1932

Abstract

Ant colonies provide well-protected and resource-rich environments for a plethora of symbionts. Historically, most studies of ants and their symbionts have had a narrow taxonomic scope, often focusing on a single ant or symbiont species. Here we discuss the prospects of studying these assemblies in a community ecology context using the framework of ecological network analysis. We introduce three basic network metrics that we consider particularly relevant for improving our knowledge of ant-symbiont communities: interaction specificity, network modularity, and phylogenetic signal. We then discuss army ant symbionts as examples of large and primarily parasitic communities, and symbiotic sternorrhynchans as examples of generally smaller and primarily mutualistic communities in the context of these network analyses. We argue that this approach will provide new and complementary insights into the evolutionary and ecological dynamics between ants and their many associates, and will facilitate comparisons across different ant-symbiont assemblages as well as across different types of ecological networks.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-010715-023719
2016-03-11
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/ento/61/1/annurev-ento-010715-023719.html?itemId=/content/journals/10.1146/annurev-ento-010715-023719&mimeType=html&fmt=ahah

Literature Cited

  1. Akre RD, Rettenmeyer CW. 1.  1966. Behavior of Staphylinidae associated with army ants (Formicidae: Ecitonini). J. Kans. Entomol. Soc. 39:4745–82 [Google Scholar]
  2. Akre RD, Rettenmeyer CW. 2.  1968. Trail-following by guests of army ants (Hymenoptera: Formicidae: Ecitonini). J. Kans. Entomol. Soc. 41:2165–74 [Google Scholar]
  3. Anderson KE, Russell JA, Moreau CS, Kautz S, Sullam KE. 3.  et al. 2012. Highly similar microbial communities are shared among related and trophically similar ant species. Mol. Ecol. 21:92282–96 [Google Scholar]
  4. Archetti M, Scheuring I, Hoffman M, Frederickson ME, Pierce NE, Yu DW. 4.  2011. Economic game theory for mutualism and cooperation. Ecol. Lett. 14:121300–12 [Google Scholar]
  5. Barbero F, Thomas JA, Bonelli S, Balletto E, Schönrogge K. 5.  2009. Queen ants make distinctive sounds that are mimicked by a butterfly social parasite. Science 323:5915782–85 [Google Scholar]
  6. Bascompte J, Jordano P. 6.  2007. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38:567–93 [Google Scholar]
  7. Bascompte J, Jordano P. 7.  2013. Mutualistic Networks Princeton, NJ: Princeton Univ. Press [Google Scholar]
  8. Bauschmann G, Wenzel S. 8.  1987. Erste Ergebnisse über trophobiotische Beziehungen zwischen Ameisen und Blattläusen (Hymenoptera: Formicidae; Homoptera: Aphidoidea) im Vogelsberg/Hessen. Hess. Faun. Briefe 4:41–47 [Google Scholar]
  9. Beattie AJ, Hughes L. 9.  2002. Ant-plant interactions. Plant-Animal Interactions: An Evolutionary Approach CM Herrera, O Pellmyr 211–35 Oxford, UK: Blackwell Sci. [Google Scholar]
  10. Bentley BL. 10.  1977. Extrafloral nectaries and protection by pugnacious bodyguards. Annu. Rev. Ecol. Syst. 8:1407–27 [Google Scholar]
  11. Bersier L-F, Banašek-Richter C, Cattin M-F. 11.  2002. Quantitative descriptors of food-web matrices. Ecology 83:92394–407 [Google Scholar]
  12. Blüthgen N. 12.  2010. Why network analysis is often disconnected from community ecology: a critique and an ecologist's guide. Basic Appl. Ecol. 11:3185–95 [Google Scholar]
  13. Blüthgen N, Fiedler K. 13.  2004. Preferences for sugars and amino acids and their conditionality in a diverse nectar-feeding ant community. J. Anim. Ecol. 73:1155–66 [Google Scholar]
  14. Blüthgen N, Fründ J, Vázquez DP, Menzel F. 14.  2008. What do interaction network metrics tell us about specialization and biological traits?. Ecology 89:123387–99 [Google Scholar]
  15. Blüthgen N, Gebauer G, Fiedler K. 15.  2003. Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community. Oecologia 137:3426–35 [Google Scholar]
  16. Blüthgen N, Menzel F, Blüthgen N. 16.  2006. Measuring specialization in species interaction networks. BMC Ecol. 6:19 [Google Scholar]
  17. Blüthgen N, Menzel F, Hovestadt T, Fiala B, Blüthgen N. 17.  2007. Specialization, constraints, and conflicting interests in mutualistic networks. Curr. Biol. 17:4341–46Large-scale comparison of network structure and specificity across different types of mutualistic plant-animal networks. [Google Scholar]
  18. Blüthgen N, Mezger D, Linsenmair KE. 18.  2006. Ant-hemipteran trophobioses in a Bornean rainforest—diversity, specificity and monopolisation. Insectes Soc. 53:2194–203 [Google Scholar]
  19. Blüthgen N, Stork NE, Fiedler K. 19.  2004. Bottom-up control and co-occurrence in complex communities: Honeydew and nectar determine a rainforest ant mosaic. Oikos 106:2344–58 [Google Scholar]
  20. Brady SG, Schultz TR, Fisher BL, Ward PS. 20.  2006. Evaluating alternative hypotheses for the early evolution and diversification of ants. PNAS 103:4818172–77 [Google Scholar]
  21. Brewitt K, Piñol J, Werner C, Beyschlag W, Espadaler X. 21.  et al. 2014. Evaluating the importance of trophobiosis in a Mediterranean ant community: a stable isotope analysis. Insectes Soc. 62:181–95 [Google Scholar]
  22. Bristow CM. 22.  1991. Why are so few aphids ant-tended?. Ant-Plant Interactions CR Huxley, DF Cutler 104–19 Oxford, UK: Oxford Univ. Press [Google Scholar]
  23. Bronstein JL. 23.  1994. Conditional outcomes in mutualistic interactions. Trends Ecol. Evol. 9:6214–17 [Google Scholar]
  24. Buckley R. 24.  1987. Interactions involving plants, Homoptera, and ants. Annu. Rev. Ecol. Syst. 18:111–35 [Google Scholar]
  25. Bull JJ, Rice WR. 25.  1991. Distinguishing mechanisms for the evolution of co-operation. J. Theor. Biol. 149:163–74 [Google Scholar]
  26. Cagnolo L, Tavella J. 26.  2015. The network structure of myrmecophilic interactions. Ecol. Entomol. 40:5553–61 [Google Scholar]
  27. Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW. 27.  2009. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12:7693–715 [Google Scholar]
  28. Chao A, Colwell RK, Lin C-W, Gotelli NJ. 28.  2009. Sufficient sampling for asymptotic minimum species richness estimators. Ecology 90:41125–33 [Google Scholar]
  29. Cruaud A, Rønsted N, Chantarasuwan B, Chou LS, Clement WL. 29.  et al. 2012. An extreme case of plant-insect codiversification: figs and fig-pollinating wasps. Syst. Biol. 61:61029–47 [Google Scholar]
  30. Davidson DW, Cook SC, Snelling RR, Chua TH. 30.  2003. Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300:5621969–72 [Google Scholar]
  31. De La Mora A, Philpott SM. 31.  2010. Wood-nesting ants and their parasites in forests and coffee agroecosystems. Environ. Entomol. 39:51473–81 [Google Scholar]
  32. Dormann CF, Fründ J, Blüthgen N, Gruber B. 32.  2009. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2:7–24 [Google Scholar]
  33. Dormann CF, Strauss R. 33.  2014. A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5:190–98 [Google Scholar]
  34. Douglas AE. 34.  1998. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43:17–37 [Google Scholar]
  35. Elmes GW, Barr B, Thomas JA, Clarke RT. 35.  1999. Extreme host specificity by Microdon mutabilis (Diptera: Syrphidae), a social parasite of ants. Proc. R. Soc. B 266:1418447–53 [Google Scholar]
  36. Fiala B, Jakob A, Maschwitz U, Linsenmair KE. 36.  1999. Diversity, evolutionary specialization and geographic distribution of a mutualistic ant-plant complex: Macaranga and Crematogaster in South East Asia. Biol. J. Linn. Soc. 66:3305–31 [Google Scholar]
  37. Fiedler K. 37.  2012. The host genera of ant-parasitic Lycaenidae butterflies: a review. Psyche J. Entomol. 2012:e153975 [Google Scholar]
  38. Fischer MK, Hoffmann KH, Völkl W. 38.  2001. Competition for mutualists in an ant-homopteran interaction mediated by hierarchies of ant attendance. Oikos 92:3531–41 [Google Scholar]
  39. Flanders SE. 39.  1957. The complete interdependence of an ant and a coccid. Ecology 38:3535–36 [Google Scholar]
  40. Forister ML, Dyer LA, Singer MS, Stireman JO III, Lill JT. 40.  2011. Revisiting the evolution of ecological specialization, with emphasis on insect-plant interactions. Ecology 93:5981–91 [Google Scholar]
  41. Fründ J, Linsenmair KE, Blüthgen N. 41.  2010. Pollinator diversity and specialization in relation to flower diversity. Oikos 119:101581–90 [Google Scholar]
  42. Futuyma DJ, Moreno G. 42.  1988. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19:1207–33 [Google Scholar]
  43. Gaume L, Matile-Ferrero D, McKey D. 43.  2000. Colony foundation and acquisition of coccoid trophobionts by Aphomomyrmex afer (Formicinae): co-dispersal of queens and phoretic mealybugs in an ant-plant-homopteran mutualism?. Insectes Soc. 47:184–91 [Google Scholar]
  44. Geiselhardt SF, Peschke K, Nagel P. 44.  2007. A review of myrmecophily in ant nest beetles (Coleoptera: Carabidae: Paussinae): linking early observations with recent findings. Naturwissenschaften 94:11871–94 [Google Scholar]
  45. Gibson RH, Knott B, Eberlein T, Memmott J. 45.  2011. Sampling method influences the structure of plant-pollinator networks. Oikos 120:6822–31 [Google Scholar]
  46. Gómez JM, Verdú M, Perfectti F. 46.  2010. Ecological interactions are evolutionarily conserved across the entire tree of life. Nature 465:7300918–21Demonstrates phylogenetic conservatism in different types of ecological interactions and in diverse groups of organisms. [Google Scholar]
  47. Gotelli NJ, Colwell RK. 47.  2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4:4379–91 [Google Scholar]
  48. Gotwald WH. 48.  1995. Army Ants: The Biology of Social Predation Ithaca, NY: Cornell Univ. PressMost recent review of the diversity of interactions between army ants and their myrmecophiles. [Google Scholar]
  49. Guimerà R, Amaral. 49.  2005. Cartography of complex networks: modules and universal roles. J. Stat. Mech. Online P02001:1–13 [Google Scholar]
  50. Hansen AK, Moran NA. 50.  2011. Aphid genome expression reveals host-symbiont cooperation in the production of amino acids. PNAS 108:72849–54 [Google Scholar]
  51. Heckroth H-P, Fiala B, Gullan PJ, Idris AH, Maschwitz U. 51.  1998. The soft scale (Coccidae) associates of Malaysian ant-plants. J. Trop. Ecol. 14:04427–43 [Google Scholar]
  52. Heie OE. 52.  1980. The Aphidoidea (Hemiptera) of Fennoscandia and Denmark. I. Fauna Entomol. Scand. 9:1–236 [Google Scholar]
  53. Hölldobler B. 53.  1969. Host finding by odor in the myrmecophilic beetle Atemeles pubicollis Bris. (Staphylinidae). Science 166:3906757–58 [Google Scholar]
  54. Hölldobler B. 54.  1970. Zur Physiologie der Gast-Wirt-Beziehungen (Myrmecophilie) bei Ameisen. II. das Gastverhältnis des imaginalen Atemeles pubicollis Bris. (Col. Staphylinidae) zu Myrmica und Formica (Hym. Formicidae). Z. Vgl. Physiol. 66:215–250 [Google Scholar]
  55. Hölldobler B, Wilson EO. 55.  1990. The Ants Cambridge, MA: Harvard Univ. PressComprehensive and most recent overview of the biology of myrmecophiles. [Google Scholar]
  56. Hughes DP, Pierce NE, Boomsma JJ. 56.  2008. Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol. Evol. 23:12672–77Discusses the ecological and evolutionary implications of symbionts associated with social insect colonies. [Google Scholar]
  57. Husnik F, Nikoh N, Koga R, Ross L, Duncan RP. 57.  et al. 2013. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153:71567–78 [Google Scholar]
  58. Ings TC, Montoya JM, Bascompte J, Blüthgen N, Brown L. 58.  et al. 2009. Ecological networks—beyond food webs. J. Anim. Ecol. 78:1253–69 [Google Scholar]
  59. Ivens ABF. 59.  2014. Cooperation and conflict in ant (Hymenoptera: Formicidae) farming mutualisms—a review. Myrmecol. News 21:19–36 [Google Scholar]
  60. Ivens ABF, Kronauer DJC, Pen I, Weissing FJ, Boomsma JJ. 60.  2012. Ants farm subterranean aphids mostly in single clone groups—an example of prudent husbandry for carbohydrates and proteins?. BMC Evol. Biol. 12:106 [Google Scholar]
  61. Jacobson HR, Kistner DH. 61.  1998. A redescription of the myrmecophilous genus Tetradonia and a description of a new, closely related, free living genus Tetradonella (Coleoptera: Staphylinidae). Sociobiology 31:151–279 [Google Scholar]
  62. Jousselin E, Desdevises Y, Coeur D'Acier A. 62.  2009. Fine-scale cospeciation between Brachycaudus and Buchnera aphidicola: bacterial genome helps define species and evolutionary relationships in aphids. Proc. R. Soc. B 276:1654187–96 [Google Scholar]
  63. Junker RR, Höcherl N, Blüthgen N. 63.  2010. Responses to olfactory signals reflect network structure of flower-visitor interactions. J. Anim. Ecol. 79:4818–23 [Google Scholar]
  64. Katayama N, Tsuchida T, Hojo MK, Ohgushi T. 64.  2013. Aphid genotype determines intensity of ant attendance: Do endosymbionts and honeydew composition matter?. Ann. Entomol. Soc. Am. 106:6761–70 [Google Scholar]
  65. Kiss A. 65.  1981. Melezitose, aphids and ants. Oikos 37:3382 [Google Scholar]
  66. Kistner DH. 66.  1979. Social and evolutionary significance of social insect symbionts. Social Insects, Volume I HR Hermann 339–413 New York: Academic [Google Scholar]
  67. Kistner DH. 67.  1982. The social insects' bestiary. Social Insects, Volume III HR Hermann 1–244 New York: Academic [Google Scholar]
  68. Kistner DH, Jacobson HR. 68.  1990. Cladistic analysis and taxonomic revision of the ecitophilous tribe Ecitocharini with studies of their behavior and evolution (Coleoptera, Staphylinidae, Aleocharinae). Sociobiology 17:333–480 [Google Scholar]
  69. Lachaud J-P, Pérez-Lachaud G. 69.  2015. Ectaheteromorph ants also host highly diverse parasitic communities: a review of parasitoids of the Neotropical genus Ectatomma. Insectes Soc. 62:121–32 [Google Scholar]
  70. Lapeva-Gjonova A. 70.  2013. Ant-associated beetle fauna in Bulgaria: a review and new data. Psyche J. Entomol. 2013:e242037 [Google Scholar]
  71. LaPolla JS, Dlussky GM, Perrichot V. 71.  2013. Ants and the fossil record. Annu. Rev. Entomol. 58:1609–30 [Google Scholar]
  72. Litschauer C. 72.  2008. Trophobiotic associations between ants and honeydew producers in Eastern Austria MSc Thesis, Univ. Wien, Vienna [Google Scholar]
  73. Little AEF, Currie CR. 73.  2009. Parasites may help stabilize cooperative relationships. BMC Evol. Biol. 9:124 [Google Scholar]
  74. Maschwitz U, Hänel H. 74.  1985. The migrating herdsman Dolichoderus (Diabolus) cuspidatus: an ant with a novel mode of life. Behav. Ecol. Sociobiol. 17:2171–84 [Google Scholar]
  75. Mittelbach GG. 75.  2012. Community Ecology Sunderland, MA: Sinauer [Google Scholar]
  76. Moreau CS, Bell CD. 76.  2013. Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution 67:82240–57 [Google Scholar]
  77. Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE. 77.  2006. Phylogeny of the ants: diversification in the age of angiosperms. Science 312:5770101–4 [Google Scholar]
  78. Muir DA. 78.  1959. The ant-aphid-plant relationship in West Dunbartonshire. J. Anim. Ecol. 28:1133–40 [Google Scholar]
  79. Müller CB, Adriaanse ICT, Belshaw R, Godfray HCJ. 79.  1999. The structure of an aphid-parasitoid community. J. Anim. Ecol. 68:2346–70 [Google Scholar]
  80. Murray EA, Carmichael AE, Heraty JM. 80.  2013. Ancient host shifts followed by host conservatism in a group of ant parasitoids. Proc. R. Soc. B 280:175920130495 [Google Scholar]
  81. Nash DR, Als TD, Maile R, Jones GR, Boomsma JJ. 81.  2008. A mosaic of chemical coevolution in a large blue butterfly. Science 319:585988–90 [Google Scholar]
  82. Nash DR, Boomsma JJ. 82.  2008. Communication between hosts and social parasites. Sociobiology of Communication: An Interdisciplinary Approach P D'Ettorre, DP Hughes 55–80 New York: Oxford Univ. Press [Google Scholar]
  83. Newman MEJ. 83.  2004. Analysis of weighted networks. Phys. Rev. E 70:5056131 [Google Scholar]
  84. Newman MEJ. 84.  2006. Modularity and community structure in networks. PNAS 103:238577–82 [Google Scholar]
  85. Newton JS, Glasier J, Maw HEL, Proctor HC, Foottit RG. 85.  2011. Ants and subterranean Sternorrhyncha in a native grassland in east-central Alberta, Canada. Can. Entomol. 143:5518–23 [Google Scholar]
  86. O'Donnell S, Kumar A. 86.  2006. Microclimatic factors associated with elevational changes in army ant density in tropical montane forest. Ecol. Entomol. 31:5491–98 [Google Scholar]
  87. O'Donnell S, Lattke J, Powell S, Kaspari M. 87.  2007. Army ants in four forests: geographic variation in raid rates and species composition. J. Anim. Ecol. 76:3580–89 [Google Scholar]
  88. Olesen JM, Bascompte J, Dupont YL, Jordano P. 88.  2007. The modularity of pollination networks. PNAS 104:5019891–96Demonstrates modular community structures and discusses species roles in a large set of plant-pollinator networks. [Google Scholar]
  89. Oliver TH, Leather SR, Cook JM. 89.  2008. Macroevolutionary patterns in the origin of mutualisms involving ants. J. Evol. Biol. 21:61597–608 [Google Scholar]
  90. Parker J, Grimaldi DA. 90.  2014. Specialized myrmecophily at the ecological dawn of modern ants. Curr. Biol. 24:202428–34 [Google Scholar]
  91. Parmentier T, Dekoninck W, Wenseleers T. 91.  2014. A highly diverse microcosm in a hostile world: a review on the associates of red wood ants (Formica rufa group). Insectes Soc. 61:3229–37 [Google Scholar]
  92. Patefield WM. 92.  1981. Algorithm AS 159: an efficient method of generating random R×C tables with given row and column totals. J. R. Stat. Soc. Ser. C Appl. Stat. 30:191–97 [Google Scholar]
  93. Pausas JG, Verdú M. 93.  2010. The jungle of methods for evaluating phenotypic and phylogenetic structure of communities. BioScience 60:8614–25 [Google Scholar]
  94. Pérez-Lachaud G, Lachaud J-P. 94.  2014. Arboreal ant colonies as “hot-points” of cryptic diversity for myrmecophiles: the weaver ant Camponotus sp. aff. textor and its interaction network with its associates. PLOS ONE 9:6e100155 [Google Scholar]
  95. Pérez-Lachaud G, Valenzuela JE, Lachaud J-P. 95.  2011. Is increased resistance to parasitism at the origin of polygyny in a Mexican population of the ant Ectatomma tuberculatum (Hymenoptera: Formicidae)?. Fla. Entomol. 94:3677–84 [Google Scholar]
  96. Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J. 96.  et al. 2002. The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu. Rev. Entomol. 47:733–71 [Google Scholar]
  97. Pilosof S, Fortuna MA, Cosson J-F, Galan M, Kittipong C. 97.  et al. 2014. Host-parasite network structure is associated with community-level immunogenetic diversity. Nat. Commun. 5:5172 [Google Scholar]
  98. Pocock MJO, Evans DM, Memmott J. 98.  2012. The robustness and restoration of a network of ecological networks. Science 335:6071973–77 [Google Scholar]
  99. Poisot T, Stanko M, Miklisová D, Morand S. 99.  2013. Facultative and obligate parasite communities exhibit different network properties. Parasitology 140:111340–45 [Google Scholar]
  100. Pontin AJ. 100.  1978. Numbers and distribution of subterranean aphids and their exploitation by the ant Lasius flavus (Fabr.). Ecol. Entomol. 3:3203–7 [Google Scholar]
  101. Poulin R. 101.  2010. Network analysis shining light on parasite ecology and diversity. Trends Parasitol. 26:10492–98 [Google Scholar]
  102. Pringle EG, Novo A, Ableson I, Barbehenn RV, Vannette RL. 102.  2014. Plant-derived differences in the composition of aphid honeydew and their effects on colonies of aphid-tending ants. Ecol. Evol. 4:214065–79 [Google Scholar]
  103. Rettenmeyer CW. 103.  1963. The behavior of Thysanura found with army ants. Ann. Entomol. Soc. Am. 56:2170–74 [Google Scholar]
  104. Rettenmeyer CW, Rettenmeyer ME, Joseph J, Berghoff SM. 104.  2011. The largest animal association centered on one species: the army ant Eciton burchellii and its more than 300 associates. Insectes Soc. 58:3281–92Comprehensive list of myrmecophiles (>300 species) associated with the Neotropical army ant species Eciton burchellii. [Google Scholar]
  105. Rezende EL, Lavabre JE, Guimarães PR, Jordano P, Bascompte J. 105.  2007. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448:7156925–28 [Google Scholar]
  106. Robinson NA, Robinson EJH. 106.  2013. Myrmecophiles and other invertebrate nest associates of the red wood ant Formica rufa (Hymenoptera: Formicidae) in north-west England. Br. J. Entomol. Nat. Hist. 26:267–88 [Google Scholar]
  107. Salazar A, Fürstenau B, Quero C, Pérez-Hidalgo N, Carazo P. 107.  et al. 2015. Aggressive mimicry coexists with mutualism in an aphid. PNAS 112:41101–6 [Google Scholar]
  108. Schleuning M, Fründ J, Klein A-M, Abrahamczyk S, Alarcón R. 108.  et al. 2012. Specialization of mutualistic interaction networks decreases toward tropical latitudes. Curr. Biol. 22:201925–31 [Google Scholar]
  109. Schleuning M, Ingmann L, Strauss R, Fritz SA, Dalsgaard B. 109.  et al. 2014. Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks. Ecol. Lett. 17:4454–63 [Google Scholar]
  110. Schmid-Hempel P. 110.  1998. Parasites in Social Insects Princeton, NJ: Princeton Univ. Press [Google Scholar]
  111. Schmid-Hempel P. 111.  2011. Evolutionary Parasitology: The Integrated Study of Infections, Immunology, Ecology, and Genetics Oxford, UK: Oxford Univ. Press [Google Scholar]
  112. Schneider SA, LaPolla JS. 112.  2011. Systematics of the mealybug tribe Xenococcini (Hemiptera: Coccoidea: Pseudococcidae), with a discussion of trophobiotic associations with Acropyga Roger ants. Syst. Entomol. 36:157–82 [Google Scholar]
  113. Schneirla TC. 113.  1971. Army Ants: A Study in Social Organization. San Francisco: Freeman [Google Scholar]
  114. Schönrogge K, Gardner MG, Elmes GW, Napper EKV, Simcox DJ. 114.  et al. 2006. Host propagation permits extreme local adaptation in a social parasite of ants. Ecol. Lett. 9:91032–40 [Google Scholar]
  115. Seevers CH. 115.  1965. The Systematics, Evolution and Zoogeography of Staphylinid Beetles, Associated with Army Ants (Coleoptera, Staphylinidae) Chicago: Chicago Nat. Hist. Mus. [Google Scholar]
  116. Shingleton AW, Stern DL. 116.  2003. Molecular phylogenetic evidence for multiple gains or losses of ant mutualism within the aphid genus Chaitophorus. Mol. Phylogenet. Evol. 26:126–35 [Google Scholar]
  117. Staab M, Blüthgen N, Klein A-M. 117.  2015. Tree diversity alters the structure of a tri-trophic network in a biodiversity experiment. Oikos 124:827–34Tripartite network analysis highlighting the influence of tree diversity on the structure of ant-hemipteran networks. [Google Scholar]
  118. Stadler B, Dixon AFG. 118.  1998. Costs of ant attendance for aphids. J. Anim. Ecol. 67:3454–59 [Google Scholar]
  119. Stadler B, Dixon AFG. 119.  1999. Ant attendance in aphids: why different degrees of myrmecophily?. Ecol. Entomol. 24:3363–69 [Google Scholar]
  120. Stadler B, Dixon AFG. 120.  2005. Ecology and evolution of aphid-ant interactions. Annu. Rev. Ecol. Evol. Syst. 36:1345–72 [Google Scholar]
  121. Stadler B, Dixon AFG. 121.  2008. Mutualism: Ants and Their Insect Partners Cambridge, UK: Cambridge Univ. PressReviews the evolution, biology, and ecology of mutualistic myrmecophily. [Google Scholar]
  122. Thébault E. 122.  2013. Identifying compartments in presence-absence matrices and bipartite networks: insights into modularity measures. J. Biogeogr. 40:4759–68 [Google Scholar]
  123. Thomas JA, Elmes GW. 123.  1998. Higher productivity at the cost of increased host-specificity when Maculinea butterfly larvae exploit ant colonies through trophallaxis rather than by predation. Ecol. Entomol. 23:4457–64 [Google Scholar]
  124. Thomas JA, Schönrogge K, Elmes GW. 124.  2005. Specializations and host associations of social parasites of ants. Insect Evolutionary Ecology MDE Fellowes, GJ Holloway, J Rolff 475–514 Wallingford, UK: CABI [Google Scholar]
  125. Thomas JA, Wardlaw JC. 125.  1992. The capacity of a Myrmica ant nest to support a predacious species of Maculinea butterfly. Oecologia 91:1101–9 [Google Scholar]
  126. Torgerson RL, Akre RD. 126.  1969. Reproductive morphology and behavior of a thysanuran, Trichatelura manni, associated with army ants. Ann. Entomol. Soc. Am. 62:61367–74 [Google Scholar]
  127. Vamosi SM, Heard SB, Vamosi JC, Webb CO. 127.  2009. Emerging patterns in the comparative analysis of phylogenetic community structure. Mol. Ecol. 18:4572–92 [Google Scholar]
  128. Vander Meer RK, Wojcik DP. 128.  1982. Chemical mimicry in the myrmecophilous beetle Myrmecaphodius excavaticollis. Science 218:4574806–8 [Google Scholar]
  129. Vázquez DP, Blüthgen N, Cagnolo L, Chacoff NP. 129.  2009. Uniting pattern and process in plant-animal mutualistic networks: a review. Ann. Bot. 103:91445–57Reviews plant-animal network analyses, highlighting potential mechanisms underlying community structures. [Google Scholar]
  130. Vázquez DP, Morris WF, Jordano P. 130.  2005. Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecol. Lett. 8:101088–94 [Google Scholar]
  131. Völkl W, Woodring J, Fischer M, Lorenz MW, Hoffmann KH. 131.  1999. Ant-aphid mutualisms: the impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia 118:4483–91 [Google Scholar]
  132. von Beeren C, Hashim R, Witte V. 132.  2012. The social integration of a myrmecophilous spider does not depend exclusively on chemical mimicry. J. Chem. Ecol. 38:3262–71 [Google Scholar]
  133. von Beeren C, Maruyama M, Hashim R, Witte V. 133.  2011. Differential host defense against multiple parasites in ants. Evol. Ecol. 25:2259–76 [Google Scholar]
  134. von Beeren C, Schulz S, Hashim R, Witte V. 134.  2011. Acquisition of chemical recognition cues facilitates integration into ant societies. BMC Ecol. 11:130 [Google Scholar]
  135. Wade MJ. 135.  2007. The co-evolutionary genetics of ecological communities. Nat. Rev. Genet. 8:3185–95 [Google Scholar]
  136. Ward PS. 136.  1999. Systematics, biogeography and host plant associations of the Pseudomyrmex viduus group (Hymenoptera: Formicidae), Triplaris- and Tachigali-inhabiting ants. Zool. J. Linn. Soc. 126:4451–540 [Google Scholar]
  137. Ward PS. 137.  2006. Ants. Curr. Biol. 16:5R152–55 [Google Scholar]
  138. Way MJ. 138.  1963. Mutualism between ants and honeydew-producing Homoptera. Annu. Rev. Entomol. 8:307–44 [Google Scholar]
  139. Wheeler WM. 139.  1908. Studies on myrmecophiles. III. Microdon. J. N. Y. Entomol. Soc. 16:4202–13 [Google Scholar]
  140. Wilson EO. 140.  1990. Success and Dominance in Ecosystems: The Case of the Social Insects Oldendorf/Luhe, Ger.: Ecol. Inst. [Google Scholar]
  141. Witek M, Barbero F, Markó B. 141.  2014. Myrmica ants host highly diverse parasitic communities: from social parasites to microbes. Insectes Soc. 61:4307–23 [Google Scholar]
  142. Witek M, Casacci LP, Barbero F, Patricelli D, Sala M. 142.  et al. 2013. Interspecific relationships in co-occurring populations of social parasites and their host ants. Biol. J. Linn. Soc. 109:3699–709 [Google Scholar]
  143. Witte V, Leingärtner A, Sabaß L, Hashim R, Foitzik S. 143.  2008. Symbiont microcosm in an ant society and the diversity of interspecific interactions. Anim. Behav. 76:51477–86 [Google Scholar]
  144. Woodring J, Wiedemann R, Fischer MK, Hoffmann KH, Völkl W. 144.  2004. Honeydew amino acids in relation to sugars and their role in the establishment of ant-attendance hierarchy in eight species of aphids feeding on tansy (Tanacetum vulgare). Physiol. Entomol. 29:4311–19 [Google Scholar]
  145. Wyngodzinsky P. 145.  1982. Description of a new species of Trichatelura (Insecta, Thysanura, Nicoletiidae) from Ecuador. Sociobiology 7:121–24 [Google Scholar]
  146. Wynhoff I, Bakker RB, Oteman B, Arnaldo PS, van Langevelde F. 146.  2014. Phengaris (Maculinea) alcon butterflies deposit their eggs on tall plants with many large buds in the vicinity of Myrmica ants. Insect Conserv. Divers. 8:177–88 [Google Scholar]
  147. Yao I, Shibao H, Akimato S. 147.  2000. Costs and benefits of ant attendance to the drepanosiphid aphid Tuberculatus quercicola. Oikos 89:13–10 [Google Scholar]
/content/journals/10.1146/annurev-ento-010715-023719
Loading
/content/journals/10.1146/annurev-ento-010715-023719
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error