1932

Abstract

Why do most animals live solitarily, while complex social life is restricted to a few cooperatively breeding vertebrates and social insects? Here, we synthesize concepts and theories in social evolution and discuss its underlying ecological causes. Social evolution can be partitioned into () formation of stable social groups, () evolution of helping, and () transition to a new evolutionary level. Stable social groups rarely evolve due to competition over food and/or reproduction. Food competition is overcome in social insects with central-place foraging or bonanza-type food resources, whereas competition over reproduction commonly occurs because staying individuals are rarely sterile. Hence, the evolution of helping is shaped by direct and indirect fitness options and helping is only altruism if it reduces the helper's direct fitness. The helper's capability to gain direct fitness also creates within-colony conflict. This prevents transition to a new evolutionary level.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-010715-023711
2016-03-11
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/ento/61/1/annurev-ento-010715-023711.html?itemId=/content/journals/10.1146/annurev-ento-010715-023711&mimeType=html&fmt=ahah

Literature Cited

  1. Abbot P. 1.  2009. On the evolution of dispersal and altruism in aphids. Evolution 63:2687–96 [Google Scholar]
  2. Abbot P, Abe J, Alcock J, Alizon S, Alpedrinha JA. 2.  et al. 2011. Inclusive fitness theory and eusociality. Nature 471:E1–4 [Google Scholar]
  3. Abbot P, Withgott JH, Moran NA. 3.  2001. Genetic conflict and conditional altruism in social aphid colonies. PNAS 98:12068–71 [Google Scholar]
  4. Abe T. 4.  1987. Evolution of life types in termites. Evolution and Coadaptation in Biotic Communities S Kawano, JH Connell, T Hidaka 125–48 Tokyo: Univ. Tokyo Press [Google Scholar]
  5. Alexander RD, Noonan KM, Crespi BJ. 5.  1991. The evolution of eusociality. The Biology of the Naked Mole-Rat PW Sherman, JUM Jarvis, RD Alexander 3–44 Princeton, NJ: Princeton Univ. Press [Google Scholar]
  6. Alpedrinha J, West SA, Gardner A. 6.  2013. Haplodiploidy and the evolution of eusociality: worker reproduction. Am. Nat. 182:421–38 [Google Scholar]
  7. Aoki S. 7.  1977. Colophina clematis (Homoptera, Pemphigidae), an aphid species with ‘soldiers’. Kontyû 45:276–82 [Google Scholar]
  8. Axelrod R, Hamilton WD. 8.  1981. The evolution of cooperation. Science 211:1390–96 [Google Scholar]
  9. Axelrod R, Hammond RA, Grafen A. 9.  2004. Altruism via kin-selection strategies that rely on arbitrary tags with which they coevolve. Evolution 58:1833–38 [Google Scholar]
  10. Beekman M, Sumpter DJT, Ratnieks FLW. 10.  2001. Phase transition between disordered and ordered foraging in pharaoh ants. PNAS 98:9703–6 [Google Scholar]
  11. Bergmüller R, Taborsky M. 11.  2005. Experimental manipulation of helping in a cooperative breeder: Helpers ‘pay to stay’ by pre-emptive appeasement. Anim. Behav. 69:19–28 [Google Scholar]
  12. Bernasconi G, Strassmann JE. 12.  1999. Cooperation among unrelated individuals: the ant foundress case. Trends Ecol. Evol. 14:477–82 [Google Scholar]
  13. Biedermann PHW, Taborsky M. 13.  2011. Larval helpers and age polyethism in ambrosia beetles. PNAS 108:17064–69 [Google Scholar]
  14. Bignell DE, Roisin Y, Lo N. 14.  2011. Biology of Termites: A Modern Synthesis Heidelberg, Ger: Springer [Google Scholar]
  15. Bonckaert W, Tofilski A, Nascimento FS, Billen J, Ratnieks FLW, Wenseleers T. 15.  2011. Co-occurrence of three types of egg policing in the Norwegian wasp Dolichovespula norwegica. Behav. Ecol. Sociobiol. 65:633–40 [Google Scholar]
  16. Boomsma JJ. 16.  2007. Kin selection versus sexual selection: Why the ends do not meet. Curr. Biol. 17:R673–83 [Google Scholar]
  17. Boomsma JJ. 17.  2009. Lifetime monogamy and the evolution of eusociality. Philos. Trans. R. Soc. B 364:3191–207 [Google Scholar]
  18. Boomsma JJ. 18.  2013. Beyond promiscuity: mate-choice commitments in social breeding. Philos. Trans. R. Soc. B 368:20120050Life-long pair-bonding among queens and their mates guarantees indirect fitness benefits for helpers. [Google Scholar]
  19. Boomsma JJ, Baer B, Heinze J. 19.  2005. The evolution of male traits in social insects. Annu. Rev. Entomol. 50:395–420 [Google Scholar]
  20. Boomsma JJ, Huszar DB, Pedersen JS. 20.  2014. The evolution of multiqueen breeding in eusocial lineages with permanent physically differentiated castes. Anim. Behav. 92:241–52 [Google Scholar]
  21. Bourke AFG. 21.  1988. Dominance orders, worker reproduction, and queen-worker conflict in the slave-making ant Harpagoxenus sublaevis. Behav. Ecol. Sociobiol. 23:323–33 [Google Scholar]
  22. Bourke AFG. 22.  1988. Worker reproduction in the higher eusocial Hymenoptera. Q. Rev. Biol. 63:291–311 [Google Scholar]
  23. Bourke AFG. 23.  1999. Colony size, social complexity and reproductive conflict in social insects. J. Evol. Biol. 12:245–57 [Google Scholar]
  24. Bourke AFG. 24.  2011. Principles of Social Evolution Oxford, UK: Oxford Univ. PressPrinciples of social evolution can be extended to all biological interactions from genes to species. [Google Scholar]
  25. Brunner E, Kellner K, Heinze J. 25.  2009. Policing and dominance behaviour in the parthenogenetic ant Platythyrea punctata. Anim. Behav. 78:1427–31 [Google Scholar]
  26. Bull NJ, Schwarz MP. 26.  2001. Brood insurance via protogyny: a source of female-biased sex allocation. Proc. R. Soc. B 268:1869–74 [Google Scholar]
  27. Buss L. 27.  1987. The Evolution of Individuality Princeton, NJ: Princeton Univ. Press [Google Scholar]
  28. Chapman TW, Crespi BJ, Kranz BD, Schwarz MP. 28.  2002. High relatedness and inbreeding at the origin of eusociality in gall-inducing thrips. PNAS 97:1648–50 [Google Scholar]
  29. Chapman TW, Crespi BJ, Perry SP. 29.  2008. The evolutionary ecology of eusociality in Australian gall thrips: a ‘model clades’ approach. See Ref. 80 57–84
  30. Clutton-Brock T. 30.  2009. Structure and function in mammalian societies. Philos. Trans. R. Soc. B 364:3229–42 [Google Scholar]
  31. Cole BJ. 31.  1981. Dominance hierarchies in Leptothorax ants. Science 212:83–84 [Google Scholar]
  32. Costa JT. 32.  2006. The Other Insect Societies Cambridge, MA: Belknap [Google Scholar]
  33. Costa JT. 33.  2014. Hamiltonian inclusive fitness: a fitter fitness concept. Biol. Lett. 9:20130335 [Google Scholar]
  34. Crespi BJ, Carmean DA, Chapman TW. 34.  1997. Ecology and evolution of galling thrips and their allies. Annu. Rev. Entomol. 42:51–71 [Google Scholar]
  35. Crespi BJ, Yanega D. 35.  1995. The definition of eusociality. Behav. Ecol. 6:109–15 [Google Scholar]
  36. Darwin C. 36.  1859. On the Origin of Species by Means of Natural Selection London: Murray [Google Scholar]
  37. Dickinson JL, Hatchwell BJ. 37.  2004. Fitness consequences of helping. See Ref. 72 48–66
  38. Emlen ST. 38.  1997. Predicting family dynamics in social vertebrates. Behavioural Ecology: An Evolutionary Approach JR Krebs, NB Davies 228–53 Oxford, UK: Blackwell, 4th ed.. [Google Scholar]
  39. Evans TA, Lai JCS, Toledano E, McDowall L, Rakotonarivo S, Lenz M. 39.  2005. Termites assess wood size by using vibration signals. PNAS 102:3732–37 [Google Scholar]
  40. Field J, Cant MA. 40.  2007. Direct fitness, reciprocity and helping: a perspective from primitively eusocial wasps. Behav. Process. 76:160–62 [Google Scholar]
  41. Field J, Cronin A, Bridge C. 41.  2006. Future fitness and helping in social queues. Nature 441:214–17 [Google Scholar]
  42. Foster KR. 42.  2009. A defense of sociobiology. Cold Spring Harb. Symp. Quant. Biol. 74:403–18 [Google Scholar]
  43. Foster KR, Wenseleers T, Ratnieks FLW, Queller DC. 43.  2006. There is nothing wrong with inclusive fitness. Trends Ecol. Evol. 21:599–600 [Google Scholar]
  44. Foster WA, Northcott PA. 44.  1994. Galls and the evolution of social behaviour in aphids. Plant Galls: Organisms, Interactions, Populations MAJ Williams 161–82 Oxford, UK: Oxford Univ. Press [Google Scholar]
  45. Frank SA. 45.  1998. Foundations of Social Evolution Princeton, NJ: Princeton Univ. Press [Google Scholar]
  46. Gardner A. 46.  2012. Evolution of maternal care in diploid and haplodiploid populations. J. Evol. Biol. 25:1479–86 [Google Scholar]
  47. Gardner A, Alpedrinha J, West SA. 47.  2012. Haplodiploidy and the evolution of eusociality: split sex ratios. Am. Nat. 179:240–56 [Google Scholar]
  48. Gardner A, Foster KR. 48.  2008. The evolution and ecology of cooperation: history and concepts. See Ref. 80 1–36
  49. Gardner A, West SA. 49.  2014. Inclusive fitness: 50 years on. Philos. Trans. R. Soc. B 369:20130356 [Google Scholar]
  50. González-Forero M, Gavrilets S. 50.  2013. Evolution of manipulated behavior. Anim. Behav. 182:439–51 [Google Scholar]
  51. Grafen A. 51.  1984. Natural selection, kin selection and group selection. Behavioural Ecology JR Krebs, NB Davies 62–84 Oxford: Blackwell, 2nd ed.. [Google Scholar]
  52. Haldane JBS. 52.  1932. The Causes of Evolution London: Longmans Green [Google Scholar]
  53. Hamilton WD. 53.  1964. The genetical evolution of social behaviour. I & II. J. Theor. Biol. 7:1–52 [Google Scholar]
  54. Hamilton WD. 54.  1975. Innate social aptitudes in man: an approach from evolutionary genetics. Biosocial Anthropology R Fox 133–55 London: Malaby [Google Scholar]
  55. Hamilton WD, May RM. 55.  1977. Dispersal in stable habitats. Nature 269:578–81 [Google Scholar]
  56. Hartmann A, Wantia J, Torres JA, Heinze J. 56.  2003. Worker policing without genetic conflicts in a clonal ant. PNAS 100:12836–40 [Google Scholar]
  57. Heinze J. 57.  2004. Reproductive conflict in insect societies. Adv. Stud. Behav. 34:1–57Conflicts among group members occur even in highly advanced insect societies. [Google Scholar]
  58. Heinze J, Puchinger W, Hölldobler B. 58.  1997. Worker reproduction and social hierarchies in Leptothorax ants. Anim. Behav. 54:849–64 [Google Scholar]
  59. Heisler IL, Damuth J. 59.  1987. A method for analyzing selection in hierarchically structured populations. Am. Nat. 130:582–602 [Google Scholar]
  60. Helms Cahan S, Fewell JH. 60.  2004. Division of labor and the evolution of task sharing in queen associations of the harvester ant Pogonomyrmex californicus. Behav. Ecol. Sociobiol. 56:9–17 [Google Scholar]
  61. Hoffmann K, Korb J. 61.  2011. Is there conflict over direct reproduction in lower termite colonies?. Anim. Behav. 81:265–74 [Google Scholar]
  62. Hölldobler B, Wilson EO. 62.  2008. The Superorganism. The Beauty, Elegance, and Strangeness of Insect Societies. New York: Norton [Google Scholar]
  63. Holman L. 63.  2014. Conditional helping and evolutionary transitions to eusociality and cooperative breeding. Behav. Ecol. 25:1173–82 [Google Scholar]
  64. Howard KJ, Johns PM, Breisch NL, Thorne BL. 64.  2013. Frequent colony fusions provide opportunities for helpers to become reproductives in the termite Zootermopsis nevadensis. Behav. Ecol. Sociobiol. 67:1575–85 [Google Scholar]
  65. Howard KJ, Thorne BL. 65.  2011. Eusocial evolution in termites and Hymenoptera. See Ref. 14 97–132
  66. Hughes WHO, Oldroyd BP, Beekman M, Ratnieks FLW. 66.  2008. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320:1213–16 [Google Scholar]
  67. Inward D, Beccaloni G, Eggleton P. 67.  2007. Death of an order: A comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol. Lett. 3:331–35 [Google Scholar]
  68. Jackson DE. 68.  2007. Social spiders. Curr. Biol. 17:R650–52 [Google Scholar]
  69. Johnstone RA. 69.  2000. Models of reproductive skew: a review and synthesis. Ethology 106:5–26 [Google Scholar]
  70. Kapheim KM, Bernal SP, Smith AR, Nonacs P, Wcislo WT. 70.  2011. Support for maternal manipulation of developmental nutrition in a facultatively eusocial bee, Megalopta genalis (Halictidae). Behav. Ecol. Sociobiol. 65:1179–90 [Google Scholar]
  71. Keeping MG. 71.  1992. Social organization and division of labour in colonies of the polistine wasp, Belonogaster petiolata. Behav. Ecol. Sociobiol. 31:211–24 [Google Scholar]
  72. Koenig WD, Dickinson JL. 72.  2004. Ecology and Evolution of Cooperative Breeding in Birds Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  73. Kolmer K, Heinze J. 73.  2000. Rank orders and division of labour among unrelated cofounding ant queens. Proc. R. Soc. B 267:1729–34 [Google Scholar]
  74. Komdeur J. 74.  1992. Importance of habitat saturation and territory quality for evolution of cooperative breeding in the Seychelles warbler. Nature 358:493–95 [Google Scholar]
  75. Korb J. 75.  2007. Workers of a drywood termite do not work. Front. Zool. 4:e7 [Google Scholar]
  76. Korb J. 76.  2008. The ecology of social evolution in termites. See Ref. 80 151–74
  77. Korb J. 77.  2010. Social insects, major evolutionary transitions and multilevel selection. Animal Behaviour: Evolution and Mechanisms PM Kappeler 179–211 Heidelberg, Ger.: Springer [Google Scholar]
  78. Korb J, Buschmann M, Schafberg S, Liebig J, Bagnères AG. 78.  2012. Brood care and social evolution in termites. Proc. R. Soc. B 279:2662–71 [Google Scholar]
  79. Korb J, Heinze J. 79.  2004. Multilevel selection and social evolution of insect societies. Naturwissenschaften 91:291–304 [Google Scholar]
  80. Korb J, Heinze J. 80.  2008. Ecology of Social Evolution Heidelberg, Ger: Springer [Google Scholar]
  81. Korb J, Heinze J. 81.  2008. The ecology of social life: a synthesis. See Ref. 80 245–59Based on ecological and relatedness patterns, social organisms can be grouped into three sociality syndromes.
  82. Korb J, Lenz M. 82.  2004. Reproductive decision-making in the termite, Cryptotermes secundus (Kalotermitidae), under variable food conditions. Behav. Ecol. 15:390–95 [Google Scholar]
  83. Korb J, Linsenmair KE. 83.  2002. Evaluation of predation risk in the collectively foraging termite Macrotermes bellicosus. Insectes Soc. 49:264–69 [Google Scholar]
  84. Korb J, Roux EA. 84.  2012. Why join a neighbour: fitness consequences of colony fusions in termites. J. Evol. Biol. 25:2161–70 [Google Scholar]
  85. Korb J, Schneider K. 85.  2007. Does kin structure explain the occurrence of workers in a lower termite?. Evol. Ecol. 21:817–28 [Google Scholar]
  86. Krause J, Ruxton GD. 86.  2002. Living in Groups Oxford, UK: Oxford Univ. Press [Google Scholar]
  87. Krishna K, Grimaldi DA, Krishna V, Engel MS. 87.  2013. Treatise on the Isoptera of the world. Bull. Am. Mus. Nat. Hist. 377:1–2704 [Google Scholar]
  88. Kropotkin P. 88.  1902. Mutual Aid: A Factor of Evolution London: William Heinemann [Google Scholar]
  89. Leadbeater E, Carruthers JM, Green JP, Rosser NS, Field J. 89.  2011. Nest inheritance is the missing source of direct fitness in a primitively eusocial insect. Science 333:874–76Direct fitness benefits through nest inheritance explain the presence of unrelated helpers in wasp nests. [Google Scholar]
  90. Leniaud L, Darrouzet E, Dedeine F, Ahn K, Huang Z, Bagnères AG. 90.  2011. Ontogenic potentialities of the worker caste in two subterranean termites. Evol. Dev. 13:138–48 [Google Scholar]
  91. Lenz M. 91.  1994. Food resources, colony growth and caste development in wood-feeding termites. Nourishment and Evolution in Insect Societies J Hunt, CA Nalepa 159–209 New Delhi: Oxford/International Book House [Google Scholar]
  92. Lenz M, Barrett A, Williams ER. 92.  1985. Reproductive strategies in Cryptotermes: neotenic production in indigenous and “tramp” species in Australia (Isoptera: Kalotermitidae). Caste Differentiation in Social Insects JAL Watson, BM Okot-Kotber, C Noirot 147–64 Oxford, UK: Pergamon [Google Scholar]
  93. Lin N, Michener CD. 93.  1972. Evolution of sociality in insects. Q. Rev. Biol. 47:131–59 [Google Scholar]
  94. Linksvayer TA. 94.  2010. Subsociality and the evolution of eusociality. Encycl. Anim. Behav. 3:358–62 [Google Scholar]
  95. Matsuura K. 95.  2011. Sexual and asexual reproduction in termites. See Ref. 14 255–78
  96. Maynard Smith J. 96.  1964. Group selection and kin selection. Nature 201:1145–46 [Google Scholar]
  97. Maynard Smith J, Szathmáry E. 97.  1995. The Major Transitions in Evolution Oxford, UK: FreemanAll major steps in evolution are characterized by cooperation. [Google Scholar]
  98. McLeish MJ, Chapman TW, Crespi BJ. 98.  2006. Inbreeding ancestors: the role of sibmating in the social evolution of gall thrips. J. Heredity 97:31–38 [Google Scholar]
  99. Michod R, Roze D. 99.  1997. Transitions in individuality. Proc. R. Soc. B 264:853–57 [Google Scholar]
  100. Monnin T, Peeters C. 100.  1999. Dominance hierarchy and reproductive conflicts among subordinates in a monogynous queenless ant. Behav. Ecol. 10:323–32 [Google Scholar]
  101. Monnin T, Ratnieks FLW. 101.  1999. Reproduction versus work in queenless ants: when to join a hierarchy of hopeful reproductives?. Behav. Ecol. Sociobiol. 46:413–22 [Google Scholar]
  102. Myles TG. 102.  1999. Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33:1–91 [Google Scholar]
  103. Nalepa CA. 103.  1984. Colony composition, protozoan transfer and some life history characteristics of the woodroach Cryptocercus punctulatus Scudder (Dictyoptera: Cryptocercidae). Behav. Ecol. Sociobiol. 14:273–79 [Google Scholar]
  104. Noirot C. 104.  1990. Sexual castes and reproductive strategies in termites. An Evolutionary Approach to Castes and Reproduction W Engels 5–35 Berlin: Springer [Google Scholar]
  105. Noirot C, Pasteels JM. 105.  1987. Ontogenic development and evolution of the worker caste in termites. Experientia 43:851–60 [Google Scholar]
  106. Nowak M, Tarnita CE, Wilson EO. 106.  2010. The evolution of eusociality. Nature 466:1057–62 [Google Scholar]
  107. Okasha S. 107.  2006. Evolution and the Levels of Selection Oxford, UK: Oxford Univ. Press [Google Scholar]
  108. Pepper JW, Smuts BB. 108.  2002. A mechanism for the evolution of altruism among nonkin: positive assortment through environmental feedback. Am. Nat. 160:205–13 [Google Scholar]
  109. Pike N, Foster WA. 109.  2008. The ecology of altruism in a clonal insect. See Ref. 80 37–56
  110. Price G. 110.  1970. Selection and covariance. Nature 277:420–21 [Google Scholar]
  111. Price G. 111.  1972. Extension of covariance selection mathematics. Ann. Hum. Genet. 35:485–90 [Google Scholar]
  112. Queller DC. 112.  1997. Cooperators since life began. Review of The Major Transitions in Evolution by Maynard Smith J and Szathmáry E. Q. Rev. Biol. 72:184–88 [Google Scholar]
  113. Queller DC. 113.  2000. Relatedness and the fraternal major transitions. Philos. Trans. R. Soc. B 355:1647–55 [Google Scholar]
  114. Queller DC, Strassmann JE. 114.  1998. Kin selection and social insects. Bioscience 48:65–75Social insects can be categorized as fortress defenders or life insurers. [Google Scholar]
  115. Queller DC, Strassmann JE. 115.  2009. Beyond society: the evolution of organismality. Philos. Trans. R. Soc. B 364:3143–55The organismality concept groups life according to its degree of cooperation and conflict. [Google Scholar]
  116. Queller DC, Strassmann JE, Solís CR, Hughes CR, Deloach DM. 116.  1993. A selfish strategy of social insect workers that promotes social cohesion. Nature 365:639–41 [Google Scholar]
  117. Queller DC, Zacchi F, Cervo R, Turillazzi S, Henshaw MT. 117.  et al. 2000. Unrelated helpers in a social insect. Nature 405:784–87 [Google Scholar]
  118. Ratnieks FLW. 118.  1988. Reproductive harmony via mutual policing by workers in eusocial Hymenoptera. Am. Nat. 132:217–36Mutual policing prevents selfish egg-laying by workers. [Google Scholar]
  119. Ratnieks FLW, Foster KR, Wenseleers T. 119.  2006. Conflict resolution in insect societies. Annu. Rev. Entomol. 51:581–608 [Google Scholar]
  120. Rehan SM, Schwarz MP, Richards MH. 120.  2011. Fitness consequences of ecological constraints and implications for the evolution of sociality in an incipiently social bee. Biol. J. Linn. Soc. 103:57–67 [Google Scholar]
  121. Remaudière G, Remaudière M. 121.  1997. Catalogue des Aphididae du Monde Paris: INRA [Google Scholar]
  122. Reyer HU. 122.  1984. Investment and relatedness: a cost/benefit analysis of breeding and helping in the pied kingfisher (Ceryle rudis). Anim. Behav. 32:1163–78 [Google Scholar]
  123. Riehl C. 123.  2013. Evolutionary routes to non-kin cooperative breeding in birds. Proc. R. Soc. B 280:20132245 [Google Scholar]
  124. Roisin Y, Korb J. 124.  2011. Social organisation and the status of workers in termites. See Ref. 14 133–64
  125. Rosengaus RB, Traniello JFA. 125.  1993. Temporal polyethism in incipient colonies of the primitive termite Zootermopsis angusticollis: a single multiage caste. J. Insect Behav. 6:237–52 [Google Scholar]
  126. Roux E, Korb J. 126.  2004. Evolution of eusociality and the soldier caste in termites: a validation of the intrinsic benefit hypothesis. J. Evol. Biol. 6:342–52 [Google Scholar]
  127. Russell AF. 127.  2004. Mammals: comparisons and contrasts. See Ref. 72 210–27
  128. Saigo T, Tsuchida K. 128.  2004. Queen and worker policing in monogynous and monandrous colonies of a primitively eusocial wasp. Proc. R. Soc. B 271:S509–12 [Google Scholar]
  129. Shellman-Reeve JS. 129.  1997. The spectrum of eusociality in termites. Social Behavior in Insects and Arachnids JC Choe, BJ Crespi 52–93 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  130. Smith AR, Wcislo WT, O'Donnell S. 130.  2007. Survival and productivity benefits to social nesting in the sweat bee Megalopta genalis (Hymenoptera: Halictidae). Behav. Ecol. Sociobiol. 61:1111–20 [Google Scholar]
  131. Stern DL, Foster WA. 131.  1997. The evolution of sociality in aphids: a clone's eye view. Social Behavior in Insects and Arachnids JC Choe, BJ Crespi 150–65 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  132. Strassmann JE, Queller DC. 132.  2007. Insect societies as divided organisms: the complexities of purpose and cross-purpose. PNAS 104:8619–26 [Google Scholar]
  133. Stroeymeyt N, Brunner E, Heinze J. 133.  2007. “Selfish worker policing” controls reproduction in a Temnothorax ant. Behav. Evol. Sociobiol. 61:1449–57 [Google Scholar]
  134. Taylor PD. 134.  1992. Inclusive fitness in a homogeneous environment. Proc. R. Soc. B 249:299–302This theoretical paper compares how local and global competition influence social evolution. [Google Scholar]
  135. Taylor PD, Frank SA. 135.  1996. How to make a kin selection argument. J. Theor. Biol. 180:27–37 [Google Scholar]
  136. Thorne BL. 136.  1997. The evolution of eusociality in termites. Annu. Rev. Ecol. Syst. 28:27–54 [Google Scholar]
  137. Thorne BL, Breisch NL, Haverty MI. 137.  2002. Longevity of kings and queens and first time of reproduction of fertile progeny in dampwood termite (Isoptera; Termopsidae; Zootermopsis) colonies with different reproductive structures. J. Anim. Ecol. 71:1030–41 [Google Scholar]
  138. Thorne BL, Haverty MI. 138.  1991. A review of intracolony, intraspecific, and interspecific agonism in termites. Sociobiology 19:115–45 [Google Scholar]
  139. Trivers RL, Hare H. 139.  1976. Haplodiploidy and the evolution of the social insect. Science 191:249–63 [Google Scholar]
  140. Uetz G. 140.  2001. Understanding the evolution of social behavior in colonial web-building spiders. Model Systems in Behavioral Ecology LA Dugatkin 110–32 Princeton, NJ: Princeton Univ. Press [Google Scholar]
  141. Wade MJ. 141.  1978. Kin selection: a classical approach and a general solution. PNAS 75:6154–58 [Google Scholar]
  142. Wade MJ. 142.  2001. Maternal effect genes and the evolution of sociality in haplo-diploid organisms. Evolution 55:453–58 [Google Scholar]
  143. Wenseleers T, Gardner A, Foster KR. 143.  2010. Social evolution theory: a review of methods and approaches. Social Behaviour: Genes, Ecology and Evolution T Székely, J Komdeur, AJ Moore 132–58 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  144. West SA, Griffin AS, Gardner A. 144.  2007. Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. J. Evol. Biol. 20:415–32 [Google Scholar]
  145. West SA, Pen I, Griffin AS. 145.  2002. Cooperation and competition between relatives. Science 296:72–75 [Google Scholar]
  146. West-Eberhard MJ. 146.  1978. Temporary queens in Metapolybia wasps: non-reproductive helpers without altruism?. Science 200:441–43 [Google Scholar]
  147. Whitehouse MEA, Lubin YD. 147.  2005. The functions of societies and the evolution of group living: spider societies as a test case. Biol. Rev. 80:347–61 [Google Scholar]
  148. Williams G. 148.  1966. Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thoughts Princeton, NJ: Princeton Univ. Press [Google Scholar]
  149. Wilson DS. 149.  1997. Altruism and organism: disentangling the themes of multilevel selection theory. Am. Nat. 150:S122–34 [Google Scholar]
  150. Wilson DS. 150.  2007. Social semantics: toward a genuine pluralism in the study of social behaviour. J. Evol. Biol. 21:368–73 [Google Scholar]
  151. Wilson DS, Dugatkin LA. 151.  1997. Group selection and assortative interactions. Am. Nat. 149:336–51 [Google Scholar]
  152. Wynne-Edwards V. 152.  1962. Animal Dispersion in Relation to Social Behavior Edinburgh, Scotl: Oliver & Boyd [Google Scholar]
/content/journals/10.1146/annurev-ento-010715-023711
Loading
/content/journals/10.1146/annurev-ento-010715-023711
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error