]
  101. King JG, Hillyer JF. 101.  2013. Spatial and temporal in vivo analysis of circulating and sessile immune cells in mosquitoes: hemocyte mitosis following infection. BMC Biol 11:55 [Google Scholar]
  102. Kittayapong P, Baisley KJ, O'Neill SL. 102.  1999. A mosquito densovirus infecting Aedes aegypti and Aedes albopictus from Thailand. Am. J. Trop. Med. Hyg. 61:4612–17 [Google Scholar]
  103. Kokoza V, Ahmed A, Woon Shin S, Okafor N, Zou Z, Raikhel AS. 103.  2010. Blocking of Plasmodium transmission by cooperative action of Cecropin A and Defensin A in transgenic Aedes aegypti mosquitoes. PNAS 107:188111–16 [Google Scholar]
  104. Kumar S, Gupta L, Han YS, Barillas-Mury C. 104.  2004. Inducible peroxidases mediate nitration of Anopheles midgut cells undergoing apoptosis in response to Plasmodium invasion. J. Biol. Chem. 279:5153475–82 [Google Scholar]
  105. Lai S-C, Chen C-C, Hou RF. 105.  2002. Immunolocalization of prophenoloxidase in the process of wound healing in the mosquito Armigeres subalbatus (Diptera: Culicidae). J. Med. Entomol. 39:2266–74 [Google Scholar]
  106. Levashina EA, Moita LF, Blandin S, Vriend G, Lagueux M, Kafatos FC. 106.  2001. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito. Anopheles gambiae. Cell 104:5709–18 [Google Scholar]
  107. Linley JR, Nielsen HT. 107.  1968. Transmission of a mosquito iridescent virus in Aedes taeniorhynchus: I. Laboratory experiments. J. Invertebr. Pathol. 12:17–16 [Google Scholar]
  108. Liu B, Behura SK, Clem RJ, Schneemann A, Becnel J. 108.  et al. 2013. P53-mediated rapid induction of apoptosis conveys resistance to viral infection in Drosophila melanogaster. PLOS Pathog 9:2e1003137 [Google Scholar]
  109. Lombardo F, Christophides GK. 109.  2016. Novel factors of Anopheles gambiae haemocyte immune response to Plasmodium berghei infection. Parasites Vectors 9:78 [Google Scholar]
  110. Lombardo F, Ghani Y, Kafatos FC, Christophides GK. 110.  2013. Comprehensive genetic dissection of the hemocyte immune response in the malaria mosquito Anopheles gambiae. PLOS Pathog 9:1e1003145 [Google Scholar]
  111. Lowenberger CA, Ferdig MT, Bulet P, Khalili S, Hoffmann JA, Christensen BM. 111.  1996. Aedes aegypti: induced antibacterial proteins reduce the establishment and development of Brugia malayi. Exp. Parasitol. 83:2191–201 [Google Scholar]
  112. Lowenberger CA, Kamal S, Chiles J, Paskewitz S, Bulet P. 112.  et al. 1999. Mosquito–Plasmodium interactions in response to immune activation of the vector. Exp. Parasitol. 91:159–69 [Google Scholar]
  113. Lowenberger CA, Smartt CT, Bulet P, Ferdig MT, Severson DW. 113.  et al. 1999. Insect immunity: molecular cloning, expression, and characterization of cDNAs and genomic DNA encoding three isoforms of insect defensin in Aedes aegypti. Insect Mol. Biol. 8:1107–18 [Google Scholar]
  114. Michel K, Suwanchaichinda C, Morlais I, Lambrechts L, Cohuet A. 114.  et al. 2006. Increased melanizing activity in Anopheles gambiae does not affect development of Plasmodium falciparum. PNAS 103:4516858–63 [Google Scholar]
  115. Miesen P, Joosten J, van Rij RP. 115.  2016. PIWIs go viral: arbovirus-derived piRNAs in vector mosquitoes. PLOS Pathog 12:12e1006017 [Google Scholar]
  116. Moita LF, Wang-Sattler R, Michel K, Zimmermann T, Blandin S. 116.  et al. 2005. In vivo identification of novel regulators and conserved pathways of phagocytosis in A. gambiae. Immunity 23:165–73 [Google Scholar]
  117. Molina-Cruz A, Garver LS, Alabaster A, Bangiolo L, Haile A. 117.  et al. 2013. The human malaria parasite Pfs47 gene mediates evasion of the mosquito immune system. Science 340:6135984–87 [Google Scholar]
  118. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu GJ, Pyke AT. 118.  et al. 2009. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139:71268–78 [Google Scholar]
  119. Müller H-M, Dimopoulos G, Blass C, Kafatos FC. 119.  1999. A hemocyte-like cell line established from the malaria vector Anopheles gambiae expresses six prophenoloxidase genes. J. Biol. Chem. 274:1711727–35 [Google Scholar]
  120. Muturi EJ, Bara JJ, Rooney AP, Hansen AK. 120.  2016. Midgut fungal and bacterial microbiota of Aedes triseriatus and Aedes japonicus shift in response to La Crosse virus infection. Mol. Ecol. 25:164075–90 [Google Scholar]
  121. Myles KM, Wiley MR, Morazzani EM, Adelman ZN. 121.  2008. Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes. PNAS 105:5019938–43 [Google Scholar]
  122. Nappi AJ, Christensen BM. 122.  2005. Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. Insect Biochem. Mol. Biol. 35:5443–59 [Google Scholar]
  123. Nappi AJ, Poirié M, Carton Y. 123.  2009. The role of melanization and cytotoxic by-products in the cellular immune responses of Drosophila against parasitic wasps. Adv. Parasitol. 70:99–121 [Google Scholar]
  124. Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA. 124.  et al. 2015. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science 347:62171258522 [Google Scholar]
  125. Neira Oviedo M, VanEkeris L, Corena-Mcleod MDP, Linser PJ. 125.  2008. A microarray-based analysis of transcriptional compartmentalization in the alimentary canal of Anopheles gambiae (Diptera: Culicidae) larvae. Insect Mol. Biol. 17:161–72 [Google Scholar]
  126. Ocampo CB, Caicedo PA, Jaramillo G, Ursic Bedoya R, Baron O. 126.  et al. 2013. Differential expression of apoptosis related genes in selected strains of Aedes aegypti with different susceptibilities to dengue virus. PLOS ONE 8:4e61187 [Google Scholar]
  127. Oliveira GdA, Lieberman J, Barillas-Mury C. 127.  2012. Epithelial nitration by a peroxidase/NOX5 system mediates mosquito antiplasmodial immunity. Science 335:6070856–59 [Google Scholar]
  128. Olson KE, Blair CD. 128.  2015. Arbovirus–mosquito interactions: RNAi pathway. Curr. Opin. Virol. 15:119–26 [Google Scholar]
  129. Orfano AS, Nacif-Pimenta R, Duarte APM, Villegas LM, Rodrigues NB. 129.  et al. 2016. Species-specific escape of Plasmodium sporozoites from oocysts of avian, rodent, and human malarial parasites. Malar. J. 15:1394 [Google Scholar]
  130. Osta MA, Christophides GK, Kafatos FC. 130.  2004. Effects of mosquito genes on plasmodium development. Science 303:56662030–32 [Google Scholar]
  131. Paily KP, Balaraman K. 131.  2000. Susceptibility of ten species of mosquito larvae to the parasitic nematode Romanomermis iyengari and its development. Med. Vet. Entomol. 14:4426–29 [Google Scholar]
  132. Palmer CA, Wittrock DD, Christensen BM. 132.  1986. Ultrastructure of Malpighian tubules of Aedes aegypti infected with Dirofilaria immitis. J. Invertebr. Pathol. 48:3310–17 [Google Scholar]
  133. Pan X, Zhou G, Wu J, Bian G, Lu P. 133.  et al. 2012. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. PNAS 109:1E23–31 [Google Scholar]
  134. Parikh GR, Oliver JD, Bartholomay LC. 134.  2009. A haemocyte tropism for an arbovirus. J. Gen. Virol. 90:2292–96 [Google Scholar]
  135. Pinto SB, Kafatos FC, Michel K. 135.  2008. The parasite invasion marker SRPN6 reduces sporozoite numbers in salivary glands of Anopheles gambiae. Cell. Microbiol. 10:4891–98 [Google Scholar]
  136. Pinto SB, Lombardo F, Koutsos AC, Waterhouse RM, McKay K. 136.  et al. 2009. Discovery of plasmodium modulators by genome-wide analysis of circulating hemocytes in Anopheles gambiae. PNAS 106:5021270–75 [Google Scholar]
  137. Platzer EG. 137.  2007. Mermithid nematodes. J. Am. Mosq. Control Assoc. 23:58–64 [Google Scholar]
  138. Porter CH, DeFoliart GR. 138.  1985. Gonotrophic age, insemination, and Ascogregarina infection in a southern Wisconsin population of Aedes triseriatus. J. Am. Mosq. Control Assoc. 1:2238–40 [Google Scholar]
  139. Povelones M, Bhagavatula L, Yassine H, Tan LA, Upton LM. 139.  et al. 2013. The CLIP-domain serine protease homolog SPCLIP1 regulates complement recruitment to microbial surfaces in the malaria mosquito Anopheles gambiae. PLOS Pathog 9:9e1003623 [Google Scholar]
  140. Povelones M, Waterhouse RM, Kafatos FC, Christophides GK. 140.  2009. Leucine-rich repeat protein complex activates mosquito complement in defense against plasmodium parasites. Science 324:5924258–61 [Google Scholar]
  141. Powers AM, Olson KE, Higgs S, Carlson JO, Beaty BJ. 141.  1994. Intracellular immunization of mosquito cells to LaCrosse virus using a recombinant Sindbis virus vector. Virus Res 32:157–67 [Google Scholar]
  142. Ramirez JL, Souza-Neto J, Torres Cosme R, Rovira J, Ortiz A. 142.  et al. 2012. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLOS Negl. Trop. Dis. 6:3e1561 [Google Scholar]
  143. Richman AM, Bulet P, Hetru C, Barillas-Mury C, Hoffmann JA, Kafalos FC. 143.  1996. Inducible immune factors of the vector mosquito Anopheles gambiae: biochemical purification of a defensin antibacterial peptide and molecular cloning of preprodefensin cDNA. Insect Mol. Biol. 5:3203–10 [Google Scholar]
  144. Riehle MM, Xu J, Lazzaro BP, Rottschaefer SM, Coulibaly B. 144.  et al. 2008. Anopheles gambiae APL1 is a family of variable LRR proteins required for Rel1-mediated protection from the malaria parasite, Plasmodium berghei. PLOS ONE 3:11e3672 [Google Scholar]
  145. Rodrigues J, Brayner FA, Alves LC, Dixit R, Barillas-Mury C. 145.  2010. Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science 329:59971353–55 [Google Scholar]
  146. Saiyasombat R, Bolling BG, Brault AC, Bartholomay LC, Blitvich BJ. 146.  2011. Evidence of efficient transovarial transmission of Culex flavivirus by Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 48:51031–38 [Google Scholar]
  147. Sang RC, Gichogo A, Gachoya J, Dunster MD, Ofula V. 147.  et al. 2003. Isolation of a new flavivirus related to Cell fusing agent virus (CFAV) from field-collected flood-water Aedes mosquitoes sampled from a dambo in central Kenya. Arch. Virol. 148:61085–93 [Google Scholar]
  148. Scholte E-J, Knols BGJ, Samson RA, Takken W. 148.  2004. Entomopathogenic fungi for mosquito control: a review. J. Insect Sci. 4:19 [Google Scholar]
  149. Shahabuddin M, Fields I, Bulet P, Hoffmann JA, Miller LH. 149.  1998. Plasmodium gallinaceum: differential killing of some mosquito stages of the parasite by insect defensin. Exp. Parasitol. 89:1103–12 [Google Scholar]
  150. Shaw WR, Marcenac P, Childs LM, Buckee CO, Baldini F. 150.  et al. 2016. Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development. Nat. Commun. 7:11772 [Google Scholar]
  151. Shelly S, Lukinova N, Bambina S, Berman A, Cherry S. 151.  2009. Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 30:4588–98 [Google Scholar]
  152. Shin SW, Bian GW, Raikhel AS. 152.  2006. A Toll receptor and a cytokine, Toll5a and Spz1c, are involved in Toll antifungal immune signaling in the mosquito Aedes aegypti. J. Biol. Chem. 281:5139388–95 [Google Scholar]
  153. Shin SW, Kokoza V, Bian G, Cheon H-M, Kim YJ, Raikhel AS. 153.  2005. REL1, a homologue of Drosophila dorsal, regulates Toll antifungal immune pathway in the female mosquito Aedes aegypti. J. Biol. Chem. 280:1616499–507 [Google Scholar]
  154. Shoulkamy MA, Abdelzaher HMA, Shahin AAB. 154.  2001. Ultrastructural changes in the muscles, midgut, hemopoietic organ, imaginal discs and malpighian tubules of the mosquito Aedes aegypti larvae infected by the fungus Coelomomyces stegomyiae. Mycopathologia 149:299–106 [Google Scholar]
  155. Sinden RE, Billingsley PF. 155.  2001. Plasmodium invasion of mosquito cells: hawk or dove?. Trends Parasitol 17:5209–12 [Google Scholar]
  156. Thangamani S, Huang J, Hart CE, Guzman H, Tesh RB. 156.  2016. Vertical transmission of Zika virus in Aedes aegypti mosquitoes. Am. J. Trop. Med. Hyg. 95:51169–73 [Google Scholar]
  157. Vaidyanathan R, Scott TW. 157.  2006. Apoptosis in mosquito midgut epithelia associated with West Nile virus infection. Apoptosis 11:91643–51 [Google Scholar]
  158. Valero-Jiménez CA, Debets AJM, van Kan JAL, Schoustra SE, Takken W. 158.  et al. 2014. Natural variation in virulence of the entomopathogenic fungus Beauveria bassiana against malaria mosquitoes. Malar. J. 13:1479 [Google Scholar]
  159. Vasilakis N, Tesh RB. 159.  2015. Insect-specific viruses and their potential impact on arbovirus transmission. Curr. Opin. Virol. 15:69–74 [Google Scholar]
  160. Vernick KDD, Fujioka H, Seeley DCC, Tandler B, Aikawa M, Miller LHH. 160.  1995. Plasmodium gallinaceum: a refractory mechanism of ookinete killing in the mosquito. Anopheles gambiae. Exp. Parasitol. 80:4583–95 [Google Scholar]
  161. Vlachou D, Schlegelmilch T, Christophides GK, Kafatos FC. 161.  2005. Functional genomic analysis of midgut epithelial responses in Anopheles during plasmodium invasion. Curr. Biol. 15:131185–95 [Google Scholar]
  162. Vlachou D, Zimmermann T, Cantera R, Janse CJ, Waters AP, Kafatos FC. 162.  2004. Real-time, in vivo analysis of malaria ookinete locomotion and mosquito midgut invasion. Cell. Microbiol. 6:7671–85 [Google Scholar]
  163. Wang H, Gort T, Boyle DL, Clem RJ. 163.  2012. Effects of manipulating apoptosis on Sindbis virus infection of Aedes aegypti mosquitoes. J. Virol. 86:126546–54 [Google Scholar]
  164. Wang Y-H, Hu Y, Xing L-S, Jiang H, Hu S-N. 164.  et al. 2015. A critical role for CLSP2 in the modulation of antifungal immune response in mosquitoes. PLOS Pathog 11:6e1004931 [Google Scholar]
  165. Ward TW, Jenkins MS, Afanasiev BN, Edwards M, Duda BA. 165.  et al. 2001. Aedes aegypti transducing densovirus pathogenesis and expression in Aedes aegypti and Anopheles gambiae larvae. Insect Mol. Biol. 10:5397–405 [Google Scholar]
  166. Warr E, Aguilar R, Dong YM, Mahairaki V, Dimopoulos G. 166.  2007. Spatial and sex-specific dissection of the Anopheles gambiae midgut transcriptome. BMC Genom 8:37 [Google Scholar]
  167. Washburn JO, Anderson JR, Mercer DR. 167.  1989. Emergence characteristics of Aedes sierrensis (Diptera: Culicidae) from California treeholes with particular reference to parasite loads. J. Med. Entomol. 26:3173–82 [Google Scholar]
  168. Waterhouse RM, Kriventseva EV, Meister S, Xi ZY, Alvarez KS. 168.  et al. 2007. Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science 316:58321738–43 [Google Scholar]
  169. Watts DM, Pantuwatana S, Defoliart GR, Yuill TM, Thompson WH. 169.  1973. Transovarial transmission of LaCrosse virus (California encephalitis group) in the mosquito. Aedes triseriatus. Science 182:41171140–41 [Google Scholar]
  170. Weaver SC, Scott TW, Lorenz LH, Lerdthusnee K, Romoser WS. 170.  1988. Togavirus-associated pathologic changes in the midgut of a natural mosquito vector. J. Virol. 62:62083–90 [Google Scholar]
  171. Whitten MMA, Shiao SH, Levashina EA. 171.  2006. Mosquito midguts and malaria: cell biology, compartmentalization and immunology. Parasite Immunol 28:4121–30 [Google Scholar]
  172. Xu X, Dong Y, Abraham EG, Kocan A, Srinivasan P. 172.  et al. 2005. Transcriptome analysis of Anopheles stephensiPlasmodium berghei interactions. Mol. Biochem. Parasitol. 142:176–87 [Google Scholar]
  173. Yassine H, Kamareddine L, Chamat S, Christophides GK, Osta MA. 173.  2014. A serine protease homolog negatively regulates TEP1 consumption in systemic infections of the malaria vector Anopheles gambiae. J. Innate Immun. 6:6806–18 [Google Scholar]
  174. Yassine H, Kamareddine L, Osta MA. 174.  2012. The mosquito melanization response is implicated in defense against the entomopathogenic fungus Beauveria bassiana. PLOS Pathog 8:11e1003029 [Google Scholar]
  175. Zhang Q, Hua G, Adang MJ. 175.  2017. Effects and mechanisms of Bacillus thuringiensis crystal toxins for mosquito larvae. Insect Sci. 24:5714–29 [Google Scholar]
  176. Zouache K, Michelland RJ, Failloux AB, Grundmann GL, Mavingui P. 176.  2012. Chikungunya virus impacts the diversity of symbiotic bacteria in mosquito vector. Mol. Ecol. 21:92297–309 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error