Eradication is the deliberate elimination of a species from an area. Given that international quarantine measures can never be 100% effective, surveillance for newly arrived populations of nonnative species coupled with their eradication represents an important strategy for excluding potentially damaging insect species. Historically, eradication efforts have not always been successful and have sometimes been met with public opposition. But new developments in our understanding of the dynamics of low-density populations, the availability of highly effective treatment tactics, and bioeconomic analyses of eradication strategies offer new opportunities for developing more effective surveillance and eradication programs. A key component that connects these new developments is the harnessing of Allee effects, which naturally promote localized species extinction. Here we review these developments and suggest how research might enhance eradication strategies.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adriaens T, Sutton-Croft M, Owen K, Brosens D, van Valkenburg J. 1.  et al. 2015. Trying to engage the crowd in recording invasive alien species in Europe: experiences from two smartphone applications in northwest Europe. Manag. Biol. Invasions 6:2215–25 [Google Scholar]
  2. Allen CT. 2.  2008. Boll weevil eradication: an area-wide pest management effort. Areawide Pest Management O Koul, GW Cuperus, N Elliott 467–559 Wallingford, UK: CABI [Google Scholar]
  3. Antipin J, Dilley T. 3.  2004. Chicago versus the Asian longhorned beetle: a portrait of success Rep. MP-1593, USDA For. Serv. Washington, DC: [Google Scholar]
  4. Augustin S, Boonham N, Kogel WJ, Donner P, Faccoli M. 4.  et al. 2012. A review of pest surveillance techniques for detecting quarantine pests in Europe. EPPO Bull. 42:515–51 [Google Scholar]
  5. Aukema JE, McCullough DG, Von Holle B, Liebhold AM, Britton K, Frankel SJ. 5.  2010. Historical accumulation of nonindigenous forest pests in the continental US. Bioscience 60:886–97 [Google Scholar]
  6. Barclay HJ. 6.  2005. Mathematical models for the use of sterile insects. Sterile Insect Technique VA Dyck, J Hendrichs, AS Robinson 147–74 Dordrecht, Neth: Springer [Google Scholar]
  7. Berec L, Angulo E, Courchamp F. 7.  2007. Multiple Allee effects and population management. Trends Ecol. Evol. 22:185–91 [Google Scholar]
  8. Berec L, Kean JM, Epanchin-Niell R, Liebhold AM, Haight RG. 8.  2015. Designing efficient surveys: spatial arrangement of sample points for detection of invasive species. Biol. Invasions 17:445–59 [Google Scholar]
  9. Berec L, Mrkvička T. 9.  2013. Neglecting uncertainty behind Allee effect estimation may generate false predictions of population extinction risk. Oikos 122:845–56 [Google Scholar]
  10. Blackwood JC, Berec L, Yamanaka T, Epanchin-Niell RS, Hastings A, Liebhold AM. 10.  2012. Bioeconomic synergy between tactics for insect eradication in the presence of Allee effects. Proc. R. Soc. B 279:2807–15 [Google Scholar]
  11. Bloem K, Brockerhoff E, Mastro V, Simmons G, Sivinski J, Suckling D. 11.  2014. Insect eradication and containment of invasive alien species. The Handbook of Plant Biosecurity G Gordh, S McKirdy 417–46 Dordrecht, Neth: Springer [Google Scholar]
  12. Bogich TL, Liebhold AM, Shea K. 12.  2008. To sample or eradicate? A cost minimization model for monitoring and managing an invasive species. J. Appl. Ecol. 45:1134–42 [Google Scholar]
  13. Boukal DS, Berec L. 13.  2009. Modelling mate-finding Allee effects and population dynamics, with applications in pest control. Popul. Ecol. 51:445–58 [Google Scholar]
  14. Boulton TJ, Otvos IS, Halwas KL, Rohlfs DA. 14.  2007. Recovery of nontarget Lepidoptera on Vancouver Island, Canada: one and four years after a gypsy moth eradication program. Environ. Toxicol. Chem. 26:738–48 [Google Scholar]
  15. Boyd IL, Freer-Smith PH, Gilligan CA, Godfray HCJ. 15.  2013. The consequence of tree pests and diseases for ecosystem services. Science 342:1235773 [Google Scholar]
  16. Brockerhoff EG, Jones DC, Kimberley MO, Suckling DM, Donaldson T. 16.  2006. Nationwide survey for invasive wood-boring and bark beetles (Coleoptera) using traps baited with pheromones and kairomones. For. Ecol. Manag. 228:234–40 [Google Scholar]
  17. Brockerhoff EG, Kimberley M, Liebhold AM, Haack RA, Cavey JF. 17.  2014. Predicting how altering propagule pressure changes establishment rates of biological invaders across species pools. Ecology 95:594–601 [Google Scholar]
  18. Brockerhoff EG, Liebhold AM, Richardson B, Suckling DM. 18.  2010. Eradication of invasive forest insects: concepts, methods, costs and benefits. N.Z. J. For. Sci. 40:Suppl.117–35 [Google Scholar]
  19. Brockerhoff EG, Suckling DM, Kimberley M, Richardson B, Coker G. 19.  et al. 2012. Aerial application of pheromones for mating disruption of an invasive moth as a potential eradication tool. PLOS ONE 7:e43767 [Google Scholar]
  20. Brockerhoff EG, Suckling DM, Roques A, Jactel H, Branco M. 20.  et al. 2013. Improving the efficiency of lepidopteran pest detection and surveillance: constraints and opportunities for multiple-species trapping. J. Chem. Ecol. 39:50–58 [Google Scholar]
  21. Carey JR. 21.  2007. Testimony submitted in Edna Williams, et al., v. California Department of Food and Agriculture, A.G. Kawamura, et al., Case No. 07–05587, US District Court for the Northern District of California. http://www.albanyca.org/Modules/ShowDocument.aspx?documentid=1635
  22. Chase G. 22.  2008. Light brown apple moth (LBAM) in California. The true story: summary & references. http://www.indybay.org/uploads/2008/08/19/prof-2nd-report-cdfa-lbam-fraud_8_19_08.pdf
  23. Colunga-Garcia M, Magarey RA, Haack RA, Gage SH, Qi J. 23.  2010. Enhancing early detection of exotic pests in agricultural and forest ecosystems using an urban-gradient framework. Ecol. Appl. 20:303–10 [Google Scholar]
  24. Courchamp F, Berec L, Gascoigne J. 24.  2008. Allee Effects in Ecology and Conservation New York: Oxford Univ. Press [Google Scholar]
  25. Dahlsten DL. 25.  1986. Control of invaders. Ecology of Biological Invasions of North America and Hawaii HA Mooney, JA Drake 275–302 New York: Springer-Verlag [Google Scholar]
  26. Dominiak BC, Gott K, McIver D, Grant T, Gillespie PS. 26.  et al. 2011. Scenario tree risk analysis of zero detections and the eradication of yellow crazy ant (Anoplolepis gracilipes (Smith)), in New South Wales, Australia. Plant Prot. Q. 26:124–29 [Google Scholar]
  27. Drake JM, Drury KL, Lodge DM, Blukacz A, Yan ND, Dwyer G. 27.  2006. Demographic stochasticity, environmental variability, and windows of invasion risk for Bythotrephes longimanus in North America. Biol. Invasions 8:843–61 [Google Scholar]
  28. Dunlap TR. 28.  1980. The gypsy moth: a study in science and public policy. For. Conserv. Hist. 24:116–26 [Google Scholar]
  29. El-Sayed AM, Suckling DM, Byers JA, Jang EB, Wearing CH. 29.  2009. Potential of “lure and kill” in long-term pest management and eradication of invasive species. J. Econ. Entomol. 102:815–35 [Google Scholar]
  30. El-Sayed AM, Suckling DM, Wearing CH, Byers JA. 30.  2006. Potential of mass trapping for long-term pest management and eradication of invasive species. J. Econ. Entomol. 99:1550–64 [Google Scholar]
  31. Epanchin-Niell RS, Brockerhoff EG, Kean JM, Turner J. 31.  2014. Designing cost-efficient surveillance for early detection and control of multiple biological invaders. Ecol. Appl. 24:1258–74 [Google Scholar]
  32. Epanchin-Niell RS, Haight RG, Berec L, Kean JM, Liebhold AM. 32.  2012. Optimal surveillance and eradication of invasive species in heterogeneous landscapes. Ecol. Lett. 15:803–12Presents a potentially widely applicable model for optimizing expenditures on surveillance versus eradication. [Google Scholar]
  33. Epanchin-Niell RS, Hastings A. 33.  2010. Controlling established invaders: integrating economics and spread dynamics to determine optimal management. Ecol. Lett. 13:528–41 [Google Scholar]
  34. Epanchin-Niell RS, Hufford MB, Aslan CE, Sexton J, Port JD, Waring TM. 34.  2010. Controlling invasive species in complex social landscapes. Front. Ecol. Environ. 8:210–16 [Google Scholar]
  35. Epanchin-Niell RS, Liebhold AM. 35.  2015. Benefits of invasion prevention: effect of time lags, spread rates, and damage persistence. Ecol. Econ. 116:146–53 [Google Scholar]
  36. Epanchin-Niell R, Wilen J. 36.  2015. Independent and cooperative management of invasive species in human-mediated landscapes. Am. J. Agric. Econ. 97:180–98 [Google Scholar]
  37. Gallo T, Waitt D. 37.  2011. Creating a successful citizen science model to detect and report invasive species. BioScience 61:459–65 [Google Scholar]
  38. Gamble JC, Payne T, Small B. 38.  2010. Interviews with New Zealand community stakeholders regarding acceptability of current or potential pest eradication technologies. N. Z. J. Crop. Hortic. Sci. 38:57–68 [Google Scholar]
  39. Gandhi JKJ, Herms DA. 39.  2010. Direct and indirect effects of alien insect herbivores on ecological processes and interactions in forests of eastern North America. Biol. Invasions 12:389–405 [Google Scholar]
  40. Gardiner MM, Allee LL, Brown PM, Losey JE, Roy HE, Smyth RR. 40.  2012. Lessons from lady beetles: accuracy of monitoring data from US and UK citizen-science programs. Front. Ecol. Environ. 10:471–76 [Google Scholar]
  41. Gascoigne J, Berec L, Gregory S, Courchamp F. 41.  2009. Dangerously few liaisons: a review of mate-finding Allee effects. Popul. Ecol. 51:355–72 [Google Scholar]
  42. Gutierrez AP, Ponti L, Gilioli G. 42.  2014. Comments on the concept of ultra-low, cryptic tropical fruit fly populations. Proc. R. Soc. B 281:20132825 [Google Scholar]
  43. Haack RA, Herard F, Sun J, Turgeon JJ. 43.  2010. Managing invasive populations of Asian longhorned beetle and citrus longhorned beetle: a worldwide perspective. Annu. Rev. Entomol. 55:521–46 [Google Scholar]
  44. Hajek AE, Tobin PC. 44.  2009. North American eradications of Asian and European gypsy moth. Use of Microbes for Control and Eradication of Invasive Arthropods ed. AE Hajek, TR Glare, M O'Callaghan 71–89 Dordrecht, Neth.: Springer [Google Scholar]
  45. Hajek AE, Tobin PC. 45.  2010. Micro-managing arthropod invasions: eradication and control of invasive arthropods with microbes. Biol. Invasions 12:2895–912 [Google Scholar]
  46. Hauser CE, McCarthy MA. 46.  2009. Streamlining ‘search and destroy’: cost-effective surveillance for invasive species management. Ecol. Lett. 12:683–92 [Google Scholar]
  47. Herms DA, McCullough DG. 47.  2010. Pesticides and insect eradication. Encyclopedia of Invasive Introduced Species D Simberloff, M Rejmanek 528–35 Berkeley: Univ. Calif. Press [Google Scholar]
  48. Herms DA, McCullough DG. 48.  2014. Emerald ash borer invasion of North America: history, biology, ecology, impacts, and management. Annu. Rev. Entomol. 59:13–30 [Google Scholar]
  49. Hoffmann B, Davis P, Gott K, Jennings C, Joe S. 49.  et al. 2011. Improving ant eradications: details of more successes, a global synthesis, and recommendations. Aliens 31:16–23Gives an in-depth overview of historical ant eradication projects. [Google Scholar]
  50. Hoffmann BD, O'Connor S. 50.  2004. Eradication of two exotic ants from Kakadu National Park. Ecol. Manag. Restor. 5:98–105 [Google Scholar]
  51. Hosking G, Clearwater J, Handiside J, Kay M, Ray J, Simmons N. 51.  2003. Tussock moth eradication—a success story from New Zealand. Int. J. Pest Manag. 49:17–24 [Google Scholar]
  52. Hulme PE. 52.  2014. An introduction to plant biosecurity: past, present and future. The Handbook of Plant Biosecurity G Gordh, S McKirdy 1–25 Dordrecht, Neth: Springer [Google Scholar]
  53. Jones OT. 53.  1998. Practical applications of pheromones and other semiochemicals. Insect Pheromones and Their Use in Pest Management PE Howse, IDR Stevens, OT Jones 261–355 London: Chapman & Hall [Google Scholar]
  54. Kalaris T, Fieselmann D, Magarey R, Colunga-Garcia M, Roda A. 54.  et al. 2014. The role of surveillance methods and technologies in plant biosecurity. The Handbook of Plant Biosecurity G Gordh, S McKirdy 309–37 Dordrecht, Neth.: Springer [Google Scholar]
  55. Kay BH, Russell RC. 55.  2013. Mosquito Eradication: The Story of Killing Campto Collingswood, Aust.: CSIRO Publ. [Google Scholar]
  56. Kean JM, Suckling DM. 56.  2005. Estimating the probability of eradication of painted apple moth from Auckland. N. Z. Plant Prot. 58:7–11 [Google Scholar]
  57. Kean JM, Suckling DM, Sullivan NJ, Tobin PC, Stringer LD. 57.  et al. 2015. Global eradication and response database (GERDA). http://b3.net.nz/gerda/index.php Internet portal for contributing, reporting, and analyzing historical eradication projects for the GERDA database.
  58. Klassen W, Curtis CF. 58.  2005. History of the sterile insect technique. Sterile Insect Technique VA Dyck, J Hendrichs, AS Robinson 3–36 Dordrecht, Neth: Springer [Google Scholar]
  59. Knipling EF. 59.  1979. The basic principles of insect population suppression and management Handb. No. 512, USDA Washington, DC: [Google Scholar]
  60. Koyama J, Kakinohana H, Miyatake T. 60.  2004. Eradication of the melon fly, Bactrocera cucurbitae, in Japan: importance of behavior, ecology, genetics, and evolution. Annu. Rev. Entomol. 49:331–49 [Google Scholar]
  61. Kramer AM, Dennis B, Liebhold AM, Drake JM. 61.  2009. The evidence for Allee effects. Popul. Ecol. 51:341–54 [Google Scholar]
  62. Lande R, Engen S, Saether BE. 62.  2003. Stochastic Population Dynamics in Ecology and Conservation Oxford, UK: Oxford Univ. Press [Google Scholar]
  63. Lee TE, McCarthy MA, Wintle BA, Bode M, Roberts DL, Burgman MA. 63.  2014. Inferring extinctions from sighting records of variable reliability. J. Appl. Ecol. 51:251–58 [Google Scholar]
  64. Leung B, Roura-Pascual N, Bacher S, Heikkilä J, Brotons L. 64.  et al. 2012. TEASIng apart alien species risk assessments: a framework for best practices. Ecol. Lett. 15:1475–93 [Google Scholar]
  65. Liebhold A, Bascompte J. 65.  2003. The Allee effect, stochastic dynamics and the eradication of alien species. Ecol. Lett. 6:133–40Likely the first paper to focus on how Allee effects can be exploited to facilitate eradication. [Google Scholar]
  66. Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO. 66.  2012. Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Front. Ecol. Environ. 10:135–43 [Google Scholar]
  67. Liebhold AM, Tobin PC. 67.  2008. Population ecology of insect invasions and their management. Annu. Rev. Entomol. 53:387–408 [Google Scholar]
  68. Lockwood JL, Cassey P, Blackburn T. 68.  2005. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 20:223–28 [Google Scholar]
  69. Lockwood JL, Hoopes MF, Marchetti MP. 69.  2013. Invasion Ecology New York: Wiley [Google Scholar]
  70. Manderino R, Crist TO, Haynes KJ. 70.  2014. Lepidoptera-specific insecticide used to suppress gypsy moth outbreaks may benefit non-target forest Lepidoptera. Agric. For. Entomol. 16:359–68 [Google Scholar]
  71. Martin PAJ, Cameron AR, Greiner M. 71.  2007. Demonstrating freedom from disease using multiple complex data sources 1: a new methodology based on scenario trees. Prev. Vet. Med. 79:71–97 [Google Scholar]
  72. Marzano M, Dandy N, Bayliss HR, Porth E, Potter C. 72.  2015. Part of the solution? Stakeholder awareness, information and engagement in tree health issues. Biol. Invasions 17:1961–77 [Google Scholar]
  73. McCarthy MA. 73.  1998. Identifying declining and threatened species with museum data. Biol. Conserv. 83:9–17 [Google Scholar]
  74. McEntee MJ. 74.  2007. Participation and communication approaches that influence public and media response to scientific risk: a comparative study of two biosecurity events in New Zealand. Int. J. Interdiscip. Soc. Sci. 2:1833–82 [Google Scholar]
  75. McLeod-Kilmurray H. 75.  2009. Proceeding with (pre) caution: environmental principles as interpretive tools in applications for pre-trial injunctions. Dalhous. Law J. 32:295 [Google Scholar]
  76. Mehta SV, Haight RG, Homans FR, Polasky S, Venette RC. 76.  2007. Optimal detection and control strategies for invasive species management. Ecol. Econ. 61:237–45 [Google Scholar]
  77. Meyerson LA, Mooney HA. 77.  2007. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5:199–208 [Google Scholar]
  78. Miller JC. 78.  1990. Field assessment of the effects of a microbial pest control agent on nontarget Lepidoptera. Am. Entomol. 36:135–40 [Google Scholar]
  79. Myers JH, Savoie A, Randen EV. 79.  1998. Eradication and pest management. Annu. Rev. Entomol. 43:471–91Summarizes several historical insect eradication programs and offers numerous criticisms. [Google Scholar]
  80. Myers JH, Simberloff D, Kuris AM, Carey JR. 80.  2000. Eradication revisited: dealing with exotic species. Trends Ecol. Evol. 15:316–20 [Google Scholar]
  81. Nealis V. 81.  2009. Still invasive after all these years: keeping gypsy moth out of British Columbia. For. Chron. 85:593–603 [Google Scholar]
  82. 82. NRC (Natl. Res. Counc.) 2002. Predicting Invasions of Nonindigenous Plants and Plant Pests Washington, DC: Natl. Acad. Press [Google Scholar]
  83. 83. Ohio Dep. Agric. v. Tim L. Carles et al. No. 2005. CV 00255. Court of Common Pleas, Hancock Cty.
  84. Olson LJ, Roy S. 84.  2002. The economics of controlling a stochastic biological invasion. Am. J. Agric. Econ. 84:1311–16 [Google Scholar]
  85. Onufrieva KS, Thorpe KW, Hickman AD, Leonard DS, Roberts EA, Tobin PC. 85.  2013. Persistence of the gypsy moth pheromone, disparlure, in the environment in various climates. Insects 4:104–16 [Google Scholar]
  86. Otvos IS, Armstrong H, Conder N. 86.  2007. Safety of Bacillus thuringiensis var. kurstaki: applications for insect control to humans and large mammals. Proceedings of the 6th Pacific Rim Conference on the Biotechnology of Bacillus thuringiensis and Its Environmental Impact J-C Côté, IS Otvos, J-L Schwartz, C Vincent 45–60 Montreal, Can.: Érudit [Google Scholar]
  87. Papadopoulos NT, Plant RE, Carey JR. 87.  2013. From trickle to flood: the large-scale, cryptic invasion of California by tropical fruit flies. Proc. R. Soc. B 280:20131466 [Google Scholar]
  88. Pearce M, Habbick B, Williams J, Eastman M, Newman M. 88.  2002. The effects of aerial spraying with Bacillus thuringiensis Kurstaki on children with asthma. Can. J. Public Health 93:21–25 [Google Scholar]
  89. Perkins JH. 89.  1989. Eradication: scientific and social questions. Eradication of Exotic Pests DL Dahlsten, R Garcia 16–40 New Haven, CT: Yale Univ. Press [Google Scholar]
  90. Pluess T, Cannon R, Jarošík V, Pergl J, Pyšek P, Bacher S. 90.  2012. When are eradication campaigns successful? A test of common assumptions. Biol. Invasions 14:1365–78 [Google Scholar]
  91. Pluess T, Jarošík V, Pyšek P, Cannon R, Pergl J. 91.  et al. 2012. Which factors affect the success or failure of eradication campaigns against alien species?. PLOS ONE 7:e48157 [Google Scholar]
  92. Popham WL, Hall DG. 92.  1958. Insect eradication programs. Annu. Rev. Entomol. 3:335–54Probably the first review of the eradication concept, including accounts of several early eradication programs. [Google Scholar]
  93. Ramsey DSL, Parkes J, Morrison SA. 93.  2009. Quantifying eradication success: the removal of feral pigs from Santa Cruz Island, California. Conserv. Biol. 23:449–59 [Google Scholar]
  94. Rassati D, Faccoli M, Petrucco Toffolo E, Battisti A, Marini L. 94.  2015. Improving the early detection of alien wood-boring beetles in ports and surrounding forests. J. Appl. Ecol. 52:50–58 [Google Scholar]
  95. Redman AM, Scriber JM. 95.  2000. Competition between the gypsy moth, Lymantria dispar, and the northern tiger swallowtail, Papilio canadensis: interactions mediated by host plant chemistry, pathogens, and parasitoids. Oecologia 125:218–28 [Google Scholar]
  96. Regan TJ, McCarthy MA, Baxter PWJ, Dane Panetta F, Possingham HP. 96.  2006. Optimal eradication: when to stop looking for an invasive plant. Ecol. Lett. 9:759–66 [Google Scholar]
  97. Rivadeneira MM, Hunt G, Roy K. 97.  2009. The use of sighting records to infer species extinctions: an evaluation of different methods. Ecology 90:1291–300 [Google Scholar]
  98. Roelofs WL, Glass EH, Tette J, Comeau A. 98.  1970. Sex pheromone trapping for red-banded leaf roller control: theoretical and actual. J. Econ. Entomol. 63:1163–67 [Google Scholar]
  99. Setoguchi O, Sugimoto T, Yamaguchi T, Izumi S, Tokunaga T. 99.  et al. 2001. Efficiency of the sterile insect release method as an eradication measure for the sweet potato weevil, Cylas formicarius (Fabricius) (Coleoptera: Brentidae) in the field. Appl. Entomol. Zool. 36:161–67 [Google Scholar]
  100. Sharov AA, Liebhold AM. 100.  1998. Bioeconomics of managing the spread of exotic pest species with barrier zones. Ecol. Appl. 8:833–45 [Google Scholar]
  101. Shelly T, Nishimoto J, Kurashima R. 101.  2014. Distance-dependent capture probability of male Mediterranean fruit flies in trimedlure-baited traps in Hawaii. J. Asia-Pac. Entomol. 17:525–30 [Google Scholar]
  102. Silverman J, Brightwell RJ. 102.  2008. The Argentine ant: challenges in managing an invasive unicolonial pest. Annu. Rev. Entomol. 53:231–52 [Google Scholar]
  103. Simberloff D. 103.  1986. Introduced insects: a biogeographic and systematic perspective. Ecology of Biological Invasions of North America and Hawaii HA Mooney, JA Drake 3–26 New York: Springer [Google Scholar]
  104. Simberloff D. 104.  2009. Eradication—preventing invasions at the outset. Weed Sci. 51:247–53 [Google Scholar]
  105. Simberloff D. 105.  2009. The role of propagule pressure in biological invasions. Annu. Rev. Ecol. Evol. Syst. 40:81–102 [Google Scholar]
  106. Simberloff D, Martin J-L, Genovesi P, Maris V, Wardle DA. 106.  et al. 2013. Impacts of biological invasions: what's what and the way forward. Trends Ecol. Evol. 28:58–66 [Google Scholar]
  107. Solow AR. 107.  1993. Inferring extinction in a declining population. J. Math. Biol. 32:79–82 [Google Scholar]
  108. Steiner LF, Hart WG, Harris EJ, Cunningham RT, Ohinata K, Kamakahi DC. 108.  1970. Eradication of the Oriental fruit fly from the Mariana Islands by the methods of male annihilation and sterile insect release. J. Econ. Entomol. 63:131–35 [Google Scholar]
  109. Stephens PA, Sutherland WJ. 109.  1999. Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. Evol. 14:401–5 [Google Scholar]
  110. Suckling DM. 110.  2015. Can we replace toxicants, achieve biosecurity, and generate market position with semiochemicals?. Front. Ecol. Evol. 3:17 [Google Scholar]
  111. Suckling DM, Barrington AM, Chhagan A, Stephens AEA, Burnip GM. 111.  et al. 2007. Eradication of the Australian painted apple moth Teia anartoides in New Zealand: trapping, inherited sterility, and male competitiveness. Area-Wide Control of Insect Pests MJB Vreysen, AS Robinson, J Hendrichs 603–15 Dordrecht, Neth.: Springer [Google Scholar]
  112. Suckling DM, Brockerhoff EG. 112.  2010. Invasion biology, ecology, and management of the light brown apple moth (Tortricidae). Annu. Rev. Entomol. 55:285–306 [Google Scholar]
  113. Suckling DM, Gibb AR, Dentener PR, Seldon DS, Clare GK. 113.  et al. 2005. Uraba lugens (Lepidoptera: Nolidae) in New Zealand: pheromone trapping for delimitation and phenology. J. Econ. Entomol. 98:1187–92 [Google Scholar]
  114. Suckling DM, Kean JM, Stringer LD, Cáceres-Barrios C, Hendrichs J. 114.  et al. 2014. Eradication of tephritid fruit fly pest populations: outcomes and prospects. Pest Manag. Sci. doi: 10.1002/ps.3905 [Google Scholar]
  115. Suckling DM, Stringer LD, Kean JM, Lo PL, Bell V. 115.  et al. 2015. Spatial analysis of mass trapping: How close is close enough?. Pest. Manag. Sci. 71:1452–61 [Google Scholar]
  116. Suckling DM, Stringer LD, Stephens AE, Woods B, Williams DG. 116.  et al. 2014. From integrated pest management to integrated pest eradication: technologies and future needs. Pest Manag. Sci. 70:179–89Gives a contemporary review of eradication treatment technologies. [Google Scholar]
  117. Suckling DM, Tobin PC, McCullough DG, Herms DA. 117.  2012. Combining tactics to exploit Allee effects for eradication of alien insect populations. J. Econ. Entomol. 105:1–13 [Google Scholar]
  118. Thompson CJ, Lee TE, Stone L, McCarthy MA, Burgman MA. 118.  2013. Inferring extinction risks from sighting records. J. Theor. Biol. 338:16–22 [Google Scholar]
  119. Tobin PC, Bai BB, Eggen DA, Leonard DS. 119.  2012. The ecology, geopolitics, and economics of managing Lymantria dispar in the United States. Int. J. Pest Manag. 58:195–210 [Google Scholar]
  120. Tobin PC, Berec L, Liebhold AM. 120.  2011. Exploiting Allee effects for managing biological invasions. Ecol. Lett. 14:615–24Reviews the use of Allee effects to facilitate eradication and containment of invading populations. [Google Scholar]
  121. Tobin PC, Kean JM, Suckling DM, McCullough DG, Herms DA, Stringer LD. 121.  2014. Determinants of successful arthropod eradication programs. Biol. Invasions 16:401–14Analyzes historical arthropod eradication programs, focusing on factors influencing program success. [Google Scholar]
  122. Tobin PC, Onufrieva KS, Thorpe KW. 122.  2013. The relationship between male moth density and female mating success in invading populations of Lymantria dispar. Entomol. Exp. Appl. 146:103–11 [Google Scholar]
  123. Turchin P, Odendaal FJ. 123.  1996. Measuring the effective sampling area of a pheromone trap for monitoring population density of southern pine beetle (Coleoptera: Scolytidae). Environ. Entomol. 25:582–88 [Google Scholar]
  124. 124. US EPA 2007. Pesticides; data requirements for biochemical and microbial pesticides US Code of Federal Regulations. 40 CFR Pt. 158; 72 FR 60988-61025. http://www.gpo.gov/fdsys/pkg/FR-2007-10-26/pdf/E7-20828.pdf [Google Scholar]
  125. van der Gaag DJ, Sinatra G, Roversi PF, Loomans A, Herard F, Vukadin A. 125.  2010. Evaluation of eradication measures against Anoplophora chinensis in early stage infestations in Europe. EPPO Bull. 40:176–87 [Google Scholar]
  126. van Santen L, Goven J, Langer L. 126.  2004. The role of community involvement in future incursion responses. N. Z. J. For. 49:38 [Google Scholar]
  127. Venette RC, Kriticos DJ, Magarey RD, Koch FH, Baker RH. 127.  et al. 2010. Pest risk maps for invasive alien species: a roadmap for improvement. BioScience 60:349–62 [Google Scholar]
  128. Whelan PI, Kulbac M, Bowbridge D, Krause V. 128.  2009. The eradication of Aedes aegypti from Groote Eylandt NT Australia 2006–2008. Arbovirus Res. Aust. 10:188–99 [Google Scholar]
  129. Wilen J. 129.  2007. Economics of spatial-dynamic processes. Am. J. Agric. Econ. 89:1134–44 [Google Scholar]
  130. Yamanaka T. 130.  2007. Mating disruption or mass trapping? Numerical simulation analysis of a control strategy for lepidopteran pests. Popul. Ecol. 49:75–86 [Google Scholar]
  131. Yamanaka T, Liebhold AM. 131.  2009. Spatially implicit approaches to understand the manipulation of mating success for insect invasion management. Popul. Ecol. 51:427–44 [Google Scholar]
  132. Yamanaka T, Morimoto N, Nishida GM, Kiritani K, Moriya S. 132.  2015. Comparison of insect invasions in North America, Japan and their islands. Biol. Invasions 17:3049–61 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error