1932

Abstract

More than six decades after the onset of wide-scale commercial use of synthetic pesticides and more than fifty years after Rachel Carson's , pesticides, particularly insecticides, arguably remain the most influential pest management tool around the globe. Nevertheless, pesticide use is still a controversial issue and is at the regulatory forefront in most countries. The older generation of insecticide groups has been largely replaced by a plethora of novel molecules that exhibit improved human and environmental safety profiles. However, the use of such compounds is guided by their short-term efficacy; the indirect and subtler effects on their target species, namely arthropod pest species, have been neglected. Curiously, comprehensive risk assessments have increasingly explored effects on nontarget species, contrasting with the majority of efforts focused on the target arthropod pest species. The present review mitigates this shortcoming by hierarchically exploring within an ecotoxicology framework applied to integrated pest management the myriad effects of insecticide use on arthropod pest species.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-010715-023646
2016-03-11
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/ento/61/1/annurev-ento-010715-023646.html?itemId=/content/journals/10.1146/annurev-ento-010715-023646&mimeType=html&fmt=ahah

Literature Cited

  1. Aktar MW, Sengupta D, Chowdhury A. 1.  2009. Impact of pesticide use in agriculture: their benefits and hazards. Interdiscip. Toxicol. 2:1–12 [Google Scholar]
  2. Alto BW, Lampman RL, Kesavaraju B, Muturi EJ. 2.  2013. Pesticide-mediated release from competition among competing Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 50:1240–49 [Google Scholar]
  3. Antunes EC, Della Lucia TMC, Guedes RNC, Serrão JE. 3.  2005. Abamectin-driven alterations on queen ovaries of the leaf-cutting ant Acromyrmex subterraneus subterraneus. Sociobiology 44:178–88 [Google Scholar]
  4. Antunes EC, Guedes RNC, Della Lucia TMC, Serrão JE. 4.  2000. Sub-lethal effects of abamectin suppressing colonies of the leaf-cutting ant Acromyrmex subterraneus subterraneus. Pest Manag. Sci. 56:1059–64 [Google Scholar]
  5. Araújo RA, Badji CA, Corrêa AS, Ladeira JA, Guedes RNC. 5.  2004. Deltamethrin impact in soil surface Coleoptera associated with maize crop in no tillage and conventional plantation systems. Neotrop. Entomol. 33:379–85 [Google Scholar]
  6. Araújo RA, Guedes RNC, Oliveira MGA, Ferreira GH. 6.  2008. Enhanced activity of carbohydrate- and lipid-metabolizing enzymes in insecticide-resistant populations of the maize weevil, Sitophilus zeamais. Bull. Entomol. Res. 98:417–24 [Google Scholar]
  7. Ayyanath MM, Cutler GC, Scott-Dupree CD, Sibley PK. 7.  2013. Transgenerational shifts in reproduction hormesis in green peach aphid exposed to low concentrations of imidacloprid. PLOS ONE 8:9e74532 [Google Scholar]
  8. Badji CA, Guedes RNC, Corrêa AS, Ferreira GH, Nascimento IC. 8.  2006. Deltamethrin-induced impact on ant assemblages in tropical maize fields under conventional and no-tillage cultivation. Sociobiology 48:701–15 [Google Scholar]
  9. Badji CA, Guedes RNC, Silva AA, Araújo RA. 9.  2004. Impact of deltamethrin on arthropods in maize under conventional and no-tillage cultivation. Crop Prot. 23:1031–39 [Google Scholar]
  10. Badji CA, Guedes RNC, Silva AA, Corrêa AS, Queiroz MELR, Michereff-Filho M. 10.  2007. Non-target impact of deltamethrin on soil arthropods of maize fields under conventional and no-tillage cultivation. J. Appl. Entomol. 131:50–58 [Google Scholar]
  11. Bahlai CA, Xue Y, McCreary CM, Schaafsma AW, Hallett RH. 11.  2010. Choosing organic pesticides over synthetic pesticides may not effectively mitigate environmental risks in soybeans. PLOS ONE 5:6e11250 [Google Scholar]
  12. Banks JE, Ackleh AS, Stark JD. 12.  2010. The use of surrogate species in risk assessments: using life history data to safeguard against false negatives. Risk Anal. 30:175–82Explores both the use of surrogate species and life-history data on risk analysis of toxicants. [Google Scholar]
  13. Banks JE, Stark JD, Vargas RI, Ackleh AS. 13.  2014. Deconstructing the surrogate species concept: a life history approach to the protection of ecosystem services. Ecol. Appl. 24:770–78 [Google Scholar]
  14. Barbieri RF, Lester PJ, Miller AS, Ryan KG. 14.  2013. A neurotoxic pesticide changes the outcome of aggressive interactions between native and invasive ants. Proc. R. Soc. B 280:20132157 [Google Scholar]
  15. Barbosa WF, Smagghe G, Guedes RNC. 15.  2015. Pesticides and reduced-risk insecticides, native bees and pantropical stingless bees: pitfalls and perspectives. Pest Manag. Sci. 71:1059–53Prospects current needs regarding impacts of pesticides on native arthropod species of yield-favoring agents. [Google Scholar]
  16. Bayley M. 16.  2002. Basic behaviour: the use of animal locomotion in behavioural ecotoxicology. Behavioural Ecotoxicology G Dell'Omo 211–30 Chichester, UK: Wiley [Google Scholar]
  17. Beale MH, Birkett MA, Bruce TJA, Chamberlain K, Field LM. 17.  et al. 2006. Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. PNAS 103:10509–13 [Google Scholar]
  18. Biondi A, Desneux N, Siscaro G, Zappalà L. 18.  2012. Using organic-certified rather synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87:803–12 [Google Scholar]
  19. Biondi A, Zappalà L, Stark JD, Desneux N. 19.  2013. Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects?. PLOS ONE 8:9e76548 [Google Scholar]
  20. Braga LS, Corrêa AS, Pereira EJG, Guedes RNC. 20.  2011. Face or flee? Fenitrothion resistance and behavioral response in populations of the maize weevil, Sitophilus zeamais. J. Stored Prod. Res. 47:161–67 [Google Scholar]
  21. Broderick NA, Raffa KF, Handelsman J. 21.  2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. PNAS 103:15196–99 [Google Scholar]
  22. Calabrese EJ. 22.  2008. Hormesis: why it is important to toxicology and toxicologists. Environ. Chem. 27:1451–74 [Google Scholar]
  23. Calabrese EJ, Blain R. 23.  2005. The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview. Toxicol. Appl. Pharmacol. 202:289–301 [Google Scholar]
  24. Cameron R, Lang EB, Annan IB, Portillo HE, Alvarez JM. 24.  2013. Use of fluorescence, a novel technique to determine reduction in Bemisia tabaci (Hemiptera: Aleyrodidae) nymph feeding when exposed to Benevia and other insecticides. J. Econ. Entomol. 106:597–603 [Google Scholar]
  25. Casida JE, Durkin KA. 25.  2013. Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu. Rev. Entomol. 58:99–117 [Google Scholar]
  26. Chen Z, Qu YY, Xiao D, Song LF, Gao X-W. 26.  et al. 2015. Lethal and social-mediated effects of ten insecticides on the subterranean termite Reticulitermes speratus. J. Pest Sci. doi: 10.1007/s10340-015-0656-0
  27. Chong CS, Hoffman AA, Thomson LJ. 27.  2007. Commercial agrochemical applications in vineyards do not influence ant communities. Environ. Entomol. 36:1374–83 [Google Scholar]
  28. Civolani S, Cassanelli S, Chicca M, Rison JL, Bassi A. 28.  et al. 2014. An EPG study of the probing behavior of adult Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) following exposure to cyantraniliprole. J. Econ. Entomol. 107:910–19 [Google Scholar]
  29. Coats JR. 29.  1994. Risks from natural versus synthetic insecticides. Annu. Rev. Entomol. 39:489–515 [Google Scholar]
  30. Connell JH. 30.  1978. Diversity in tropical rain forests and coral reefs. Science 199:1302–10 [Google Scholar]
  31. Cooper J, Dobson H. 31.  2007. The benefits of pesticides to mankind and the environment. Crop Prot. 26:1337–48 [Google Scholar]
  32. Cordeiro EMG, Corrêa AS, Guedes RNC. 32.  2014. Insecticide-mediated shift in ecological dominance between two competing species of grain beetles. PLOS ONE 9:6e100990Demonstrates insecticide-mediated shift in ecological dominance between two competing arthropod species. [Google Scholar]
  33. Cordeiro EMG, Corrêa AS, Venzon M, Guedes RNC. 33.  2010. Insecticide survival and behavioral avoidance in the lacewings Chrysoperla externa and Ceraeochrysa cubana. Chemosphere 81:1352–57 [Google Scholar]
  34. Cordeiro EMG, de Moura ILT, Fadini MAM, Guedes RNC. 34.  2013. Beyond selectivity: Are behavioral avoidance and hormesis likely causes of pyrethroid-induced outbreaks of the red mite Oligonychus ilicis?. Chemosphere 93:1111–16 [Google Scholar]
  35. Corrêa AS, Tomé HVV, Braga LS, Martins JC, de Oliveira LO, Guedes RNC. 35.  2014. Are mitochondrial lineages, mitochondrial lysis and respiration rate associated with phosphine susceptibility in the maize weevil Sitophilus zeamais?. Ann. Appl. Biol. 165:137–46 [Google Scholar]
  36. Croft BA. 36.  1990. Arthropod Biological Control Agents and Pesticides New York: Wiley
  37. Cutler GC. 37.  2013. Insects, insecticides and hormesis: evidence and considerations for study. Dose Response 11:154–77 [Google Scholar]
  38. Czaja K, Góralxzyk K, Struciński P, Hernik A, Korcz W. 38.  et al. 2015. Biopesticides—towards increased consumer safety in the European Union. Pest Manag. Sci. 15:3–6 [Google Scholar]
  39. Decourtye A, Henry M, Desneux N. 39.  2013. Environment: overhaul pesticide testing on bees. Nature 497:188 [Google Scholar]
  40. Della Lucia TMC, Gandra LC, Guedes RNC. 40.  2014. Managing leaf-cutting ants: peculiarities, trends and challenges. Pest Manag. Sci. 70:14–23 [Google Scholar]
  41. Desneux N, Decourtye A, Delpuech J-M. 41.  2007. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52:81–106Provides a comprehensive review of possible sublethal effects on pesticide-contaminated arthropods. [Google Scholar]
  42. Desneux N, Fauvergue X, Decahume-Moncharmont F-X, Kerhoas L, Ballanger Y, Kaiser L. 42.  2005. Diaeretiella rapae limits Myzus persicae populations after applications of deltamethrin in oilseed rape. J. Econ. Entomol. 98:9–17 [Google Scholar]
  43. Devine GJ, Furlong MJ. 43.  2007. Insecticide use: contexts and ecological consequences. Agric. Hum. Values 24:281–306 [Google Scholar]
  44. Douglas AE. 44.  2015. Multiorganismal insects: diversity and function of resident microorganisms. Annu. Rev. Entomol. 60:17–34 [Google Scholar]
  45. 45. Exophily in anophelines and malaria control 1958. WHO Chron. 1281–82
  46. Fang S-M. 46.  2012. Insect glutathione S-transferase: a review of comparative genomic studies and response to xenobiotics. Bull. Insectol. 65:265–71 [Google Scholar]
  47. 47. Food Agric. Organ. (FAO) 2013. FAO Statistics Yearbook 2013 Rome: FAO
  48. Forbes VE, Calow P. 48.  1999. Is the per capita rate of increase a good measure of population-level effects in ecotoxicology?. Environ. Toxicol. Chem. 18:1544–56 [Google Scholar]
  49. Forbes VE, Calow P. 49.  2002. Population growth rate as a basis for ecological risk assessment of toxic chemicals. Philos. Trans. R. Soc. B 357:1299–306 [Google Scholar]
  50. Gao Y, Reitz SR, Wei Q, Yu W, Zhang Z, Lei Z. 50.  2014. Local crop planting systems enhance insecticide-mediated displacement of two invasive leafminer fly. PLOS ONE 9:3e92625 [Google Scholar]
  51. Ghimire N, Woodward RT. 51.  2013. Under- and over-use of pesticides: an international analysis. Ecol. Econ. 89:73–81 [Google Scholar]
  52. Gilbert LI, Gill SS. 52.  2010. Insect Control: Biological and Synthetic Agents London: AcademicReviews pesticidal compounds and their biochemical and physiological effects on arthropods.
  53. Gould F. 53.  1984. Role of behavior in the evolution of insect adaptation to insecticides and resistant host plants. Bull. Entomol. Soc. Am. 30:34–40 [Google Scholar]
  54. Guedes NMP, Guedes RNC, Ferreira GH, Silva LB. 54.  2009. Flight take-off and walking behavior of insecticide-susceptible and -resistant strains of Sitophilus zeamais exposed to deltamethrin. Bull. Entomol. Res. 99:393–400 [Google Scholar]
  55. Guedes NMP, Guedes RNC, Silva LB, Cordeiro EMG. 55.  2009. Deltamethrin-induced feeding plasticity in pyrethroid-susceptible and -resistant strains of the maize weevil, Sitophilus zeamais. J. Appl. Entomol. 133:524–32 [Google Scholar]
  56. Guedes NMP, Tolledo J, Corrêa AS, Guedes RNC. 56.  2010. Insecticide-induced hormesis in an insecticide-resistant strain of the maize weevil, Sitophilus zeamais. J. Appl. Entomol. 134:142–48 [Google Scholar]
  57. Guedes RNC, Campbell JF, Arthur FH, Opit GP, Zhu KY, Throne JE. 57.  2008. Acute lethal and behavioral sublethal responses of two stored-product psocids to surface insecticides. Pest Manag. Sci. 64:1314–22 [Google Scholar]
  58. Guedes RNC, Cutler GC. 58.  2014. Insecticide-induced hormesis and arthropod pest management. Pest Manag. Sci. 70:690–97Comprehensive and updated review on pesticide-induced hormesis and implications for arthropod pest management. [Google Scholar]
  59. Guedes RNC, Magalhães LC, Cosme LV. 59.  2009. Stimulatory sublethal response of a generalist predator to permethrin: hormesis, hormoligosis, or homeostatic regulation?. J. Econ. Entomol. 102:170–76 [Google Scholar]
  60. Guedes RNC, Oliveira EE, Guedes NMP, Ribeiro B, Serrão JE. 60.  2006. Cost and mitigation of insecticide resistance in the maize weevil, Sitophilus zeamais. Physiol. Entomol. 31:30–38 [Google Scholar]
  61. Guo L, Desneux N, Sonoda S, Liang P, Han P, Gao X-W. 61.  2013. Sublethal and transgenerational effects of chlorantraniliprole on biological traits of the diamondback moth, Plutella xylostella L. Crop Prot. 48:29–34 [Google Scholar]
  62. Haddi K, Mendonça LP, dos Santos MF, Guedes RNC, Oliveira EE. 62.  2015. Metabolic and behavioral mechanisms of indoxacarb resistance in Sitophilus zeamais (Coleoptera: Curculionidae). J. Econ. Entomol. 108:362–69 [Google Scholar]
  63. Hallett RH, Bahlai CA, Xue Y, Schaafsma AW. 63.  2014. Incorporating natural enemy units into a dynamic action threshold for the soybean aphid, Aphis glycines (Homoptera: Aphididae). Pest Manag. Sci. 70:879–88 [Google Scholar]
  64. Hanson N, Stark JD. 64.  2011. A comparison of simple and complex population models to reduce uncertainty in ecological risk assessments of chemicals: example with three species of Daphnia. Ecotoxicology 20:1268–76 [Google Scholar]
  65. Hanson N, Stark JD. 65.  2012. Comparison of population level and individual level endpoints to evaluate ecological risk of chemicals. Environ. Sci. Technol. 46:5590–98Explores simple risk equations or matrix models to improve risk assessment compared with traditional endpoints. [Google Scholar]
  66. Hardin MR, Benrey B, Coll M, Lamp WO, Roderick GK, Barbosa P. 66.  1995. Arthropod pest resurgence: an overview of potential mechanisms. Crop Prot. 14:3–18 [Google Scholar]
  67. Haskell PT, McEwen P. 67.  1998. Ecotoxicology: Pesticides and Beneficial Organisms Dordrecht, Neth.: Kluwer
  68. Haynes KF. 68.  1988. Sublethal effects of neurotoxic insecticides on insect behavior. Annu. Rev. Entomol. 33:149–68 [Google Scholar]
  69. He Y, Zhao J, Zheng Y, Weng Q, Biondi A. 69.  et al. 2013. Assessment of potential sublethal effects of various insecticides on key biological traits of the tobacco whitefly, Bemisia tabaci. Int. J. Biol. Sci. 9:246–55 [Google Scholar]
  70. Hellou J. 70.  2011. Behavioural ecotoxicology, an “early warning” signal to assess environmental quality. Environ. Sci. Pollut. Res. 18:1–11 [Google Scholar]
  71. Hellou J, Cheeseman K, Desnoyers E, Johnston D, Jouvenelle ML. 71.  et al. 2008. A non-lethal chemically based approach to investigate the quality of harbor sediments. Sci. Total Environ. 389:178–87 [Google Scholar]
  72. Isman MB, Grieneisen ML. 72.  2014. Botanical insecticide research: many publications, limited useful data. Trends Plant Sci. 19:140–45 [Google Scholar]
  73. Jager T, Barsi A, Ducrot V. 73.  2013. Hormesis on life-history traits: Is there such a thing as a free lunch?. Ecotoxicology 22:263–70 [Google Scholar]
  74. Jager T, Crommentuijn T, Van Gestel CAM, Kooijman SALM. 74.  2004. Simultaneous modeling of multiple endpoints in life-cycle toxicity tests. Environ. Sci. Technol. 38:2894–900 [Google Scholar]
  75. Jatav KS, Dhar J. 75.  2014. Hybrid approach for pest control with impulsive releasing of natural enemies and chemical pesticides: a plant-pest-natural enemy model. Nonlinear Anal. Hybrid Syst. 12:79–92 [Google Scholar]
  76. Kesavaraju B, Afify A, Gaugler R. 76.  2013. Strain specific differences in intraspecific competition in Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 49:988–92 [Google Scholar]
  77. Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T. 77.  2012. Symbiont-mediated insecticide resistance. PNAS 109:8618–22Reports on a case of symbiont-mediated resistance to insecticides in an arthropod pest species. [Google Scholar]
  78. Köhler H-R, Triebskorn R. 78.  2013. Wildlife ecotoxicology of pesticides: Can we track effects to the population level and beyond?. Science 341:759–65 [Google Scholar]
  79. Kralj-Fišer S, Schuett W. 79.  2014. Studying personality variation in invertebrates: Why bother?. Anim. Behav. 91:41–52 [Google Scholar]
  80. Krämer W, Schirmer U, Jeschke P, Witschel M. 80.  2012. Modern Crop Protection Compounds 3 Insecticides Weinheim, Ger.: Wiley-VCH
  81. Kramarz PE, Banks JE, Stark JD. 81.  2007. Density-dependent response of the pea aphid (Hemiptera: Aphididae) to imidacloprid. J. Entomol. Sci. 42:200–6 [Google Scholar]
  82. Landis WG, Matthews RA, Matthews GB. 82.  1997. Design and analysis of multispecies toxicity tests for pesticide registration. Ecol. Appl. 7:1111–16 [Google Scholar]
  83. Larsen AE. 83.  2013. Agricultural landscape simplification does not consistently drive insecticide use. PNAS 110:15330–35 [Google Scholar]
  84. Liang P, Tian Y-A, Biondi A, Desneux N, Gao X-W. 84.  2012. Short-term and transgenerational effects of the neonicotinoid nitenpyram on susceptibility to insecticides in two whitefly species. Ecotoxicology 21:1889–98 [Google Scholar]
  85. Lima DB, Melo JWS, Guedes RNC, Siqueira HAA, Pallini A, Gondim MG Jr. 85.  2013. Survival and behavioural response to acaricides of the coconut mite predator Neoseiulus baraki. Exp. Appl. Acarol. 60:381–93 [Google Scholar]
  86. Liu B, Wang Y, Kang B. 86.  2014. Dynamics on a pest management SI model with control strategies of different frequencies. Nonlinear Anal. Hybrid Syst. 12:66–78 [Google Scholar]
  87. Liu N. 87.  2015. Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. Annu. Rev. Entomol. 60:537–59 [Google Scholar]
  88. Lockwood JA, Sparks TC, Story RN. 88.  1984. Evolution of insect resistance to insecticides: a reevaluation of the roles of physiology and behavior. Bull. Entomol. Soc. Am. 30:41–51 [Google Scholar]
  89. Lopes KVG, Silva LB, Reis AP, Oliveira MGA, Guedes RNC. 89.  2010. Modified α-amylase activity among insecticide-resistant and -susceptible strains of the maize weevil, Sitophilus zeamais. J. Insect Physiol. 56:1050–57 [Google Scholar]
  90. Lu YH, Wu KM, Jiang YY, Guo YY, Desneux N. 90.  2012. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–65Demonstrates that adjustments of pesticide applications can have a wide impact on key agroecosystem services. [Google Scholar]
  91. Luckey TD. 91.  1968. Insecticide hormoligosis. J. Econ. Entomol. 61:7–12 [Google Scholar]
  92. Lundgren JG, Hesler LS, Clay SA, Fausti SF. 92.  2013. Insect communities in soybeans of eastern South Dakota: the effects of vegetation management and pesticides on soybean aphids, bean leaf beetles, and their natural enemies. Crop Prot. 43:104–18 [Google Scholar]
  93. Maltby L. 93.  1999. Studying stress: the importance of organism-level responses. Ecol. Appl. 9:431–40 [Google Scholar]
  94. Metcalf RL. 94.  1980. Changing role of insecticides in crop protection. Annu. Rev. Entomol. 25:219–56 [Google Scholar]
  95. Misra JR, Horner M, Lam G, Thummel CS. 95.  2011. Transcriptional regulation of xenobiotic detoxification in Drosophila. Genes Dev. 25:1796–806 [Google Scholar]
  96. Monzo C, Qureshi JA, Stansly PA. 96.  2014. Insecticide sprays, natural enemy assemblages and predation on Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae). Bull. Entomol. Res. 104:576–85 [Google Scholar]
  97. Morales JA, Cardoso DG, Della Lucia TMC, Guedes RNC. 97.  2013. Weevil×insecticide: Does ‘personality’ matter?. PLOS ONE 8:6e67283Explores the concept and existence of insect personality and its implications for surviving insecticide exposure. [Google Scholar]
  98. Muturi EJ, Costanzo K, Kesavaraju B, Alto BW. 98.  2011. Can pesticides and larval competition alter susceptibility of Aedes mosquitoes (Diptera: Culicidae) to arbovirus infection?. J. Med. Entomol. 48:429–36 [Google Scholar]
  99. Nash MA, Hoffmann AA, Thomson LJ. 99.  2010. Identifying signature of chemical applications on indigenous and invasive nontarget arthropod communities in vineyards. Ecol. Appl. 20:1693–703 [Google Scholar]
  100. Navntoft S, Esbjerg P, Riedel W. 100.  2006. Effects of reduced pesticide dosages on carabids (Coleoptera: Carabidae) in winter wheat. Agric. For. Entomol. 8:57–62 [Google Scholar]
  101. Nayak MK, Collins PJ, Pavic H, Kopittke RA. 101.  2003. Inhibition of egg development by phosphine in the cosmopolitan pest of stored products Liposcelis bostrychophila (Psocoptera: Liposcelididae). Pest Manag. Sci. 59:1191–96 [Google Scholar]
  102. Ndiath MO, Mazenot C, Sokhna C, Trape J-F. 102.  2014. How the malaria vector Anopheles gambiae adapts to the use of insecticide-treated nets by African populations. PLOS ONE 9:6e97700 [Google Scholar]
  103. Newman MC, Clements WH. 103.  2008. Ecotoxicology: A Comprehensive Treatment Boca Raton, FL: CRC Press
  104. Oerke EC. 104.  2006. Crop losses to pests. J. Agric. Sci. 144:31–43 [Google Scholar]
  105. Oliveira CM, Auad AM, Mendes SM, Frizzas MR. 105.  2014. Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Prot. 56:50–54 [Google Scholar]
  106. Pékar S. 106.  1999. Effect of IPM practices and conventional spraying on spider population dynamics in an apple orchard. Agric. Ecosyst. Environ. 73:155–66 [Google Scholar]
  107. Pickett AD. 107.  1949. A critique on insect chemical control methods. Can. Entomol. 81:67–76 [Google Scholar]
  108. Pimentel MAG, Faroni LRA, Corrêa AS, Guedes RNC. 108.  2012. Phosphine-induced walking response of the lesser grain borer (Rhyzopertha dominica). Pest Manag. Sci. 68:1368–73 [Google Scholar]
  109. Pontasch KW, Cairns J Jr. 109.  1991. Multispecies toxicity tests using indigenous organisms: predicting the effect of complex effluents in streams. Arch. Environ. Contam. Toxicol. 20:103–12 [Google Scholar]
  110. Qin W, Tang S, Cheke RA. 110.  2014. The effects of resource limitation on a predator-prey model with control measures as nonlinear pulses. Math. Prob. Eng. 2014:450935
  111. Qu YY, Xiao D, Li JY, Chen Z, Biondi A. 111.  et al. 2015. Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines. Ecotoxicology 24:479–87 [Google Scholar]
  112. Reitz SR, Trumble JT. 112.  2002. Competitive displacement among insects and arachnids. Annu. Rev. Entomol. 47:435–65 [Google Scholar]
  113. Ripper WE. 113.  1956. Effect of pesticides on balance of arthropod populations. Annu. Rev. Entomol. 1:403–38 [Google Scholar]
  114. Roitberg BD, Gillespie DR. 114.  2014. Natural enemies on the landscape—integrating life-history theory and landscapes. Biol. Control 75:39–47 [Google Scholar]
  115. Rondeau G, Sánchez-Bayo F, Tennekes HA, Decourtye A, Ramírez-Romero R, Desneux N. 115.  2014. Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites. Sci. Rep. 4:5566 [Google Scholar]
  116. Roubos CR, Rodriguez-Saona C, Isaacs R. 116.  2014. Mitigating the effects of insecticides on arthropod biological control at field and landscape scales. Biol. Control 75:28–38 [Google Scholar]
  117. Schreinemachers P, Tipraqsa P. 117.  2012. Agriculture pesticides and land use intensification in high, middle and low income countries. Food Policy 37:616–26 [Google Scholar]
  118. Shea K, Roxburgh SH, Rauschert ES. 118.  2004. Moving from pattern to process: coexistence mechanisms under intermediate disturbance regimes. Ecol. Lett. 7:491–508 [Google Scholar]
  119. Simon S, Bouvier J-C, Debras J-F, Sauphanor B. 119.  2010. Biodiversity and pest management in orchard systems. A review. Agron. Sustain. Dev. 30:139–52 [Google Scholar]
  120. Sjöberg P, Rämert B, Thierfelder T, Hillbur. 120.  2015. Ban of a broad-spectrum insecticide in apple orchards: effects on tortricid populations, management strategies, and fruit damage. J. Pest Sci. doi: 10.1007/s10340-015-0648-0
  121. Stark JD. 121.  1992. Comparison of the impact of a neem seed-kernel extract formulation, “Margosan-O” and chlorpyrifos on non-target invertebrates inhabiting turf grass. Pestic. Sci. 36:293–99 [Google Scholar]
  122. Stark JD, Banks JE. 122.  2003. Population-level effects of pesticides and other toxicants on arthropods. Annu. Rev. Entomol. 48:505–19 [Google Scholar]
  123. Stark JD, Banks JE, Vargas R. 123.  2004. How risky is risk assessment: the role that life history strategies play in susceptibility of species to stress. PNAS 101:732–36 [Google Scholar]
  124. Stark JD, Tanigoshi L, Bounfour M, Antonelli A. 124.  1997. Reproductive potential: its influence on the susceptibility of a species to pesticides. Ecotoxicol. Environ. Saf. 37:273–79 [Google Scholar]
  125. Stark JD, Vargas R, Banks JE. 125.  2007. Incorporating ecologically relevant measures of pesticide effect for estimating the compatibility of pesticides and biocontrol agents. J. Econ. Entomol. 100:1027–32 [Google Scholar]
  126. Su Q, Oliver KM, Xie W, Wu Q, Wang S, Zhang Y. 126.  2015. The whitefly-associated facultative symbiont Hamiltonella defensa suppresses induced plant defenses in tomato. Funct. Ecol. 29:1007–18 [Google Scholar]
  127. Su Q, Zhou X, Zhang Y. 127.  2013. Symbiont-mediated functions in insect hosts. Commun. Integr. Biol. 6:3e23804 [Google Scholar]
  128. Sun D-B, Liu Y-Q, Qin L, Xu J, Li F-F, Liu SS. 128.  2013. Competitive displacement between two invasive whiteflies: insecticide application and host plant effects. Bull. Entomol. Res. 103:344–53 [Google Scholar]
  129. Tiwari S, Gondhalekar AD, Mann RS, Scharf ME, Stelinski LL. 129.  2011. Characterization of five CYP4 genes from Asian citrus psyllid and their expression levels in Candidatus Liberibacter asiaticus-infected and uninfected psyllids. Insect Mol. Biol. 20:733–44 [Google Scholar]
  130. Tomé HVV, Cordeiro EMG, Rosado JF, Guedes RNC. 130.  2012. Egg exposure to pyriproxyfen in the tomato leaf miner Tuta absoluta: ovicidal activity or behavioural-modulated hatching mortality?. Ann. Appl. Biol. 160:35–42 [Google Scholar]
  131. Tomé HVV, Martins JC, Corrêa AS, Galdino TVS, Picanço MC, Guedes RNC. 131.  2013. Azadirachtin avoidance by larvae and adult females of the tomato leafminer Tuta absoluta. Crop Prot. 46:63–69 [Google Scholar]
  132. Tomé HVV, Pascini TV, Dângelo RAC, Guedes RNC, Martins GF. 132.  2014. Survival and swimming behavior of insecticide-exposed larvae and pupae of the yellow fever mosquito Aedes aegypti. Parasites Vectors 7:195 [Google Scholar]
  133. Torres JB, Ruberson JR. 133.  2005. Canopy- and ground-dwelling predatory arthropods in commercial Bt and non-Bt cotton fields: patterns and mechanisms. Environ. Entomol. 34:1242–56 [Google Scholar]
  134. 134. US Environ. Prot. Agency (EPA) 2014. Pesticides: Regulating Pesticides Washington, DC: US EPA
  135. 135. US Environ. Prot. Agency (EPA) 2015. Biopesticides Washington, DC: US EPA http://www.epa.gov/pesticides/biopesticides/
  136. Vilca Mallqui KS, Vieira JL, Guedes RNC, Gontijo LM. 136.  2014. Azadirachtin-induced hormesis mediating shift in fecundity-longevity trade-off in the Mexican bean weevil (Chrysomelidae: Bruchinae). J. Econ. Entomol. 107:860–66 [Google Scholar]
  137. Villaverde JJ, Sevilla-Morán B, Sandín-España P, López-Goti C, Alonso-Prados JL. 137.  2014. Biopesticides in the framework of the European Pesticide Regulation (EC) No. 1107/2009. Pest Manag. Sci. 70:2–5 [Google Scholar]
  138. Vomesh JR, Kraus JM. 138.  2009. Pesticide alters habitat selection and aquatic community composition. Oecologia 160:379–85 [Google Scholar]
  139. Welch KD, Harwood JD. 139.  2014. Temporal dynamics of natural enemy-pest interactions in a changing environment. Biol. Control 75:18–27 [Google Scholar]
  140. Whalon ME, Mota-Sanchez D, Hollingworth RM. 140.  2008. Global Pesticide Resistance in Arthropods Wallingford, UK: CABI
  141. Yan M, Li Y, Xiang Z. 141.  2014. Time delayed stage-structured predator-prey model with birth pulse and pest control tactics. Abstr. Appl. Anal. 2014:1–15 [Google Scholar]
  142. Yu H, Li Y, Li X, Wu K. 142.  2014. Arthropod abundance and diversity in transgenic Bt soybean. Environ. Entomol. 43:1124–34 [Google Scholar]
/content/journals/10.1146/annurev-ento-010715-023646
Loading
/content/journals/10.1146/annurev-ento-010715-023646
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error