1932

Abstract

Abstract

Xenobiotic resistance in insects has evolved predominantly by increasing the metabolic capability of detoxificative systems and/or reducing xenobiotic target site sensitivity. In contrast to the limited range of nucleotide changes that lead to target site insensitivity, many molecular mechanisms lead to enhancements in xenobiotic metabolism. The genomic changes that lead to amplification, overexpression, and coding sequence variation in the three major groups of genes encoding metabolic enzymes, i.e., cytochrome P450 monooxygenases (P450s), esterases, and glutathione--transferases (GSTs), are the focus of this review. A substantial number of the adaptive genomic changes associated with insecticide resistance that have been characterized to date are transposon mediated. Several lines of evidence suggest that P450 genes involved in insecticide resistance, and perhaps insecticide detoxification genes in general, may share an evolutionary association with genes involved in allelochemical metabolism. Differences in the selective regime imposed by allelochemicals and insecticides may account for the relative importance of regulatory or structural mutations in conferring resistance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.ento.51.110104.151104
2007-01-07
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/en/52/1/annurev.ento.51.110104.151104.html?itemId=/content/journals/10.1146/annurev.ento.51.110104.151104&mimeType=html&fmt=ahah

Literature Cited

  1. Ahmad S, Pardini S. 1990. Antioxidant defense of the cabbage looper, Trichoplusia ni: enzymatic responses to the superoxide-generating flavonoid, quercetin and photodynamic furanocoumarin, xantotoxin. Photochem. Photobiol 51:305–12 [Google Scholar]
  2. Amichot M, Tarès S, Brun-Barale A, Arthaud L, Bride JM, Bergé JB. 2004. Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2 enable DDT metabolism. Eur. J. Biochem 271:1250–57 [Google Scholar]
  3. Aminetzach YT, Macpherson JM, Dmitri A, Petrov DA. 2005. Pesticide resistance via transposition-mediated adaptive gene truncation in Drosophila. Science 309:764–67Showed that transposon insertion into one gene could generate a new functional protein that confers insecticide resistance. [Google Scholar]
  4. Andersen JF, Utermohlen JG, Feyereisen R. 1994. Expression of housefly CYP6A1 and NADPH-cytochrome P450 reductase in Escherichia coli and reconstitution of an insecticide-metabolizing P450 system. Biochemistry 33:2171–77 [Google Scholar]
  5. Andersen JF, Walding JK, Evans PH, Bowers WS, Feyereisen R. 1997. Substrate specificity for the epoxidation of terpenoids and active site topology of house fly cytochrome P450 6A1. Chem. Res. Toxicol 10:156–64 [Google Scholar]
  6. Baudry J, Li W, Pan L, Berenbaum MR, Schuler MA. 2003. Molecular docking of substrates and inhibitors in the catalytic site of CYP6B1, an insect cytochrome P450 monooxygenase. Protein Eng 16:577–87 [Google Scholar]
  7. Berenbaum MR. 1990. Plant consumers and plant secondary metabolites: past, present, and future. Oxford Rev. Evol. Biol 7:285–307 [Google Scholar]
  8. Berenbaum MR. 1995. Chemical defense: theory and practice. Proc. Natl. Acad. Sci. USA 92:2–8 [Google Scholar]
  9. Berenbaum MR. 2002. Postgenomic chemical ecology: from genetic code to ecological interactions. J. Chem. Ecol 28:873–96 [Google Scholar]
  10. Berticat C, Marquine M, Raymond M, Chevillon C. 2001. Recombination between two amplified esterase alleles in Culex pipiens. J. Hered 92:349–51 [Google Scholar]
  11. Blackman RL, Spence JM, Field LM, Devonshire AL. 1999. Variation in the chromosomal distribution of amplified esterase (FE4) genes in Greek field populations of Myzus persicae (Sulzer). Heredity 82:180–86 [Google Scholar]
  12. Bogwitz MR, Chung H, Magoc L, Rigby S, Wong W. et al. 2005. Cyp12a4 confers lufenuron resistance in a natural population of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 102:12807–12 [Google Scholar]
  13. Brown RP, Berenbaum MR, Schuler MA. 2004. Transcription of a lepidoteran cytochrome P450 promoter is modulated by multiple elements in its 5’ UTR and repressed by 20-hydroxyecdysone. Insect Mol. Biol 13:337–47 [Google Scholar]
  14. Callaghan A, Guillemaud T, Makate N, Raymond M. 1998. Polymorphism and fluctuations in copy number of amplified esterase genes in Culex pipiens mosquitoes. Insect Mol. Biol 7:295–300 [Google Scholar]
  15. Campbell PM, Newcomb RD, Russell RJ, Oakeshott JG. 1998. Two different amino acid substitutions in the ali-esterase, E3, confer alternative types of organophosphorus insecticide resistance in the sheep blowfly, Lucilia cuprina. Insect Biochem. Mol. Biol 28:139–50 [Google Scholar]
  16. Cariño FA, Koener JF, Plapp FW, Feyereisen R. 1994. Constitutive overexpression of the cytochrome P450 gene CYP6A1 in a house fly strain with metabolic resistance to insecticides. Insect Biochem. Mol. Biol 24:411–18 [Google Scholar]
  17. Catania F, Kauer MO, Daborn PJ, Yen JL, ffrench-Constant RH. et al. 2004. Worldwide survey of an Accord insertion and its association with DDT resistance in Drosophila melanogaster. Mol. Ecol. 13:2491–504Conducted a worldwide survey of D. melanogaster populations and demonstrated complete concordance among Accord insertion in the CYP6G1 promoter region, overexpression, and insecticide resistance. [Google Scholar]
  18. Chelvanayagam G, Parker MW, Board PG. 2001. Fly fishing for GSTs: a unified nomenclature for mammalian and insect glutathione transferases. Chem. Biol. Interact 133:256–60 [Google Scholar]
  19. Chen JS, Berenbaum MR, Schuler MA. 2002. Amino acids in SRS1 and SRS6 are critical for furanocoumarin metabolism by CYP6B1v1, a cytochrome P450 monooxygenase. Insect Mol. Biol 11:175–86Established that an aromatic network holds the catalytic pocket of the specialist cytochrome P450 CYP6B1 in an optimal configuration for its principal furanocoumarin substrates. [Google Scholar]
  20. Chiang FM, Sun CN. 1993. Glutathione transferase isozymes of diamondback moth larvae and their role in the degradation of some organophosphorus insecticides. Pestic. Biochem. Physiol 45:7–14 [Google Scholar]
  21. Claudianos C, Brownlie J, Russell R, Oakeshott J, Whyard S. 2002. maT-A clade of transposons intermediate between mariner and Tc1. Mol. Biol. Evol 19:(12)2101–9 [Google Scholar]
  22. Claudianos C, Russell RJ, Oakeshott JG. 1999. The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly. Insect Biochem. Mol. Biol 29:675–86 [Google Scholar]
  23. Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA. et al. 2006. A deficit of metabolic enzymes: pesticide sensitivity and environmental response in the honey bee. Insect Mol. Biol. In press [Google Scholar]
  24. Cohen MB, Schuler MA, Berenbaum MR. 1992. A host-inducible cytochrome P450 from a host-specific caterpillar: molecular cloning and evolution. Proc. Natl. Acad. Sci. USA 89:10920–24 [Google Scholar]
  25. Daborn PJ, Yen JL, Bogwitz MR, Goff G, Le Feil E. et al. 2002. A single P450 allele associated with insecticide resistance in Drosophila. Science 297:2253–56 [Google Scholar]
  26. Danielson PB, MacIntyre RJ, Fogleman JC. 1997. Molecular cloning of a family of xenobiotic-inducible drosophilid cytochrome P450s: evidence for involvement in host-plant allelochemical resistance. Proc. Natl. Acad. Sci. USA 94:10797–802 [Google Scholar]
  27. David J, Strode C, Vontas J, Nikou D, Vaughan A. et al. 2005. The Anopheles gambiae detoxification chip: a highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proc. Natl. Acad. Sci. USA 102:4080–84 [Google Scholar]
  28. De Silva D, Hemingway J. 2002. Structural organization of the Estα31 gene in a Colombian strain of Culex quinquefasciatus differs from that in Cuba. Med. Vet. Entomol. 16:99–105 [Google Scholar]
  29. De Silva D, Hemingway J, Ranson H, Vaughan A. 1997. Resistance to insecticides in insect vectors of disease: Est-alpha-3, a novel amplified esterase associated with Est-beta-1 from insecticide resistant strains of the mosquito Culex quinquefasciatus. Exp. Parasitol 87:253–59 [Google Scholar]
  30. Dewannieux M, Heidmann T. 2005. LINEs, SINEs and processed pseudogenes: parasitic strategies for genome modeling. Cytogenet. Genome Res 110:35–48 [Google Scholar]
  31. Dombrowski SM, Krishnan R, Witte M, Maitra S, Diesing C. et al. 1998. Constitutive and barbital-induced expression of the CYP6A2 allele of a high producer strain of CYP6A2 in the genetic background of a low producer strain. Gene 221:69–77 [Google Scholar]
  32. Dunkov BC, Guzov VM, Mocelin G, Shotkoski F, Brun A. et al. 1997. The Drosophila cytochrome P450 gene Cyp6a2: structure, localization, heterologous expression, and induction by phenobarbital. DNA Cell Biol. 16:1345–56 [Google Scholar]
  33. Enayati AA, Ranson H, Hemingway J. 2005. Insect glutathione transferases and insecticide resistance. Insect Mol. Biol 14:3–8 [Google Scholar]
  34. Feng QL, Davey KG, Pang ASD, Ladd TR, Retnakaran A. et al. 2001. Developmental expression and stress induction of glutathione S-transferase in the spruce budworm, Choristoneura fumiferana. J. Insect Physiol. 47:1–10 [Google Scholar]
  35. Festucci-Buselli RA, Carvalho-Dias AS, de Oliveira-Andrade M, Caixeta-Nunes C, Li H-M. et al. 2005. Expression of Cyp6g1 and Cyp12d1 in DDT resistant and susceptible strains of Drosophila melanogaster. Insect Mol. Biol. 14:69–77 [Google Scholar]
  36. Feyereisen R. 2005. Insect cytochrome P450. In Comprehensive Molecular Insect Science Vol. 4 ed. LI Gilbert, K Latrou, SS Gill pp. 1–77 Oxford, UK: Elsevier [Google Scholar]
  37. Ffrench-Constant RH, Pittendrigh B, Vaughan A, Anthony N. 1998. Why are there so few resistance-associated mutations in insecticide target genes. Philos. Trans. R. Soc. London B 353:1685–93 [Google Scholar]
  38. Field LM. 2000. Methylation and expression of amplified esterase genes in the aphid Myzus persicae (Sulzer). Biochem. J 349:863–68Demonstrated that methylation leads to transcription of amplified esterase genes and resistance and demeythlation leads to gene silencing. [Google Scholar]
  39. Field LM, Blackman RL. 2003. Insecticide resistance in the aphid Myzus persicae (Sulzer): chromosome location and epigenetic effects on esterase gene expression in clonal lineages. Biol. J. Linn. Soc 79:107–13 [Google Scholar]
  40. Field LM, Blackman RL, Tyler-Smith C, Devonshire AL. 1999. Relationship between amount of esterase and gene copy number in insecticide-resistant Myzus persicae (Sulzer). Biochem. J 339:737–42 [Google Scholar]
  41. Field LM, Devonshire AL. 1997. Structure and organization of amplicons containing the E4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer). Biochem. J 322:867–71 [Google Scholar]
  42. Field LM, Devonshire AL. 1998. Evidence that the E4 and FE4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer) are part of a gene family. Biochem. J 330:169–73 [Google Scholar]
  43. Fogleman JC, Danielson PB, Macintyre RJ. 1998. The molecular basis of adaptation in Drosophila: the role of cytochrome P450s. Evol. Biol 30:15–77 [Google Scholar]
  44. Gahan LJ, Gould F, Heckel DG. 2001. Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293:857–60 [Google Scholar]
  45. Ghumare SS, Mukherjee SN, Sharma RN. 1989. Effects of rutin on the neonate sensitivity, dietary utilization and midgut carboxylesterase activity of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Proc. Indian Acad. Sci. Anim. Sci 98:399–404 [Google Scholar]
  46. Gordon HT. 1961. Nutritional factors in insect resistance to chemicals. Annu. Rev. Entomol 6:27–54 [Google Scholar]
  47. Grant GF, Dietze EC, Hammock BD. 1991. Glutathione S-transferase isozymes in Aedes aegypti: purification, characterization, and isozyme-specific regulation. Insect Biochem 21:421–33 [Google Scholar]
  48. Grant DF, Hammock BD. 1992. Genetic and molecular evidence for a trans-acting regulatory locus controlling glutathione S-transferase-2 expression in Aedes aegypti. Mol. Gen. Genet 234:169–76Provided genetic and molecular evidence for a trans-acting regulatory locus controlling the upregulation of a resistance-conferring GST gene. [Google Scholar]
  49. Guzov VM, Unnithan GC, Chernogolov AA, Feyereisen R. 1998. CYP12A1, a mitochondrial cytochrome P450 from the housefly. Arch. Biochem. Biophys 359:231–40 [Google Scholar]
  50. Hawkes NJ, Hemingway J. 2002. Analysis of the promoters for the β-esterase genes associated with insecticide resistance in the mosquito Culex quinquefasciatus. Biochim. Biophys. Acta 1574:51–62 [Google Scholar]
  51. Heidari R, Devonshire AL, Campbell BE, Bell KL, Dorrian SJ. et al. 2004. Hydrolysis of organophosphorus insecticides by in vitro modified carboxylesterase E3 from Lucilia cuprina. Insect Biochem. Mol. Biol. 34:353–63Revealed why the two amino acid mutations in the OP-resistant LcαE7 alleles effect OP hydrolysis but reduce or eliminate carboxylester hydrolysis. [Google Scholar]
  52. Helvig C, Tijet N, Feyereisen R, Walker FA, Restifo LL. 2004. Drosophila melanogaster CYP6A8, an insect P450 that catalyzes lauric acid (omega-1)-hydroxylation. Biochem. Biophys. Res. Commun 325:1495–502 [Google Scholar]
  53. Hemingway J, Coleman M, Paton M, Vaughan MA, De Silva D. 2000. Aldehyde oxidase is coamplified with the world's most common Culex mosquito insecticide resistance-associated esterases. Insect Mol. Biol 9:93–99 [Google Scholar]
  54. Hemingway J, Hawkes N, Prapanthadara L, Jayawardenal KGI, Ranson H. 1998. The role of gene splicing, gene amplification and regulation in mosquito insecticide resistance. Philos. Trans. R. Soc. London B 353:1695–99Reviewed the roles of gene amplification, splicing, and upregulation in insecticide resistance in mosquitoes. [Google Scholar]
  55. Hemingway J, Hawkes NJ, McCarroll L, Ranson H. 2004. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem. Mol. Biol 34:653–65 [Google Scholar]
  56. Hung C-F, Harrison TL, Berenbaum MR, Schuler MA. 1995. CYP6B3: a second furanocoumarin-inducible cytochrome P450 expressed in Papilio polyxenes. Insect Mol. Biol 4:149–60 [Google Scholar]
  57. Hung C-F, Prapaipong H, Berenbaum MR, Schuler MA. 1995. Differential induction of cytochrome P450 transcripts in Papilio polyxenes by linear and angular furanocoumarins. Insect Biochem. Mol. Biol 25:89–99 [Google Scholar]
  58. Hung C-F, Berenbaum MR, Schuler MA. 1997. Isolation and characterization of CYP6B4, a furanocoumarin-inducible cytochrome P450 from a polyphagous caterpillar (Lepidoptera: Papilionidae). Insect Biochem. Mol. Biol 27:377–85 [Google Scholar]
  59. Huang HS, Hu NT, Yao YE, Wu CY, Chiang SW. et al. 1998. Molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the diamondback moth, Plutella xylostella. Insect Biochem. Mol. Biol. 28:651–58 [Google Scholar]
  60. Karunaratne SHPP, Vaughan A, Paton MG, Hemingway J. 1998. Amplification of a serine esterase gene is involved in insecticide resistance in Sri Lankan Culex tritaeniorhynchus. Insect Mol. Biol 7:307–15 [Google Scholar]
  61. Kasai S, Scott JG. 2001. A house fly gene homologous to the zinc finger proto-oncogene Gfi-1. Biochem. Biophys. Res. Commun 283:644–47 [Google Scholar]
  62. Kasai S, Scott JG. 2001. Cytochrome P450s CYP6D3 and CYP6D1 are part of a P450 gene cluster on autosome 1 in the house fly. Insect Mol. Biol 10:191–96 [Google Scholar]
  63. Kasai S, Scott JG. 2001. Expression and regulation of CYP6D3 in the house fly, Musca domestica (L.). Insect Biochem. Mol. Biol 32:1–8 [Google Scholar]
  64. Ku CC, Chiang FM, Hsin CY, Yao YE, Sun CN. 1994. Glutathione transferase isozymes involved in insecticide resistance of diamondback moth larvae. Pestic. Biochem. Physiol 50:191–97 [Google Scholar]
  65. Lee K. 1991. Glutathione S-transferase activities in phytophagous insects: induction and inhibition by plant phototoxins and phenols. Insect Biochem 21:353–62 [Google Scholar]
  66. Li X, Baudry J, Berenbaum MR, Schuler MA. 2004. Structural and functional evolution of insect CYP6B proteins: from specialist to generalist P450. Proc. Natl. Acad. Sci. USA 101:2939–44Showed that the generalist P450 CYP6B8 is structurally more flexible and functionally more diverse than the related specialist P450 CYP6B1. [Google Scholar]
  67. Li X, Berenbaum MR, Schuler MA. 2000. Molecular cloning and expression of CYP6B8: a xanthotoxin-inducible cytochrome P450 cDNA from Helicoverpa zea. Insect Biochem. Mol. Biol 30:75–84 [Google Scholar]
  68. Li W, Berenbaum MR, Schuler MA. 2001. Molecular analysis of multiple CYP6B genes from polyphagous Papilio species. Insect Biochem. Mol. Biol 31:999–1011 [Google Scholar]
  69. Li X, Berenbaum MR, Schuler MA. 2002. Cytochrome P450 and actin genes expressed in Helicoverpa zea and Helicoverpa armigera: ortholog/paralog identification, gene conversion, and evolution. Insect Biochem. Mol. Biol 32:311–20 [Google Scholar]
  70. Li X, Berenbaum MR, Schuler MA. 2002. Plant allelochemicals differentially regulate Helicoverpa zea cytochrome P450 genes. Insect Mol. Biol 11:343–52 [Google Scholar]
  71. Li W, Berenbaum MR, Schuler MA. 2003. Diversification of furanocoumarin-metabolizing cytochrome P450s in two papilionids: specificity and substrate encounter rate. Proc. Natl. Acad. Sci. USA 100:14593–98 [Google Scholar]
  72. Li X, Schuler MA, Berenbaum MR. 2002. Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature 419:712–15Demonstrated that H. zea can upregulate P450 detoxification genes in response to ingestion of plant defense signaling molecules jasmonate and salicylate. [Google Scholar]
  73. Li X, Zangerl AR, Schuler MA, Berenbaum MR. 2000. Cross-resistance between xanthotoxin and α-cypermethrin in Helicoverpa zea. J. Econ. Entomol 93:18–25 [Google Scholar]
  74. Li W, Zangerl AR, Schuler MA, Berenbaum MR. 2004. Characterization and evolution of furanocoumarin inducible cytochrome P450s in the parsnip webworm, Depressaria pastinacella. Insect Mol. Biol. 13:603–13 [Google Scholar]
  75. Lindroth RL. 1989. Host plant alteration of detoxification activity in Papilio glaucus glaucus. Entomol. Exp. Appl 50:29–36 [Google Scholar]
  76. Lindroth RL, Weisbrod AV. 1991. Genetic variation in response of the gypsy moth to aspen phenolic glycosides. Biochem. Syst. Ecol 19:97–103 [Google Scholar]
  77. Liu N, Scott JG. 1996. Genetic analysis of factors controlling elevated cytochrome P450, CYP6D1, cytochrome b5, P450 reductase and monooxygenase activities in LPR house flies, Musca domestica. Biochem. Genet 34:133–48 [Google Scholar]
  78. Lumjuan N, McCarroll L, Prapanthadara L, Hemingway J, Ranson H. 2005. Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti. Insect Biochem. Mol. Biol 35:861–71 [Google Scholar]
  79. Maitra S, Dombrowski SM, Basu M, Raustol O, Waters LC. et al. 2000. Factors on the third chromosome affect the level of CYP6A2 and CYP6A8 expression in Drosophila melanogaster. Gene 248:147–56Demonstrated that loss-of-function mutations in trans-regulatory loci lead to upregulation of P450 genes and insecticide resistance. [Google Scholar]
  80. Maitra S, Price C, Ganguly R. 2002. CYP6A8 of Drosophila melanogaster: gene structure, and sequence and functional analysis of the upstream DNA. Insect Biochem. Mol. Biol 32:859–70 [Google Scholar]
  81. McDonnell CM, Brown RP, Berenbaum MR, Schuler MA. 2004. Conserved regulatory elements in the promoters of two allelochemical-inducible cytochrome P450 genes differentially regulate transcription. Insect Biochem. Mol. Biol 34:1129–39 [Google Scholar]
  82. Mouches C, Pauplin Y, Agarwal M, Lemieux L, Herzog M. et al. 1990. Characterization of amplification core and esterase B1 gene responsible for insecticide resistance in Culex. Proc. Natl. Acad. Sci. USA 87:2574–78 [Google Scholar]
  83. Newcomb RD, Campbell PM, Ollis DL, Cheah E, Russell RJ. et al. 1997. A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proc. Natl. Acad. Sci. USA 94:7464–68 [Google Scholar]
  84. Oppenoorth FJ, Van Asperen K. 1960. Allelic genes in the housefly producing modified enzymes that cause organophosphate resistance. Science 132:298–99 [Google Scholar]
  85. Ortelli F, Rossiter LC, Vontas J, Ranson H, Hemingway J. 2003. Heterologous expression of four glutathione transferase genes genetically linked to a major insecticide-resistance locus from the malaria vector Anopheles gambiae. Biochem. J 373:957–63 [Google Scholar]
  86. Pan L, Wen Z, Baudry J, Berenbaum MR, Schuler MA. 2004. Identification of variable amino acids in the SRS1 region of CYP6B1 modulating furanocoumarin metabolism. Arch. Biochem. Biophys 422:31–41 [Google Scholar]
  87. Pedra JHF, McIntyre LM, Scharf ME, Pittendrigh BR. 2004. Genome-wide transcription profile of field- and laboratory-selected dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila. Proc. Natl. Acad. Sci. USA 101:7034–39 [Google Scholar]
  88. Petersen RA, Niamsup H, Berenbaum MR, Schuler MA. 2003. Transcriptional response elements in the promoter of CYP6B1, an insect P450 gene regulated by plant chemicals. Biochim. Biophys. Acta 1619:269–82 [Google Scholar]
  89. Petersen RA, Zangerl AR, Berenbaum MR, Schuler MA. 2001. Expression of CYP6B1 and CYP6B3 cytochrome P450 monooxygenases and furanocoumarin metabolism in different tissues of Papilio polyxenes (Lepidoptera: Papilionidae). Insect Biochem. Mol. Biol 31:679–90 [Google Scholar]
  90. Prapaipong H, Berenbaum MR, Schuler MA. 1994. Transcriptional regulation of the Papilio polyxenes CYP6B1 gene. Nucleic Acids Res 22:3210–17 [Google Scholar]
  91. Prapanthadara L, Hemingway J, Ketterman AJ. 1995. DDT-resistance in Anopheles gambiae Giles from Zanzibar, Tanzania, based on increased DDT-dehydrochlorinase activity of glutathione S-transferase. Bull. Entomol. Res 85:267–74 [Google Scholar]
  92. Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J. et al. 2002. Evolution of supergene families associated with insecticide resistance. Science 298:179–81 [Google Scholar]
  93. Ranson H, Jeensen B, Wang X, Prapanthadara L, Hemingway J. et al. 2000. Genetic mapping of two loci affecting DDT resistance in the malaria vector Anopheles gambiae. Insect Mol. Biol. 9:499–507 [Google Scholar]
  94. Ranson H, Prapanthadara L, Hemingway J. 1997. Cloning and characterization of two glutathione S-transferases from a DDT-resistant train of Anopheles gambiae. Biochem. J 324:97–102 [Google Scholar]
  95. Ranson H, Rossiter L, Ortelli F, Jesen B, Wang X. et al. 2001. Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochem. J. 359:295–304 [Google Scholar]
  96. Ranson H, Hemingway J. 2005. Mosquito glutathione transferases. Methods Enzymol 401:226–41 [Google Scholar]
  97. Raymond M, Chevillon C, Guillemaud T, Lenormand T, Pasteur N. 1998. An overview of the evolution of overproduced esterases in the mosquito Culex pipiens. Philos. Trans. R. Soc. London B 353:1–5 [Google Scholar]
  98. Rogers ME, Jani MK, Vogt RG. 1999. An olfactory-specific glutathione-S-transferase in the sphinx moth Manduca sexta. J. Exp. Biol 202:1625–37 [Google Scholar]
  99. Sabourault C, Guzov VM, Koener JF, Claudianos C, Plapp FW. et al. 2001. Overproduction of a P450 that metabolizes diazinon is linked to a loss-of-function in the chromosome 2 ali-esterase (MdαE7) gene in resistant house flies. Insect Mol. Biol. 10:609–18 [Google Scholar]
  100. Saner C, Weibel B, Wurgler FE, Sengstag C. 1996. Metabolism of promutagens catalyzed by Drosophila melanogaster CYP6A2 enzyme in Saccharomyces cerevisiae. Environ. Mol. Mutagen 27:46–58 [Google Scholar]
  101. Sasabe M, Wen Z, Berenbaum MR, Schuler MA. 2004. Molecular analysis of CYP321A1, a novel cytochrome P450 involved in metabolism of plant allelochemicals (fumanocoumarins) and insecticides (cypermethrin) in Helicoverpa zea. Gene 388:163–75 [Google Scholar]
  102. Schlenke TA, Begun DJ. 2004. Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proc. Natl. Acad. Sci. USA 101:1626–31 [Google Scholar]
  103. Schuler MA. 1996. The role of cytochrome P450 monooxygenases in plant-insect interactions. Plant Physiol 112:1411–19 [Google Scholar]
  104. Scott JG. 1999. Cytochromes P450 and insecticide resistance. Insect Biochem. Mol. Biol 29:757–77 [Google Scholar]
  105. Scott JG, Zhang L. 2003. The house fly aliesterase gene (MdaE7) is not associated with insecticide resistance or P450 expression in three strains of house fly. Insect Biochem. Mol. Biol 33:139–44 [Google Scholar]
  106. Seifert J, Scott JG. 2002. The CYP6D1v1 allele is associated with pyrethroid resistance in the house fly, Musca domestica. Pestic. Biochem. Physiol 72:40–44 [Google Scholar]
  107. Snyder MJ, Stevens JL, Andersen JF, Feyereisen R. 1995. Expression of cytochrome P450 genes of the CYP4 family in midgut and fatbody of the tobacco hornworm, Manduca sexta. Arch. Biochem. Biophys 321:13–20 [Google Scholar]
  108. Snyder MJ, Walding JK, Feyereisen R. 1995. Glutathione S-transferases from larval Manduca sexta midgut: sequence of two cDNAs and enzyme induction. Insect Biochem. Mol. Biol 25:455–65 [Google Scholar]
  109. Sonoda S, Tsumuki H. 2005. Studies on glutathione S-transferase gene involved in chlorfluazuron resistance of the diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae). Pestic. Biochem. Physiol 82:94–101 [Google Scholar]
  110. Spence JM, Blackman RL, Testa JM, Ready PD. 1998. A 169 bp tandem-repeat DNA marker for subtelomeric heterochromatin and chromosomal rearrangements in aphids of the Myzus persicae group. Chromosom. Res 6:167–75 [Google Scholar]
  111. Spiegelman VS, Fuchs SY, Belitsky GA. 1997. The expression of insecticide resistance-related cytochrome P450 forms is regulated by molting hormone in Drosophila melanogaster. Biochem. Biophys. Res. Commun 232:304–7 [Google Scholar]
  112. Stevens JL, Snyder MJ, Koener JF, Feyereisen R. 2000. Inducible P450s of the CYP9 family from larval Manduca sexta midgut. Insect Biochem. Mol. Biol 30:559–68 [Google Scholar]
  113. Syvanen M, Zhou Z, Wharton J, Goldsbury C, Clark A. 1996. Heterogeneity of the glutathione transferase genes encoding enzymes responsible for insecticide degradation in the housefly. J. Mol. Evol 43:236–40 [Google Scholar]
  114. Syvanen M, Zhou ZH, Wang JY. 1994. Glutathione transferase gene family from the Musca domestica. Mol. Gen. Genet. 245P:25–31 [Google Scholar]
  115. Tang AH, Tu CP. 1994. Biochemical characterization of Drosophila glutathione S-transferases D1 and D21. J. Biol. Chem 269:27876–84 [Google Scholar]
  116. Tijet N, Helvig C, Feyereisen R. 2001. The cytochrome P450 gene superfamily in Drosophila melanogaster: annotation, intron-exon organization and phylogeny. Gene 262:189–98 [Google Scholar]
  117. Tu CP, Akgul B. 2005. Drosophila glutathione-S-transferases. Methods Enzymol 401:204–26 [Google Scholar]
  118. Vaughan A, Hawkes N, Hemingway J. 1997. Co-amplification explains linkage disequilibrium of two mosquito esterase genes in insecticide-resistant Culex quinquefasciatus. Biochem. J 325:359–65 [Google Scholar]
  119. Vontas J, Small JG, Hemingway J. 2001. Glutathione-S-transferases as antioxidant defense agents confer pyrethroid resistance in Nilaparvata lugens. Biochem. J 357:65–72 [Google Scholar]
  120. Vontas JD, Small GJ, Hemingway J. 2000. Comparison of esterase gene amplification, gene expression and esterase activity in insecticide susceptible and resistant strains of the brown planthopper, Nilaparvata lugens (Stal). Insect Mol. Biol 9:655–60 [Google Scholar]
  121. Vontas JG, Small GJ, Nikou DC, Ranson H, Hemingway J. 2002. Purification, molecular cloning and heterologous expression of a glutathione-S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens. Biochem. J 362:329–37 [Google Scholar]
  122. Wadleigh RW, Yu SJ. 1987. Glutathione transferase activity of fall armyworm larvae toward alpha-, beta-unsaturated carbonyl allelochemicals and its induction by allelochemicals. Insect Biochem 17:759–64 [Google Scholar]
  123. Wadleigh RW, Yu SJ. 1988. Detoxification of isothiocyanate allelochemicals by glutathione transferase in three lepidopterous species. J. Chem. Ecol 14:1279–88 [Google Scholar]
  124. Wang J, McCommas S, Syvanen M. 1991. Molecular cloning of a glutathione S-transferase overproduced in an insecticide-resistant strain of the housefly (Musca domestica). Mol. Gen. Genet 227:260–66 [Google Scholar]
  125. Wei SH, Clark AG, Syvanen M. 2001. Identification and cloning of a key insecticide-metabolizing glutathione S-transferase (MdGST-6A) from a hyper insecticide-resistant strain of the housefly Musca domestica. Insect Biochem. Mol. Biol 31:1145–53 [Google Scholar]
  126. Wen Z, Pan L, Berenbaum MR, Schuler MA. 2003. Metabolism of linear and angular furanocoumarins by Papilio polyxenes CYP6B1 coexpressed with NADPH cytochrome P450 reductase. Insect Biochem. Mol. Biol 33:937–47 [Google Scholar]
  127. Whyard S, Downe AER, Walker VK. 1995. Characterization of a novel esterase conferring insecticide resistance in the mosquito Culex tarsalis. Arch. Insect Biochem. Physiol 29:329–42 [Google Scholar]
  128. Yoshiyama M, Shukle RH. 2004. Molecular cloning and characterization of a glutathione S-transferase gene from Hessian fly (Diptera: Cecidomyiidae). Ann. Entomol. Soc. Am 97:1285–93 [Google Scholar]
  129. Yu SJ. 2002. Substrate specificity of glutathione-S-transferases from the fall armyworm. Pestic. Biochem. Physiol 74:41–51 [Google Scholar]
  130. Yu SJ, Abo-Elghar OE. 2000. Allelochemicals as inhibitors of glutathione S-transferases in the fall armyworm. Pestic. Biochem. Physiol 68:173–83 [Google Scholar]
  131. Zangerl AR, Berenbaum MR. 1993. Plant chemistry, insect adaptations to plant chemistry, and host plant utilization patterns. Ecology 74:47–54 [Google Scholar]
  132. Zhang M, Scott JG. 1996. Cytochrome b5 is essential for cytochrome P450 6D1-mediated cypermethrin resistance in LPR house flies. Pestic. Biochem. Physiol 55:150–56 [Google Scholar]
  133. Zhou ZH, Syvanen M. 1997. A complex glutathione transferase gene family in the housefly Musca domestica. Mol. Gen. Genet 256:187–94 [Google Scholar]
  134. Zhu YC, Dowdy AK, Baker JE. 1999. Detection of single-base substitution in an esterase gene and its linkage to malathion resistance in the parasitoid (Hymenoptera: Pteromalidae). Pestic. Sci 55:398–404 [Google Scholar]
  135. Zhu YC, Snodgrass GL. 2003. Cytochrome P450 CYP6X1 cDNAs and mRNA expression levels in three strains of the tarnished plant bug Lygus lineolaris (Heteroptera: Miridae) having different susceptibilities to pyrethroid insecticide. Insect Mol. Biol 12:39–49 [Google Scholar]
/content/journals/10.1146/annurev.ento.51.110104.151104
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error