Viticulture has experienced dramatic global growth in acreage and value. As the international exchange of goods has increased, so too has the market demand for sustainably produced products. Both elements redefine the entomological challenges posed to viticulture and have stimulated significant advances in arthropod pest control programs. Vineyard managers on all continents are increasingly combating invasive species, resulting in the adoption of novel insecticides, semiochemicals, and molecular tools to support sustainable viticulture. At the local level, vineyard management practices consider factors such as the surrounding natural ecosystem, risk to fish populations, and air quality. Coordinated multinational responses to pest invasion have been highly effective and have, for example, resulted in eradication of the moth from California vineyards, a pest found in 2009 and eradicated by 2016. At the global level, the shared pests and solutions for their suppression will play an increasing role in delivering internationally sensitive pest management programs that respond to invasive pests, climate change, novel vector and pathogen relationships, and pesticide restrictions.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Al Rwahnih M, Rowhani A, Golino DA, Islas CM, Preece JE, Sudarshana MR. 1.  2015. Detection and genetic diversity of Grapevine red blotch-associated virus isolates in table grape accessions in the National Clonal Germplasm Repository in California. Can. J. Plant Pathol. 37:130–35 [Google Scholar]
  2. Alabi OJ, Casassa F, Gutha LR, Larsen RC, Henick-Kling T. 2.  et al. 2016. Impacts of grapevine leafroll disease on fruit yield and grape and wine chemistry in a wine grape (Vitis vinifera L.) cultivar. PLOS ONE 11:e0149666 [Google Scholar]
  3. Almeida RPP, Daane KM, Bell VA, Blaisdell GK, Cooper ML. 3.  et al. 2013. Ecology and management of grapevine leafroll disease. Front. Microbiol. 4:94Describes the current knowledge of Grapevine leafroll-associated viruses and the host–pathogen–vector relationships. [Google Scholar]
  4. Armstrong KF, Ball SL. 4.  2005. DNA barcodes for biosecurity: invasive species identification. Philos. Trans. R. Soc. B 360:1813–23 [Google Scholar]
  5. Ashenfelter O, Storchmann K. 5.  2010. Measuring the economic effect of global warming on viticulture using auction, retail, and wholesale prices. Rev. Ind. Organ. 37:51–64 [Google Scholar]
  6. Asplen MK, Anfora G, Biondi A, Choi DS, Chu D. 6.  et al. 2015. Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J. Pest Sci. 88:469–94 [Google Scholar]
  7. Bahder BW, Zalom FG, Maya J, Sudarshana MR. 7.  2016. Phylogeny of geminivirus coat protein sequences and digital PCR aid in identifying Spissistilus festinus as a vector of grapevine red blotch-associated virus. Phytopathology 106:1223–30 [Google Scholar]
  8. Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM. 8.  et al. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8:1–16 [Google Scholar]
  9. Barrass IC, Jerie P, Ward SA. 9.  1994. Aerial dispersal of first- and second-instar longtailed mealybug, Pseudococcus longispinus (Targioni Tozzetti) (Pseudococcidae: Hemiptera). Aust. J. Exp. Agric. 34:1205–8 [Google Scholar]
  10. Barringer LE, Donovall LR, Spichiger SE, Lynch D, Henry D. 10.  2015. The first new world record of Lycorma delicatula (Insecta: Hemiptera: Fulgoridae). Entomol. News 125:20–23 [Google Scholar]
  11. Begum M, Gurr GM, Wratten SD, Hedberg PR, Nicol HI. 11.  2006. Using selective food plants to maximize biological control of vineyard pests. J. Appl. Ecol. 43:547–54 [Google Scholar]
  12. Bell VA, Bonfiglioli RGE, Walker JTS, Lo PL, Mackay JF, McGregor SE. 12.  2009. Grapevine leafroll associated virus 3 persistence in Vitis vinifera remnant roots. J. Plant Pathol. 91:527–33 [Google Scholar]
  13. Berndt LA, Wratten SD, Hassan PG. 13.  2002. Effects of buckwheat flowers on leafroller (Lepidoptera: Tortricidae) parasitoids in a New Zealand vineyard. Agric. For. Entomol. 4:39–45 [Google Scholar]
  14. Berndt LA, Wratten SD, Scarratt SL. 14.  2006. The influence of floral resource subsidies on parasitism rates of leafrollers (Lepidoptera: Tortricidae) in New Zealand vineyards. Biol. Control 37:50–55 [Google Scholar]
  15. Beuning LL, Murphy P, Wu E, Batchelor TA, Morris BAM. 15.  1999. Molecular-based approach to the differentiation of mealybug (Hemiptera: Pseudococcidae) species. J. Econ. Entomol. 92:463–72 [Google Scholar]
  16. Böll S, Herrmann JV. 16.  2004. A long-term study on the population dynamics of the grape leafhopper (Empoasca vitis) and antagonistic mymarid species. J. Pest Sci. 77:33–42 [Google Scholar]
  17. Böll S, Schwappach P, Herrmann JV. 17.  2006. Planting dog roses—an efficient method to promote mymarid populations in vineyards?. IOBC-WPRS Bull 29:175–81 [Google Scholar]
  18. Bostanian NJ, Vincent C, Isaacs R. 18.  2012. Arthropod Management in Vineyards: Pests, Approaches, and Future Directions New York: Springer
  19. Bostanian NJ, Wise JC, Isaacs R. 19.  2012. Pesticides for arthropod control in vineyards. See Ref. 18 53–90
  20. Brostrom G, Brostrom J. 20.  2009. The Business of Wine: An Encyclopedia Westport, CT: Greenwood Press
  21. Bruck E, Elbert A, Fischer R, Krueger S, Kuhnhold J. 21.  et al. 2009. Movento®, an innovative ambimobile insecticide for sucking insect pest control in agriculture: biological profile and field performance. Crop Prot 28:838–44 [Google Scholar]
  22. Bruggisser OT, Schmidt-Entling MH, Bacher S. 22.  2010. Effects of vineyard management on biodiversity at three trophic levels. Biol. Conserv. 143:1521–28 [Google Scholar]
  23. Cabras P, Angioni A. 23.  2000. Pesticide residues in grapes, wine, and their processing products. J. Agric. Food Chem. 48:967–73 [Google Scholar]
  24. Caffarra A, Rinaldi M, Eccel E, Rossi V, Pertot I. 24.  2012. Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agric. Ecosyst. Environ. 148:89–101 [Google Scholar]
  25. Campbell C. 25.  2004. Phylloxera: How Wine Was Saved for the World London, UK: Harper Collins
  26. Campbell JW, Cabrera AR, Stanley-Stahr C, Ellis JD. 26.  2016. An evaluation of the honey bee (Hymenoptera: Apidae) safety profile of a new systemic insecticide, flupyradifurone, under field conditions in Florida. J. Econ. Entomol. 109:1967–72 [Google Scholar]
  27. Carlson GR, Dhadialla TS, Hunter R, Jansson RK, Jany CS. 27.  et al. 2001. The chemical and biological properties of methoxyfenozide, a new insecticidal ecdysteroid agonist. Pest Manag. Sci. 57:115–19 [Google Scholar]
  28. Carroll S, Cummings S. 28.  2014. Sonoma County to become nation's first 100% sustainable wine region News Release, Jan. 15. http://www.sonomawinegrape.org/sites/default/files/SCW_Sustainability_Announcement_FINAL.pdf
  29. Cavalieri V, Mazzeo G, Garzia GT, Buonocore E, Russo A. 29.  2008. Identification of Planococcus ficus and Planococcus citri (Hemiptera: Pseudococcidae) by PCR-RFLP of COI gene. Zootaxa 1816:65–68 [Google Scholar]
  30. 30. CDFA (Calif. Dept. Food Agric.). 2015. Grape crush report Calif. Dept. Food Agric. Sacramento, CA:
  31. Chandler LD, Faust RM. 31.  1998. Overview of areawide management of insects. J. Agric. Entomol. 15:319–25 [Google Scholar]
  32. Charles JG, Bell VA, Lo PL, Cole LM, Chhagan A. 32.  2010. Mealybugs (Hemiptera: Pseudococcidae) and their natural enemies in New Zealand vineyards from 1993–2009. N. Z. Entomol. 33:84–91 [Google Scholar]
  33. Charles JG, Froud KJ, van den Brink R, Allan DJ. 33.  2009. Mealybugs and the spread of grapevine leafroll-associated virus 3 (GLRaV-3) in a New Zealand vineyard. Australas. Plant Pathol. 38:576–83 [Google Scholar]
  34. Charles JG, Walker JTS, White V. 34.  1993. Resistance to chlorpyrifos in the mealybugs Pseudococcus affinis and P. longispinus in Hawkes Bay and Waikato pipfruit orchards. Proc. N. Z. Plant Prot. Conf. 47th, Christchurch, N. Z 120–25 Rotorua: N. Z. Plant Prot. Soc. [Google Scholar]
  35. Chuche J, Thiéry D. 35.  2014. Biology and ecology of the Flavescence dorée vector Scaphoideus titanus: a review. Agron Sustain. Dev. 34:381–403 [Google Scholar]
  36. Cini A, Ioriatti C, Anfora G. 36.  2012. A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull. Insectol. 65:149–60 [Google Scholar]
  37. Cocco A, Lentini A, Serra G. 37.  2014. Mating disruption of Planococcus ficus (Hemiptera: Pseudococcidae) in vineyards using reservoir pheromone dispensers. J. Insect Sci. 14:1–8 [Google Scholar]
  38. Cooper M, Daane KM, Nelson EH, Varela LG, Battany MC. 38.  et al. 2008. Liquid baits control Argentine ants sustainably in coastal vineyards. Calif. Agric. 62:177–83 [Google Scholar]
  39. Cooper M, Varela L, Smith R, Whitmer D, Simmons G. 39.  et al. 2014. Growers, scientists and regulators collaborate on European grapevine moth program. Calif. Agric. 68:125–33 [Google Scholar]
  40. Corbo C, Lamastra L, Capri E. 40.  2014. From environmental to sustainability programs: a review of sustainability initiatives in the Italian wine sector. Sustainability 6:2133–59 [Google Scholar]
  41. Correa MCG, Germain JF, Malausa T, Zaviezo T. 41.  2012. Molecular and morphological characterization of mealybugs (Hemiptera: Pseudococcidae) from Chilean vineyards. Bull. Entomol. Res. 102:524–30 [Google Scholar]
  42. Costello MJ, Daane KM. 42.  1998. Influence of ground cover on spider populations in a table grape vineyard. Ecol. Entomol. 23:33–40 [Google Scholar]
  43. Cullen R, Forbes SL, Grout R. 43.  2013. Non-adoption of environmental innovations in wine growing. N. Z. J. Crop. Hortic. Sci. 41:41–48 [Google Scholar]
  44. da Silva VCP, Bertin A, Blin A, Germain JF, Bernardi D. 44.  et al. 2014. Molecular and morphological identification of mealybug species (Hemiptera: Pseudococcidae) in Brazilian vineyards. PLOS ONE 9:e103267 [Google Scholar]
  45. Daane KM, Cooper ML, Triapitsyn SV, Walton VM, Yokota GY. 45.  et al. 2008. Vineyard managers and researchers seek sustainable solutions for mealybugs, a changing pest complex. Calif. Agric. 62:167–76 [Google Scholar]
  46. Daane KM, Malakar-Kuenen RD, Walton VM. 46.  2004. Temperature-dependent development of Anagyrus pseudococci (Hymenoptera: Encyrtidae) as a parasitoid of the vine mealybug, Planococcus ficus (Homoptera: Pseudococcidae). Biol. Control 31:123–32 [Google Scholar]
  47. Daane KM, Middleton MC, Sforza R, Cooper ML, Walton VM. 47.  et al. 2011. Development of a multiplex PCR for identification of vineyard mealybugs. Environ. Entomol. 40:1595–603 [Google Scholar]
  48. Daane KM, Sime KR, Fallon J, Cooper ML. 48.  2007. Impacts of Argentine ants on mealybugs and their natural enemies in California's coastal vineyards. Ecol. Entomol. 32:583–96 [Google Scholar]
  49. Daane KM, Sime KR, Hogg BN, Bianchi ML, Cooper ML. 49.  et al. 2006. Effects of liquid insecticide baits on Argentine ants in California's coastal vineyards. Crop. Prot. 25:592–603 [Google Scholar]
  50. Delmas MA, Gergaud O. 50.  2014. Sustainable certification for future generations: the case of family business. Fam. Bus. Rev. 27:228–43 [Google Scholar]
  51. Demontis MA, Ortu S, Cocco A, Lentini A, Migheli Q. 51.  2007. Diagnostic markers for Planococcus ficus (Signoret) and Planococcus citri (Risso) by random amplification of polymorphic DNA-polymerase chain reaction and species-specific mitochondrial DNA primers. J. Appl. Entomol. 131:59–64 [Google Scholar]
  52. Desneux N, Decourtye A, Delpuech J-M. 52.  2007. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52:81–106 [Google Scholar]
  53. Doutt RL, Nakata J. 53.  1973. The Rubus leafhopper and its egg parasitoid: an endemic biotic system useful in grape-pest management. Environ. Entomol. 2:381–86 [Google Scholar]
  54. English-Loeb G, Rhainds M, Martinson T, Ugine T. 54.  2003. Influence of flowering cover crops on Anagrus parasitoids (Hymenoptera: Mymaridae) and Erythroneura leafhoppers (Homoptera: Cicadellidae) in New York vineyards. Agric. For. Entomol. 5:173–81 [Google Scholar]
  55. Fallahzadeh M, Japoshvili G, Saghaei N, Daane KM. 55.  2011. Natural enemies of Planococcus ficus (Hemiptera: Pseudococcidae) in Fars Province vineyards, Iran. Biocontrol Sci. Technol. 21:427–33 [Google Scholar]
  56. Fiedler AK, Landis DA, Wratten SD. 56.  2008. Maximizing ecosystem services from conservation biological control: the role of habitat management. Biol. Control 45:254–71 [Google Scholar]
  57. Flaherty DL, Peacock WL, Bettiga L, Leavitt GM. 57.  1982. Chemicals losing effect against grape mealybug. Calif. Agric. 36:15–16 [Google Scholar]
  58. Franco JC, Silva EB, Cortegano E, Campos L, Branco M. 58.  et al. 2008. Kairomonal response of the parasitoid Anagyrus spec. nov. near pseudococci to the sex pheromone of the vine mealybug. Entomol. Exp. Appl. 126:122–30 [Google Scholar]
  59. Giampetruzzi A, Roumi V, Roberto R, Malossini U, Yoshikawa N. 59.  et al. 2012. A new grapevine virus discovered by deep sequencing of virus- and viroid-derived small RNAs in Cv Pinot gris. Virus Res 163:262–68 [Google Scholar]
  60. Gilinsky A, Newton SK, Atkin TS, Santini C, Cavicchi A. 60.  et al. 2015. Perceived efficacy of sustainability strategies in the US, Italian, and Spanish wine industries: a comparative study. Int. J. Wine Bus. Res. 27:164–81 [Google Scholar]
  61. Girolami V, Camporese P. 61.  1994. Prima moltiplicazione in Europa di Neodryinus typhlocybae (Ashmead) (Hymenoptera: Dryinidae) su Metcalfa pruinosa (Say) (Homoptera: Flatidae) Presented at XVII Congr. Naz. Italiano Entomol. Udine, Italy:
  62. Golino DA, Fuchs M, Al Rwanih M, Farrar K, Martelli GP. 62.  2017. Regulatory aspects of grape viruses and virus diseases: certification, quarantine, and harmonization. In Grapevine Viruses: Molecular Biology, Diagnostics and Management B Meng, GP Martelli, DA Golino, M Fuchs 581–98 New York: Springer [Google Scholar]
  63. Gulec G, Kilincer AN, Kaydan MB, Ulgenturk S. 63.  2007. Some biological interactions between the parasitoid Anagyrus pseudococci (Girault) (Hymenoptera: Encyrtidae) and its host Planococcus ficus (Signoret) (Hemiptera: Coccoidea: Pseudococcidae). J. Pest Sci. 80:43–49 [Google Scholar]
  64. Gurr GM, You M. 64.  2016. Conservation biological control of pests in the molecular era: new opportunities to address old constraints. Front. Plant Sci. 7:1255 [Google Scholar]
  65. Gutierrez AP, Daane KM, Ponti L, Walton VM, Ellis CK. 65.  2008. Prospective evaluation of the biological control of vine mealybug: refuge effects and climate. J. Appl. Ecol. 45:524–36 [Google Scholar]
  66. Handford CE, Elliott CT, Campbell K. 66.  2015. A review of the global pesticide legislation and the scale of challenge in reaching the global harmonization of food safety standards. Integr. Environ. Assess. Manag. 11:525–36 [Google Scholar]
  67. Hardy NB, Gullan PJ, Hodgson CJ. 67.  2008. A classification of mealybugs (Hemiptera: Pseudococcidae) based on integrated molecular and morphological data. Syst. Entomol. 33:51–71 [Google Scholar]
  68. Haviland DR, Bentley WJ, Daane KM. 68.  2005. Hot-water treatments for control of Planococcus ficus (Homoptera: Pseudococcidae) on dormant grape cuttings. J. Econ. Entomol. 98:1109–15 [Google Scholar]
  69. Haye T, Gariepy TD, Hoelmer KA, Rossi JP, Streito JC. 69.  et al. 2015. Range expansion of the invasive brown marmorated stinkbug, Halyomorpha halys: an increasing threat to field, fruit and vegetable crops worldwide. J. Pest Sci 88:665–73An example of the spread of an invasive pest—the brown marmorated stink bug. [Google Scholar]
  70. Hinkens DM, McElfresh JS, Millar JG. 70.  2001. Identification and synthesis of the sex pheromone of the vine mealybug. Planococcus ficus. Tetrahedron Lett. 42:1619–21 [Google Scholar]
  71. Hogg BN, Daane KM. 71.  2013. Contrasting landscape effects on species diversity and invasion success within a predator community. Divers. Distrib. 19:281–93 [Google Scholar]
  72. Ioriatti C, Anfora G, Tasin M, De Cristofaro A, Witzgall P, Lucchi A. 72.  2011. Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). J. Econ. Entomol. 104:1125–37 [Google Scholar]
  73. Ioriatti C, Lucchi A, Bagnoli B. 73.  2008. Grape areawide pest management in Italy. Areawide Pest Management: Theory and Implementation O Koul, G Cuperus, N Elliott 208–25 Wallingford, UK: CABI [Google Scholar]
  74. Ioriatti C, Lucchi A, Varela LG. 74.  2012. Grape berry moths in Western European vineyards and their recent movement into the New World. See Ref. 18 339–59
  75. Ioriatti C, Walton V, Dalton D, Anfora G, Grassi A. 75.  et al. 2015. Drosophila suzukii (Diptera: Drosophilidae) and its potential impact to wine grapes during harvest in two cool climate wine grape production regions. J. Econ. Entomol. 108:1148–55 [Google Scholar]
  76. 76. IOWV (Int. Org. Wine Vine). 2011. OIV Guidelines for Sustainable Viticulture Adapted to Table Grapes and Raisins: Production, Storage, Drying, Processing and Packaging of Products. Resolut. OIV-VITI 422-2011, Int. Org. Wine Vine, Paris, France. http://www.oiv.int/public/medias/395/viti-2011-1-en.pdf
  77. Isaacs R, Mason KS, Maxwell E. 77.  2005. Stage-specific control of grape berry moth, Endopizaviteana (Clemens) (Lepidoptera: Tortricidae), by selective and broad-spectrum insecticides. J. Econ. Entomol. 98:415–22 [Google Scholar]
  78. Isaacs R, Saunders MC, Bostanian NJ. 78.  2012. Pest thresholds: their development and use in vineyards for arthropod management. See Ref. 18 17–36
  79. Isaacs R, Tuell J, Fiedler A, Gardiner M, Landis D. 79.  2009. Maximizing arthropod-mediated ecosystem services in agricultural landscapes: the role of native plants. Front. Ecol. Environ. 7:196–203 [Google Scholar]
  80. Isaacs R, Vincent C, Bostanian NJ. 80.  2012. Vineyard IPM in a changing world: adapting to new pests, tactics, and challenges. See Ref. 18 475–84
  81. James DG, Seymour L, Lauby G, Buckley K. 81.  2014. Beneficial insects attracted to native flowering buckwheats (Eriogonum Michx) in Central Washington. Environ. Entomol. 43:942–48 [Google Scholar]
  82. Jenkins C, Chapman TA, Micallef JL, Reynolds OL. 82.  2012. Molecular techniques for the detection and differentiation of host and parasitoid species and the implications for fruit fly management. Insects 3:763–88 [Google Scholar]
  83. Jones GV. 83.  2012. Sustainable vineyard developments worldwide. Bull. OIV 85:49–60Conclusion of this recent book presents a vision for the future of sustainable viticulture. [Google Scholar]
  84. Jones GV, Alves F. 84.  2012. Impact of climate change on wine production: a global overview and regional assessment in the Douro Valley of Portugal. Int. J. Glob. Warm. 4:383–406 [Google Scholar]
  85. Jones TJ, Nita M. 85.  2016. Spatio-temporal association of GLRaV-3-infected grapevines, and effect of insecticidal treatments on mealybug populations in Virginia vineyards. Eur. J. Plant Pathol. 145:885–900 [Google Scholar]
  86. Klodd AE, Eissenstat DM, Wolf TK, Centinari M. 86.  2016. Coping with cover crop competition in mature grapevines. Plant Soil 400:391–402 [Google Scholar]
  87. Krenz B, Thompson JR, Fuchs M, Perry KL. 87.  2012. Complete genome sequence of a new circular DNA virus from grapevine. J. Virol. 86:7715–15 [Google Scholar]
  88. Landis DA, Wratten SD, Gurr GM. 88.  2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45:175–201 [Google Scholar]
  89. Li Y, Bardaji I. 89.  2016. A new wine superpower? An analysis of the Chinese wine industry Work. Pap. No. 198 Am. Assoc. Wine Econ., New York
  90. Lowery DT, Triapitsyn SV, Judd GJ. 90.  2007. Leafhopper host plant associations for Anagrus parasitoids (Hymenoptera: Mymaridae) in the Okanagan Valley, British Columbia. J. Entomol. Soc. B. C. 104:9–16 [Google Scholar]
  91. Lucchi A, Bagnoli B, Cooper M, Ioriatti C, Varela L. 91.  2014. The successful use of sex pheromones to monitor and disrupt mating of Lobesia botrana in California. IOBC-WPRS Bull 99:45–48 [Google Scholar]
  92. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA. 92.  2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10:689–710 [Google Scholar]
  93. MacLeod A, Pautasso M, Jeger MJ, Haines-Young R. 93.  2010. Evolution of the international regulation of plant pests and challenges for future plant health. Food Secur 2:49–70 [Google Scholar]
  94. Malagnini V, de Lillo E, Saldarelli P, Beber R, Duso C. 94.  et al. 2016. Transmission of grapevine Pinot gris virus by Colomerus vitis (Acari: Eriophyidae) to grapevine. Arch. Virol. 161:2595–99 [Google Scholar]
  95. Malausa T, Fenis A, Warot S, Germain J-F, Ris N. 95.  et al. 2011. DNA markers to disentangle complexes of cryptic taxa in mealybugs (Hemiptera: Pseudococcidae). J. Appl. Entomol. 135:142–55 [Google Scholar]
  96. Malavolta C, Boller EF. 96.  2009. Guidelines for integrated production of grapes. IOBC-WPRS Bull 46:1–21 [Google Scholar]
  97. Malhat FM. 97.  2012. Determination of chlorantraniliprole residues in grape by high-performance liquid chromatography. Food Anal. Methods 5:1492–96 [Google Scholar]
  98. Mansour R, Suma P, Mazzeo G, Buonocore E, Lebdi KG, Russo A. 98.  2010. Using a kairomone-based attracting system to enhance biological control of mealybugs (Hemiptera: Pseudococcidae) by Anagyrus sp. near pseudococci (Hymenoptera: Encyrtidae) in Sicilian vineyards. J. Entomol. Acarol. Res. 42:161–70 [Google Scholar]
  99. Mansour R, Suma P, Mazzeo G, Lebdi KG, Russo A. 99.  2011. Evaluating side effects of newer insecticides on the vine mealybug parasitoid Anagyrus sp. near pseudococci, with implications for integrated pest management in vineyards. Phytoparasitica 39:369–76 [Google Scholar]
  100. Martelli GP, Abou Ghanem-Sabanadzovic N, Agranovsky AA, Al Rwahnih M, Dolja VV. 100.  et al. 2012. Taxonomic revision of the family Closteroviridae with special reference to the Grapevine leafroll-associated members of the genus Ampelovirus and the putative species unassigned to the family. J. Plant Pathol. 94:7–19 [Google Scholar]
  101. Mazzon L, Lucchi A, Girolami V, Santini L. 101.  2003. Investigation on voltinism of Neodryinus typhlocybae (Ashmead) (Hymenoptera Dryinidae) in natural context. Frustula Entomol 36:9–19 [Google Scholar]
  102. Mgocheki N, Addison P. 102.  2009. Interference of ants (Hymenoptera: Formicidae) with biological control of the vine mealybug Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae). Biol. Control 49:180–85 [Google Scholar]
  103. Milburn LAS, Mulley SJ, Kline C. 103.  2010. The end of the beginning and the beginning of the end: the decline of public agricultural extension in Ontario. J. Ext. 48:6FEA7 [Google Scholar]
  104. Millar JG, Daane KM, McElfresh JS, Moreira JA, Malakar-Kuenen R. 104.  et al. 2002. Development and optimization of methods for using sex pheromone for monitoring the mealybug Planococcus ficus (Homoptera: Pseudococcidae) in California vineyards. J. Econ. Entomol. 95:706–14 [Google Scholar]
  105. Mohekar P, Lapis TJ, Wiman NG, Lim J, Tomasino E. 105.  2017. Brown marmorated stink bug taint in Pinot noir: detection and consumer rejection thresholds of trans-2-decenal. Am J. Enol. Vitic. 68:120–26 [Google Scholar]
  106. Nauen R, Jeschke P, Velten R, Beck ME, Ebbinghaus-Kintscher U. 106.  et al. 2015. Flupyradifurone: a brief profile of a new butenolide insecticide. Pest Manag. Sci. 71:850–62 [Google Scholar]
  107. Nicholls CI, Parrella M, Altieri MA. 107.  2001. The effects of a vegetational corridor on the abundance and dispersal of insect biodiversity within a northern California organic vineyard. Landsc. Ecol. 16:133–46 [Google Scholar]
  108. Ohmart C. 108.  2008. Innovative outreach increases adoption of sustainable winegrowing practices in Lodi region. Calif. Agric. 62:142–47Overview of the successes of a pioneer sustainability program in California. [Google Scholar]
  109. 109. OIV (Organ.Vine Wine). 2016. World vitiviniculture situation OIV Stat. Rep. World Vitivinic., Organ. Vine Wine Paris, France: accessed Aug. 9, 2017. http://www.oiv.int/public/medias/5029/world-vitiviniculture-situation-2016.pdf
  110. Olivier C, Saguez J, Stobbs L, Lowery T, Galka B. 110.  et al. 2014. Occurrence of phytoplasmas in leafhoppers and cultivated grapevines in Canada. Agric. Ecosyst. Environ. 195:91–97 [Google Scholar]
  111. Papura D, Rusch A, Roux P, Delbac L, Thiery D. 111.  2016. Early detection and identification of larval parasitoids in Lobesia botrana using PCR-RFLP method. Biol. Control 103:95–100 [Google Scholar]
  112. Pavan K, Pandit SS, Steppuhn A, Baldwin IT. 112.  2014. Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46’s role in a nicotine-mediated antipredator herbivore defense. PNAS 111:1245–52 [Google Scholar]
  113. Pomarici E, Vecchio R. 113.  2014. Millennial generation attitudes to sustainable wine: an exploratory study on Italian consumers. J. Clean. Prod. 66:537–45 [Google Scholar]
  114. Ponti L, Ricci C, Veronesi F, Torricelli R. 114.  2005. Natural hedges as an element of functional biodiversity in agroecosystems: the case of a Central Italy vineyard. Bull. Insectol. 58:19–23 [Google Scholar]
  115. Powell KS. 115.  2012. A holistic approach to future management of grape phylloxera. See Ref. 18 219–51
  116. Reineke A, Assaf HA, Kulanek D, Mori N, Pozzebon A, Duso C. 116.  2015. A novel set of microsatellite markers for the European grapevine moth Lobesia botrana isolated using next-generation sequencing and their utility for genetic characterization of populations from Europe and the Middle East. Bull. Entomol. Res. 105:408–16 [Google Scholar]
  117. Reineke A, Hauck M. 117.  2012. Larval development of Empoasca vitis and Edwardsiana rosae (Homoptera: Cicadellidae) at different temperatures on grapevine leaves. J. Appl. Entomol. 136:656–64 [Google Scholar]
  118. Remund U, Boller E. 118.  1996. Importance of hedgerow plants for the egg parasitoids of the green grapevine leafhopper in eastern Switzerland. Obst Weinbau 132:238–41 [Google Scholar]
  119. Rigamonti IE. 119.  2006. Preliminary observations on the role of botanical diversity on the presence of egg parasitoids of grape leafhoppers in Northern Italy. IOBC-WPRS Bull 29:187–92 [Google Scholar]
  120. Roelofs W, Kochansky J, Cardé R, Arn H, Rauscher S. 120.  1973. Sex attractant of the grape vine moth. Lobesia botrana. J. Swiss Entomol. Soc. 46:71–73 [Google Scholar]
  121. Rose G, Lane S, Jordan R. 121.  2009. The fate of fungicide and insecticide residues in Australian wine grape by-products following field application. Food Chem 117:634–40 [Google Scholar]
  122. Roubos CR, Rodriguez-Saona C, Isaacs R. 122.  2014. Mitigating the effects of insecticides on arthropod biological control at field and landscape scales. Biol. Control 75:28–38 [Google Scholar]
  123. Saccaggi DL, Kruger K, Pietersen G. 123.  2008. A multiplex PCR assay for the simultaneous identification of three mealybug species (Hemiptera: Pseudococcidae). Bull. Entomol. Res. 98:27–33 [Google Scholar]
  124. Saenz-de-Cabezon Irigaray FJ, Marco V, Zalom FG, Perez-Moreno I. 124.  2005. Effects of methoxyfenozide on Lobesia botrana Den & Schiff (Lepidoptera: Tortricidae) egg, larval and adult stages. Pest Manag. Sci. 61:1133–37 [Google Scholar]
  125. Santiago-Brown I, Metcalfe A, Jerram C, Collins C. 125.  2014. Transnational comparison of sustainability assessment programs for viticulture and a case-study on programs’ engagement processes. Sustainability 6:2031–66 [Google Scholar]
  126. Santini C, Cavicchi A, Casini L. 126.  2013. Sustainability in the wine industry: key questions and research trends. Agric. Food Econ. 1:9Compares sustainable grape-growing programs attempted in several regions. [Google Scholar]
  127. Shields MW, Tompkins J-M, Saville DJ, Meurk CD, Wratten S. 127.  2016. Potential ecosystem service delivery by endemic plants in New Zealand vineyards: successes and prospects. PeerJ 4:e2042 [Google Scholar]
  128. Smith JR, Hesler SP, Loeb GM. 128.  2014. Potential impact of Halyomorpha halys (Hemiptera: Pentatomidae) on grape production in the Finger Lakes region of New York. J. Entomol. Sci. 49:290–303 [Google Scholar]
  129. Suckling DM, Stringer LD, Baird DB, Butler RC, Sullivan TES. 129.  et al. 2014. Light brown apple moth (Epiphyas postvittana) (Lepidoptera: Tortricidae) colonization of California. Biol. Invasions 16:1851–63An example of the spread of an invasive pest—the light brown apple moth. [Google Scholar]
  130. Thomson LJ, Glenn DC, Hoffmann AA. 130.  2000. Effects of sulfur on Trichogramma egg parasitoids in vineyards: measuring toxic effects and establishing release windows. Aust. J. Exp. Agric. 40:1165–71 [Google Scholar]
  131. Thomson LJ, Hoffmann AA. 131.  2013. Spatial scale of benefits from adjacent woody vegetation on natural enemies within vineyards. Biol. Control 64:57–65 [Google Scholar]
  132. Thomson LJ, Macfadyen S, Hoffmann AA. 132.  2010. Predicting the effects of climate change on natural enemies of agricultural pests. Biol. Control 52:296–306 [Google Scholar]
  133. Tobin PC, Nagarkatti S, Saunders MC. 133.  2003. Phenology of grape berry moth (Lepidoptera: Tortricidae) in cultivated grape at selected geographic locations. Environ. Entomol. 32:340–46 [Google Scholar]
  134. Tsai C-W, Chau J, Fernandez L, Bosco D, Daane KM, Almeida RPP. 134.  2008. Transmission of Grapevine leafroll-associated virus 3 by the vine mealybug (Planococcus ficus). Phytopathology 98:1093–98 [Google Scholar]
  135. Tzin V, Yang XW, Jing XF, Zhang K, Jander G, Douglas AE. 135.  2015. RNA interference against gut osmoregulatory genes in phloem-feeding insects. J. Insect Physiol. 79:105–12 [Google Scholar]
  136. Van Timmeren S, Wise JC, Isaacs R. 136.  2012. Soil application of neonicotinoid insecticides for control of insect pests in wine grape vineyards. Pest Manag. Sci. 68:537–42 [Google Scholar]
  137. Varela LG, Cooper ML, Smith RJ. 137.  2013. Can European grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae) be eradicated from California?. IOBC-WPRS Bull 85:95–102 [Google Scholar]
  138. Varela LG, Lucchi A, Bagnoli B, Nicolini G, Ioriatti C. 138.  2013. Impacts of standard wine-making process on the survival of Lobesia botrana larvae (Lepidoptera: Tortricidae) in infested grape clusters. J. Econ. Entomol. 106:2349–53 [Google Scholar]
  139. Vila M, Basnou C, Pysek P, Josefsson M, Genovesi P. 139.  et al. 2010. How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front. Ecol. Environ. 8:135–44 [Google Scholar]
  140. Vincent C, Isaacs R, Bostanian NJ, Lasnier J. 140.  2012. Principles of arthropod pest management in vineyards. See Ref. 18 1–16
  141. Vincent C, Pickering G. 141.  2013. Multicolored Asian ladybeetle, Harmonia axyridis (Coleoptera: Coccinellidae). Biological Control Programmes in Canada 2001–2012 PG Mason, DR Gillespie 192–98 Wallingford, UK: CABI [Google Scholar]
  142. Wallingford AK, Fuchs MF, Martinson T, Hesler S, Loeb GM. 142.  2015. Slowing the spread of Grapevine leafroll-associated viruses in commercial vineyards with insecticide control of the vector, Pseudococcus maritimus (Hemiptera: Pseudococcidae). J. Insect Sci. 15:112 [Google Scholar]
  143. Walton VM, Daane KM, Bentley WJ, Millar JG, Larsen TE, Malakar-Kuenen R. 143.  2006. Pheromone-based mating disruption of Planococcus ficus (Hemiptera: Pseudococcidae) in California vineyards. J. Econ. Entomol. 99:1280–90 [Google Scholar]
  144. Walton VM, Pringle KL. 144.  1999. Effects of pesticides used on table grapes on the mealybug parasitoid Coccidoxenoides peregrinus (Timberlake) (Hymenoptera: Encyrtidae). S. Afr. J. Enol. Vitic. 20:31–34 [Google Scholar]
  145. Walton VM, Pringle KL. 145.  2004. Vine mealybug, Planococcusficus (Signoret) (Hemiptera: Pseudococcidae), a key pest in South African vineyards. A review. S. Afr. J. Enol. Vitic. 25:54–62 [Google Scholar]
  146. Warner KD. 146.  2007. The quality of sustainability: agroecological partnerships and the geographic branding of California winegrapes. J. Rural Stud. 23:142–55 [Google Scholar]
  147. Wermelinger B, Wyniger D, Forster B. 147.  2008. First records of an invasive bug in Europe: Halyomorpha halys Stål (Heteroptera: Pentatomidae), a new pest on woody ornamentals and fruit trees?. J. Swiss Entomol. Soc. 81:1–8 [Google Scholar]
  148. Weyerbrock S, Xia T. 148.  2000. Technical trade barriers in US/Europe agricultural trade. Agribusiness 16:235–51 [Google Scholar]
  149. White MA, Diffenbaugh NS, Jones GV, Pal JS, Giorgi F. 149.  2006. Extreme heat reduces and shifts United States premium wine production in the 21st century. PNAS 103:11217–22 [Google Scholar]
  150. Wightman JD, Heuberger RA. 150.  2015. Effect of grape and other berries on cardiovascular health. J. Sci. Food Agric. 95:1584–97 [Google Scholar]
  151. Williams LI, Martinson TE. 151.  2000. Colonization of New York vineyards by Anagrus spp. (Hymenoptera: Mymaridae): overwintering biology, within-vineyard distribution of wasps, and parasitism of grape leafhopper, Erythroneura spp. (Homoptera: Cicadellidae), eggs. Biol. Control 18:136–46 [Google Scholar]
  152. Wilson H, Miles AF, Daane KM, Altieri MA. 152.  2015. Landscape diversity and crop vigor influence biological control of the Western grape leafhopper (E. elegantula Osborn) in vineyards. PLOS ONE 10:e0141752 [Google Scholar]
  153. Wilson H, Miles AF, Daane KM, Altieri MA. 153.  2015. Vineyard proximity to riparian habitat influences Western grape leafhopper (Erythroneura elegantula Osborn) populations. Agric. Ecosyst. Environ. 211:43–50 [Google Scholar]
  154. Wilson H, Miles AF, Daane KM, Altieri MA. 154.  2016. Host plant associations of Anagrus spp. (Hymenoptera: Mymaridae) and Erythroneura elegantula (Hemiptera: Cicadellidae) in northern California. Environ. Entomol. 45:602–15 [Google Scholar]
  155. Wilson SW, Lucchi A. 155.  2007. Feeding activity of the flatid planthopper Metcalfa pruinosa (Hemiptera: Fulgoroidea). J. Kans. Entomol. Soc. 80:175–78 [Google Scholar]
  156. Zada A, Dunkelblum E, Assael F, Franco JC, da Silva EB. 156.  et al. 2008. Attraction of Planococcus ficus males to racemic and chiral pheromone baits: flight activity and bait longevity. J. Appl. Entomol. 132:480–89 [Google Scholar]
  157. Zangheri S, Donadini P. 157.  1980. Comparsa nel Veneto di un omottero neartico: Metcalfa pruinosa Say (Homoptera, Flatidae). Redia 63:301–05 [Google Scholar]
  158. Zhu G, Bu W, Gao Y, Liu G. 158.  2012. Potential geographic distribution of brown marmorated stink bug invasion (Halyomorpha halys). PLOS ONE 7:e31246 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error