Apparent feeding damage by insects on plants is often slight. Thus, the influences of insect herbivores on plant populations are likely minor. The role of insects on host-plant populations can be elucidated via several methods: stage-structured life tables of plant populations manipulated by herbivore exclusion and seed-addition experiments, tests of the enemy release hypothesis, studies of the effects of accidentally and intentionally introduced insect herbivores, and observations of the impacts of insect species that show outbreak population dynamics. These approaches demonstrate that some, but not all, insect herbivores influence plant population densities. At times, insect-feeding damage kills plants, but more often, it reduces plant size, growth, and seed production. Plant populations for which seed germination is site limited will not respond at the population level to reduced seed production. Insect herbivores can influence rare plant species and need to be considered in conservation programs. Alterations due to climate change in the distributions of insect herbivores indicate the possibility of new influences on host plants. Long-term studies are required to show if density-related insect behavior stabilizes plant populations or if environmental variation drives most temporal fluctuations in plant densities. Finally, insects can influence plant populations and communities through changing the diversity of nonhost species, modifying nutrient fluxes, and rejuvenating over mature forests.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abarca M, Lill JT. 1.  2015. Warming affects hatching time and early season survival of eastern tent caterpillars. Oecologia 179:901–12 [Google Scholar]
  2. Ancheta J, Heard SB. 2.  2011. Impacts of insect herbivores on rare plant populations. Biol. Conserv. 144:2395–402 [Google Scholar]
  3. Andersson P, Löfstedt C, Hambäck PA. 3.  2013. Insect density–plant density relationships: a modified view of insect responses to resource concentrations. Oecologia 173:1333–44 [Google Scholar]
  4. Anstett DN, Ahern JR, Glinos J, Nawar N, Salminen JP, Johnson MT. 4.  2015. Can genetically based clines in plant defence explain greater herbivory at higher latitudes?. Ecol. Lett. 18:1376–86 [Google Scholar]
  5. Augspurger CK. 5.  1981. Reproductive synchrony of a tropical shrub: experimental studies on effects of pollinators and seed predators on Hybanthus prunifolius (Violaceae). Ecology 62:775–88 [Google Scholar]
  6. Ayres MP, Lombardero MJ. 6.  2000. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci. Total Environ. 262:263–86 [Google Scholar]
  7. Bale J, Hayward S. 7.  2010. Insect overwintering in a changing climate. J. Exp. Biol. 213:980–94 [Google Scholar]
  8. Baron S, Bros SM. 8.  2005. Herbivory and the endangered robust spineflower (Chorizanthe robusta var. robusta). Madroño 52:46–52 [Google Scholar]
  9. Barton BT. 9.  2014. Reduced wind strengthens top-down control of an insect herbivore. Ecology 95:2375–81 [Google Scholar]
  10. Baskerville GL. 10.  1975. Spruce budworm: super silviculturist. For. Chron. 51:138–40 [Google Scholar]
  11. Belovsky GE, Slade JB. 11.  2000. Insect herbivory accelerates nutrient cycling and increases plant production. PNAS 97:14412–17 [Google Scholar]
  12. Bevill R, Louda S, Stanforth L. 12.  1999. Protection from natural enemies in managing rare plant species. Conserv. Biol. 13:1323–31 [Google Scholar]
  13. Bezemer TM, Harvey JA, Cronin JT. 13.  2014. Response of native insect communities to invasive plants. Annu. Rev. Entomol. 59:119–41 [Google Scholar]
  14. Blossey B, Skinner L, Taylor J. 14.  2001. Impact and management of purple loosestrife (Lythrum salicaria) in North America. Biodivers. Conserv. 10:1787–807 [Google Scholar]
  15. Boieiro M, Rego C, Serrano AR, Espadaler X. 15.  2010. The impact of specialist and generalist pre-dispersal seed predators on the reproductive output of a common and a rare Euphorbia species. Acta Oecol 36:227–33 [Google Scholar]
  16. Both C, Van Asch M, Bijlsma RG, Van Den Burg AB, Visser ME. 16.  2009. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations?. J. Anim. Ecol. 78:73–83 [Google Scholar]
  17. Carroll AL, Taylor SW, Régnière J, Safranyik L. 17.  2003. Effect of climate change on range expansion by the mountain pine beetle in British Columbia Presented at Mt. Pine Beetle Symp. Chall. Solut., Kelowna, BC [Google Scholar]
  18. Carson WP, Cronin JP, Long ZT. 18.  2004. A general rule for predicting when insects will have strong top-down effects on plant communities: on the relationship between insect outbreaks and host concentration. Insects and Ecosystem Function WW Weisser, E Siemann 193–211 Berlin: Springer-Verlag [Google Scholar]
  19. Caswell H. 19.  2000. Matrix Population Models Sunderland, MA: Sinauer [Google Scholar]
  20. Catton HA, Lalonde RG, De Clerck-Floate RA. 20.  2015. Nontarget herbivory by a weed biocontrol insect is limited to spillover, reducing the chance of population-level impacts. Ecol. Appl. 25:517–30 [Google Scholar]
  21. Chun YJ, Van Kleunen M, Dawson W. 21.  2010. The role of enemy release, tolerance and resistance in plant invasions: linking damage to performance. Ecol. Lett. 13:937–46 [Google Scholar]
  22. Clark C, Poulsen J, Levey D, Osenberg C. 22.  2007. Are plant populations seed limited? A critique and meta-analysis of seed addition experiments. Am. Nat. 170:128–42 [Google Scholar]
  23. Clewley GD, Eschen R, Shaw RH, Wright DJ. 23.  2012. The effectiveness of classical biological control of invasive plants. J. Appl. Ecol. 49:1287–95 [Google Scholar]
  24. Coley PD, Bryant JP, Chapin FS. 24.  1985. Resource availability and plant antiherbivore defense. Science 230:895–99 [Google Scholar]
  25. Combs JK, Lambert AM, Reichard SH. 25.  2013. Predispersal seed predation is higher in a rare species than in its widespread sympatric congeners (Astragalus, Fabaceae). Am. J. Bot. 100:2149–57 [Google Scholar]
  26. Coupe MD, Cahill JF. 26.  2003. Effects of insects on primary production in temperate herbaceous communities: a meta-analysis. Ecol. Entomol. 28:511–21 [Google Scholar]
  27. Crawley M. 27.  1990. The population dynamics of plants. Philos. Trans. R. Soc. Lond. B 330:125–40 [Google Scholar]
  28. Crone EE, Menges ES, Ellis MM, Bell T, Bierzychudek P. 28.  et al. 2011. How do plant ecologists use matrix population models?. Ecol. Lett. 14:1–8 [Google Scholar]
  29. Culliney TW. 29.  2005. Benefits of classical biological control for managing invasive plants. Crit. Rev. Plant Sci. 24:131–50 [Google Scholar]
  30. Dangles O, Herrera M, Mazoyer C, Silvain JF. 30.  2013. Temperature-dependent shifts in herbivore performance and interactions drive nonlinear changes in crop damages. Glob. Change Biol. 19:1056–63 [Google Scholar]
  31. De Clerck-Floate RA. 31.  2013. Cynoglossum officinale (L.), Houndstongue (Boraginaceae). Biological Control Programmes in Canada 2001–2012 PG Mason, DR Gillespie 309–15 Wallingford, UK: CABI [Google Scholar]
  32. De Crop E, Brys R, Hoffmann M. 32.  2012. The impact of habitat fragmentation on the interaction between Centaurium erythraea (Gentianaceae) and its specialized seed predator Stenoptilia zophodactylus (Pterophoridae, Lepidoptera). Ecol. Res. 27:967–74 [Google Scholar]
  33. Denoth M, Frid L, Myers JH. 33.  2002. Multiple agents in biological control: improving the odds?. Biol. Control 24:20–30 [Google Scholar]
  34. Denoth M, Myers JH. 34.  2005. Variable success of biological control of Lythrum salicaria in British Columbia. Biol. Control 32:269–79 [Google Scholar]
  35. DePrenger-Levin ME, Grant TA, Dawson C. 35.  2010. Impacts of the introduced biocontrol agent, Rhinocyllus conicus (Coleoptera: Curculionidae), on the seed production and population dynamics of Cirsium ownbeyi (Asteraceae), a rare, native thistle. Biol. Control 55:79–84 [Google Scholar]
  36. DeWalt SJ, Denslow J, Ickes K. 36.  2004. Natural-enemy release facilitates habitat expansion of the invasive tropical shrub Clidemia hirta. Ecology 85:471–83 [Google Scholar]
  37. Easterling MR, Ellner SP, Dixon PM. 37.  2000. Size-specific sensitivity: applying a new structured population model. Ecology 81:694–708 [Google Scholar]
  38. Eckberg JO, Tenhumberg B, Louda SM. 38.  2014. Native insect herbivory limits population growth rate of a non-native thistle. Oecologia 175:129–38 [Google Scholar]
  39. Fajvan MA, Wood JM. 39.  1996. Stand structure and development after gypsy moth defoliation in the Appalachian Plateau. Forest Ecol. Manag. 89:79–88 [Google Scholar]
  40. Feeny P. 40.  1976. Plant apparency and chemical defense. Recent Adv. Phytochem. 10:1–40 [Google Scholar]
  41. Ford CR, Elliott KJ, Clinton BD, Kloeppel BD, Vose JM. 41.  2012. Forest dynamics following eastern hemlock mortality in the southern Appalachians. Oikos 121:523–36 [Google Scholar]
  42. Fowler S, Syrett P, Jarvis P. 42.  2000. Will expected and unexpected non-target effects, and the new hazardous substances and new organisms act, cause biological control of broom to fail in New Zealand. See Ref. 141, 173–86
  43. Fowler SV. 43.  2004. Biological control of an exotic scale, Orthezia insignis Browne (Homoptera: Ortheziidae), saves the endemic gumwood tree, Commidendrum robustum (Roxb.) DC. (Asteraceae) on the island of St. Helena. Biol. Control 29:367–74 [Google Scholar]
  44. Garren JM, Strauss SY. 44.  2009. Population-level compensation by an invasive thistle thwarts biological control from seed predators. Ecol. Appl. 19:700–21 [Google Scholar]
  45. Grevstad F. 45.  2005. Ten-year impacts of the biological control agents Galerucella pusilla and G. calmariensis (Coleoptera: Chrysomelidae) on purple loosestrife (Lythrum salicaria) in Central New York State. Biol. Control 39:1–3 [Google Scholar]
  46. Grez A, Gonzalez R. 46.  1995. Resource concentration hypothesis: effect of host plant patch size on density of herbivorous insects. Oecologia 103:471–74 [Google Scholar]
  47. Hairston N, Smith F, Slobodkin L. 47.  1960. Community structure, population control and competition. Am. Nat. 94:421–25 [Google Scholar]
  48. Halpern SL, Underwood N. 48.  2006. Approaches for testing herbivore effects on plant population dynamics. J. Appl. Ecol. 43:922–29 [Google Scholar]
  49. Havens K, Jolls CL, Marik JE, Vitt P, McEachern AK, Kind D. 49.  2012. Effects of a non-native biocontrol weevil, Larinus planus, and other emerging threats on populations of the federally threatened Pitcher's thistle, Cirsium pitcheri. Biol. Conserv 155:202–11 [Google Scholar]
  50. Heard SB, Remer LC. 50.  2008. Travel costs, oviposition behaviour and the dynamics of insect-plant systems. Theor. Ecol. 1:179–88 [Google Scholar]
  51. Heger T, Pahl AT, Botta-Dukát Z, Gherardi F, Hoppe C. 51.  et al. 2013. Conceptual frameworks and methods for advancing invasion ecology. AMBIO 42:527–40 [Google Scholar]
  52. Hight SD, Carpenter JE, Bloem KA, Bloem S, Pemberton RW, Stiling P. 52.  2002. Expanding geographical range of Cactoblastis cactorum (Lepidoptera: Pyralidae) in North America. Fla. Entomol. 85:527–29 [Google Scholar]
  53. Hinz HL, Schwarzlaender M. 53.  2004. Comparing invasive plants from their native and exotic range: What can we learn for biological control?. Weed Technol 18:1533–41 [Google Scholar]
  54. Hódar JA, Castro J, Zamora R. 54.  2003. Pine processionary caterpillar Thaumetopoea pityocampa as a new threat for relict Mediterranean Scots pine forests under climatic warming. Biol. Conserv. 110:123–29 [Google Scholar]
  55. Hovick SM, Carson WP. 55.  2014. Tailoring biocontrol to maximize top-down effects: on the importance of underlying site fertility. Ecol. Appl. 25:125–39 [Google Scholar]
  56. Huang D, Haack RA, Zhang R. 56.  2011. Does global warming increase establishment rates of invasive alien species? A centurial time series analysis. PLOS ONE 6:e24733 [Google Scholar]
  57. Jactel H, Brockerhoff EG. 57.  2007. Tree diversity reduces herbivory by forest insects. Ecol. Lett. 10:835–48 [Google Scholar]
  58. Jamieson MA, Schwartzberg EG, Raffa KF, Reich PBL, Lindroth RL. 58.  2015. Experimental climate warming alters aspen and birch phytochemistry and performance traits for an outbreak insect herbivore. Glob. Change Biol. 21:2698–710 [Google Scholar]
  59. Jepsen JU, Biuw M, Ims RA, Kapari L, Schott T. 59.  et al. 2013. Ecosystem impacts of a range expanding forest defoliator at the forest-tundra ecotone. Ecosystems 16:561–75 [Google Scholar]
  60. Jezorek H, Baker AJ, Stiling P. 60.  2012. Effects of Cactoblastis cactorum on the survival and growth of North American Opuntia. Biol. Invasions 14:2355–67 [Google Scholar]
  61. Johnson DM, Büntgen U, Frank DC, Kausrud K, Haynes KJ. 61.  et al. 2010. Climatic warming disrupts recurrent Alpine insect outbreaks. PNAS 107:20576–81 [Google Scholar]
  62. Jongejans E, Sheppard AW, Shea K. 62.  2006. What controls the population dynamics of the invasive thistle Carduus nutans in its native range?. J. Appl. Ecol. 43:877–86 [Google Scholar]
  63. Keane RM, Crawley MJ. 63.  2002. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17:164–70 [Google Scholar]
  64. Kelly D, Sork VL. 64.  2002. Mast seeding in perennial plants: Why, how, where?. Annu. Rev. Ecol. Syst. 33:427–47 [Google Scholar]
  65. Kenis M, Auger-Rozenberg M, Roques A, Timms L, Péré C. 65.  et al. 2009. Ecological effects of invasive alien insects. Biol. Invasions 11:21–45 [Google Scholar]
  66. Kéry M, Matthies D, Fischer M. 66.  2001. The effect of plant population size on the interactions between the rare plant Gentiana cruciata and its specialized herbivore Maculinea rebeli. J. Ecol. 89:418–27 [Google Scholar]
  67. Kettenring KM, Weekley CW, Menges ES. 67.  2009. Herbivory delays flowering and reduces fecundity of Liatris ohlingerae (Asteraceae), an endangered, endemic plant of the Florida scrub. J. Torrey Bot. Soc. 136:350–62 [Google Scholar]
  68. Kharouba HM, Vellend M, Sarfraz RM, Myers JH. 68.  2015. The effects of experimental warming on the timing of a plant-insect herbivore interaction. J. Anim. Ecol. 84:785–96 [Google Scholar]
  69. Knight KS, Brown JP, Long RP. 69.  2013. Factors affecting the survival of ash (Fraxinus spp.) trees infested by emerald ash borer (Agrilus planipennis). Biol. Invasions 15:371–83 [Google Scholar]
  70. Kok L, Surles W. 70.  1975. Successful biological control of musk thistle by an introduced weevil, Rhinocyllus conicus. Environ. Entomol. 4:1025–27 [Google Scholar]
  71. Kolb A, Ehrlén J, Eriksson O. 71.  2007. Ecological and evolutionary consequences of spatial and temporal variation in pre-dispersal seed predation. Perspect. Plant Ecol. Evol. Syst. 9:79–100 [Google Scholar]
  72. Kozlov MV, Lanta V, Zverev V, Zvereva EL. 72.  2015. Global patterns in background losses of woody plant foliage to insects. Glob. Ecol. Biogeogr. 24:1126–35 [Google Scholar]
  73. Lewis OT, Gripenberg S. 73.  2008. Insect seed predators and environmental change. J. Appl. Ecol. 45:1593–99 [Google Scholar]
  74. Liu H, Stiling P. 74.  2006. Testing the enemy release hypothesis: a review and meta-analysis. Biol. Invasions 8:1535–45 [Google Scholar]
  75. Logan JA, Powell JA. 75.  2001. Ghost forests, global warming, and the mountain pine beetle (Coleoptera: Scolytidae). Am. Entomol. 47:160 [Google Scholar]
  76. Logan JA, Regniere J, Powell JA. 76.  2003. Assessing the impacts of global warming on forest pest dynamics. Front. Ecol. Environ. 1:130–37 [Google Scholar]
  77. Long ZT, Mohler CL, Carson WP. 77.  2003. Extending the resource concentration hypothesis to plant communities: effects of litter and herbivores. Ecology 84:652–65 [Google Scholar]
  78. Louda S, Kendall D, Connor J, Simberloff D. 78.  1997. Ecological effects of an insect introduced for the biological control of weeds. Science 277:1088–90 [Google Scholar]
  79. Louda SM, Arnett AE, Rand TA, Russell FL. 79.  2003. Invasiveness of some biological control insects and adequacy of their ecological risk assessment and regulation. Conserv. Biol. 17:73–82 [Google Scholar]
  80. Louda SM, Rand TA, Arnett AE, McClay A, Shea K, McEachern AK. 80.  2005. Evaluation of ecological risk to populations of a threatened plant from an invasive biocontrol insect. Ecol. Appl. 15:234–49 [Google Scholar]
  81. Louda SM, Rand TA, Russell FL, Arnett AE. 81.  2005. Assessment of ecological risks in weed biocontrol: input from retrospective ecological analyses. Biol. Control 35:253–64 [Google Scholar]
  82. Lu X, Siemann E, Shao X, Wei H, Ding J. 82.  2013. Climate warming affects biological invasions by shifting interactions of plants and herbivores. Glob. Change Biol. 19:2339–47 [Google Scholar]
  83. Luedeling E, Steinmann KP, Zhang M, Brown PH, Grant J, Girvetz EH. 83.  2011. Climate change effects on walnut pests in California. Glob. Change Biol. 17:228–38 [Google Scholar]
  84. Lynch AM. 84.  2004. Fate and characteristics of Picea damaged by Elatobium abietinum (Walker) (Homoptera: Aphididae) in the White Mountains of Arizona. West. N. Am. Nat. 64:7–17 [Google Scholar]
  85. Maines A, Knochel D, Seastedt T. 85.  2013. Biological control and precipitation effects on spotted knapweed (Centaurea stoebe): empirical and modeling results. Ecosphere 4:71–14 [Google Scholar]
  86. Manzaneda AJ, Sperens U, García MB. 86.  2005. Effects of microsite disturbances and herbivory on seedling performance in the perennial herb Helleborus foetidus (Ranunculaceae). Plant Ecol 179:73–82 [Google Scholar]
  87. Maron JL, Baer KC, Angert AL. 87.  2014. Disentangling the drivers of context-dependent plant-animal interactions. J. Ecol. 102:1485–96 [Google Scholar]
  88. Maron JL, Crone E. 88.  2006. Herbivory: effects on plant abundance, distribution and population growth. Proc. R. Soc. B 273:2575–84 [Google Scholar]
  89. Maron JL, Horvitz CC, Williams JL. 89.  2010. Using experiments, demography and population models to estimate interaction strength based on transient and asymptotic dynamics. J. Ecol. 98:290–301 [Google Scholar]
  90. Maron JL, Vilà M. 90.  2001. When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95:361–73 [Google Scholar]
  91. Martin EF, Meinke RJ. 91.  2012. Variation in the demographics of a rare central Oregon endemic, Astragalus peckii Piper (Fabaceae), with fluctuating levels of herbivory. Popul. Ecol. 54:381–90 [Google Scholar]
  92. McArt SH, Halitschke R, Salminen J-P, Thaler JS. 92.  2013. Leaf herbivory increases plant fitness via induced resistance to seed predators. Ecology 94:966–75 [Google Scholar]
  93. McEvoy P, Rudd N, Cox C, Huso M. 93.  1993. Disturbance, competition and herbivory effects on ragwort Senecio jacobaea populations. Ecol. Monogr. 63:55–75 [Google Scholar]
  94. McFadyen RE. 94.  1998. Biological control of weeds. Annu. Rev. Entomol. 43:369–93 [Google Scholar]
  95. Meehl G, Covey C, Delworth T, Latif M, McAvaney B. 95.  et al. 2007. Global climate projections. Climate Change 2007: The Physical Science Basis S Solomon, D Qin, M Manning, Z Chen, M Marquis 748–845 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  96. Menges ES. 96.  2000. Population viability analyses in plants: challenges and opportunities. Trends Ecol. Evol. 15:51–56 [Google Scholar]
  97. Metcalfe DB, Crutsinger GM, Kumordzi BB, Wardle DA. 97.  2016. Nutrient fluxes from insect herbivory increase during ecosystem retrogression in boreal forest. Ecology 97:124–32 [Google Scholar]
  98. Miller TE, Louda SM, Rose KA, Eckberg JO. 98.  2009. Impacts of insect herbivory on cactus population dynamics: experimental demography across an environmental gradient. Ecol. Monogr. 79:155–72 [Google Scholar]
  99. Moir ML, Vesk PA, Brennan KE, Keith DA, McCarthy MA, Hughes L. 99.  2011. Identifying and managing threatened invertebrates through assessment of coextinction risk. Conserv. Biol. 25:787–96 [Google Scholar]
  100. Moles AT, Peco B, Wallis IR, Foley WJ, Poore AG. 100.  et al. 2013. Correlations between physical and chemical defences in plants: tradeoffs, syndromes, or just many different ways to skin a herbivorous cat?. New Phytol 198:252–63 [Google Scholar]
  101. Moran VC, Hoffmann JH, Zimmermann HG. 101.  2005. Biological control of invasive alien plants in South Africa: necessity, circumspection, and success. Front. Ecol. Environ. 3:71–77 [Google Scholar]
  102. Müller H. 102.  1989. Structural analysis of the phytophagous insect guilds associated with the roots of Centaurea maculosa Lam., C. diffusa Lam., and C. vallesiaca Jordan in Europe: 1. Field observations. Oecologia 78:41–52 [Google Scholar]
  103. Musolin DL. 103.  2007. Insects in a warmer world: ecological, physiological and life-history responses of true bugs (Heteroptera) to climate change. Glob. Change Biol. 13:1565–85 [Google Scholar]
  104. Myers JH. 104.  1980. Is the insect or the plant the driving force in the cinnabar moth-tansy ragwort system?. Oecologia 47:16–21 [Google Scholar]
  105. Myers JH. 105.  2008. One agent is usually enough for successful biological control of weeds. Proc. Int. Symp. Biol. Control Weeds, 12th, La Grande Motte MH Julien, R Sforza, MC Bon, HC Evans, PE Hatcher, et al. 601–6 Wallingford, UK: CABI [Google Scholar]
  106. Myers JH, Bazely D. 106.  2003. Ecology and Control of Introduced Plants Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  107. Myers JH, Cory JS. 107.  2013. Population cycles in forest Lepidoptera revisited. Annu. Rev. Ecol. Evol. Syst. 44:565–92 [Google Scholar]
  108. Myers JH, Cory JS. 108.  2016. Ecology and evolution of pathogens in natural populations of Lepidoptera. Evol. Appl. 9:231–47 [Google Scholar]
  109. Myers JH, Jackson C, Quinn H, White SR, Cory JS. 109.  2009. Successful biological control of diffuse knapweed, Centaurea diffusa, in British Columbia, Canada. Biol. Control 50:66–72 [Google Scholar]
  110. Myers JH, Risley C. 110.  2000. Why reduced seed production is not necessarily translated into successful biological weed control. See Ref. 141 569–81
  111. Norden N, Chave J, Belbenoit P, Caubère A, Châtelet P. 111.  et al. 2007. Mast fruiting is a frequent strategy in woody species of Eastern South America. PLOS ONE 2:e1079 [Google Scholar]
  112. Ode PJ, Johnson SN, Moore BD. 112.  2014. Atmospheric change and induced plant secondary metabolites—are we reshaping the building blocks of multi-trophic interactions?. Curr. Opin. Insect Sci. 5:57–65 [Google Scholar]
  113. Otway SJ, Hector A, Lawton JH. 113.  2005. Resource dilution effects on specialist insect herbivores in a grassland biodiversity experiment. J. Anim. Ecol. 74:234–40 [Google Scholar]
  114. Parmesan C. 114.  2007. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Change Biol. 13:1860–72 [Google Scholar]
  115. Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD. 115.  et al. 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–83 [Google Scholar]
  116. Pateman RM, Hill JK, Roy DB, Fox R, Thomas CD. 116.  2012. Temperature-dependent alterations in host use drive rapid range expansion in a butterfly. Science 336:1028–30 [Google Scholar]
  117. Paynter Q, Overton JM, Hill RL, Bellgard SE, Dawson MI. 117.  2012. Plant traits predict the success of weed biocontrol. J. Appl. Ecol. 49:1140–48 [Google Scholar]
  118. Poland TM, McCullough DG. 118.  2006. Emerald ash borer: invasion of the urban forest and the threat to North America's ash resource. J. For. 104:118–24 [Google Scholar]
  119. Powell LA. 119.  2007. Approximating variance of demographic parameters using the delta method: a reference for avian biologists. Condor 109:949–54 [Google Scholar]
  120. Powell R. 120.  1990. The functional forms of density-dependent birth and death rates in diffuse knapweed (Centaurea diffusa) explain why it has not been controlled by Urophora affinis, U. quadrifasciata and Sphenoptera jugoslavica. Proc. Int. Symp. Biol. Control Weeds, 7th E Delfosse 195–202 Rome: Ist. Sper. Patol. Veg. [Google Scholar]
  121. Rausher MD. 121.  1993. The evolution of habitat preference: avoidance and adaptation. Evolution of Insect Pests: The Pattern of Variations KC Kim, BA McPheron 259–83 New York: Wiley [Google Scholar]
  122. Rees M, Childs DZ, Ellner SP. 122.  2014. Building integral projection models: a user's guide. J. Anim. Ecol. 83:528–45 [Google Scholar]
  123. Ritchie ME, Tilman D, Knops JMH. 123.  1998. Herbivore effects on plant and nitrogen dynamics in oak savanna. Ecology 79:165–77 [Google Scholar]
  124. Robinet C, Roques A. 124.  2010. Direct impacts of recent climate warming on insect populations. Integr. Zool. 5:132–42 [Google Scholar]
  125. Root RB. 125.  1973. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr. 43:95–124 [Google Scholar]
  126. Roque-Albelo L, Causton C, Mieles A. 126.  2003. Population decline of Galapagos endemic Lepidoptera on Volcan Alcedo (Isabela island, Galápagos Islands, Ecuador): an effect of the introduction of the cottony cushion scale. Bull. Inst. R. Sci. Nat. Belg. Entomol. 73:1–4 [Google Scholar]
  127. Roques A, Rousselet J, Avcı M, Avtzis DN, Basso A. 127.  et al. 2015. Climate warming and past and present distribution of the processionary moths (Thaumetopoea spp.) in Europe, Asia Minor and North Africa. Processionary Moths and Climate Change: An Update A Roques 81–161 New York: Springer [Google Scholar]
  128. Rose KE, Louda SM, Rees M. 128.  2005. Demographic and evolutionary impacts of native and invasive insect herbivores on Cirsium canescens. Ecology 86:453–65 [Google Scholar]
  129. Rose KE, Russell FL, Louda SM. 129.  2011. Integral projection model of insect herbivore effects on Cirsium altissimum populations along productivity gradients. Ecosphere 2:art97 [Google Scholar]
  130. Salguero-Gómez R, De Kroon H. 130.  2010. Matrix projection models meet variation in the real world. J. Ecol. 98:250–54 [Google Scholar]
  131. Sarfraz RM, Kharouba HM, Myers JH. 131.  2013. Tent caterpillars are robust to variation in leaf phenology and quality in two thermal environments. Bull. Entomol. Res. 103:522–29 [Google Scholar]
  132. Schierenbeck KA, Mack RN, Sharitz RR. 132.  1994. Effects of herbivory on growth and biomass allocation in native and introduced species of Lonicera. Ecology 75:1661–72 [Google Scholar]
  133. Schlinkert H, Westphal C, Clough Y, Ludwig M, Kabouw P, Tscharntke T. 133.  2015. Feeding damage to plants increases with plant size across 21 Brassicaceae species. Oecologia 179:455–66 [Google Scholar]
  134. Schöps K. 134.  2002. Local and regional dynamics of a specialist herbivore: overexploitation of a patchily distributed host plant. Oecologia 132:256–63 [Google Scholar]
  135. Schutzenhofer MR, Valone TJ, Knight TM. 135.  2009. Herbivory and population dynamics of invasive and native Lespedeza. Oecologia 161:57–66 [Google Scholar]
  136. Seastedt TR. 136.  2015. Biological control of invasive plant species: a reassessment for the Anthropocene. New Phytol 205:490–502 [Google Scholar]
  137. Shea K, Kelly D, Sheppard AW, Woodburn TL. 137.  2005. Context-dependent biological control of an invasive thistle. Ecology 86:3174–81 [Google Scholar]
  138. Shore TL, Safranyik L, Hawkes BC, Taylor SW. 138.  2006. Effects of the mountain pine beetle on lodgepole pine stand structure and dynamics. The Mountain Pine Beetle: A Synthesis of Biology, Management, and Impacts on Lodgepole Pine L Safranyik, B Wilson 95–114 Victoria, Can.: Nat. Resour. Can., Can. For. Serv., Pac. For. Cent. [Google Scholar]
  139. Singer MC, Parmesan C. 139.  2010. Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy?. Philos. Trans. R. Soc. B 365:3161–76 [Google Scholar]
  140. Sorte CJ, Ibáñez I, Blumenthal DM, Molinari NA, Miller LP. 140.  et al. 2013. Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecol. Lett. 16:261–70 [Google Scholar]
  141. Spencer N. 141.  2000. Proc. 10th Int. Symp. Biol. Control Weeds. Bozeman, MO: Mont. State Univ. [Google Scholar]
  142. Stephens AEA, Krannitz PG, Myers JH. 142.  2009. Plant community changes after the reduction of an invasive rangeland weed, diffuse knapweed, Centaurea diffusa. Biol. Control 51:140–46 [Google Scholar]
  143. Stephens AEA, Myers JH. 143.  2012. Resource concentration by insects and implications for plant populations. J. Ecol. 100:923–31 [Google Scholar]
  144. Stricker KB, Stiling P. 144.  2014. Release from herbivory does not confer invasion success for Eugenia uniflora in Florida. Oecologia 174:817–26 [Google Scholar]
  145. Suckling DM. 145.  2013. Benefits from biological control of weeds in New Zealand range from negligible to massive: a retrospective analysis. Biol. Control 66:27–32 [Google Scholar]
  146. Suckling DM, Sforza RFH. 146.  2014. What magnitude are observed non-target impacts from weed biocontrol?. PLOS ONE 9e84847 [Google Scholar]
  147. Tenow O. 147.  1972. The outbreaks of Oporina autumnata Bkh. and Operophtera spp. (Lep. Geometridae) in the Scandinavian mountain chain and northern Finland 1862–1968. Zool. Bidrag Uppsala 2:Suppl.1–107 [Google Scholar]
  148. Tenow O, Bylund H. 148.  2000. Recovery of a Betula pubescens forest in northern Sweden after severe defoliation by Epirrita autumnata. J. Veg. Sci. 11:855–62 [Google Scholar]
  149. Thomas CD, Franco AM, Hill JK. 149.  2006. Range retractions and extinction in the face of climate warming. Trends Ecol. Evol. 21:415–16 [Google Scholar]
  150. Thompson K. 150.  2000. The functional ecology of soil seed banks. Seeds: The Ecology of Regeneration in Plant Communities215–35 Wallingford, UK: CABI [Google Scholar]
  151. Turchin P. 151.  1999. Population regulation: a synthetic view. Oikos 84:153–59 [Google Scholar]
  152. Turnbull LA, Crawley MJ, Rees M. 152.  2000. Are plant populations seed-limited? A review of seed sowing experiments. Oikos 88:225–38 [Google Scholar]
  153. van Asch M, Visser ME. 153.  2007. Phenology of forest caterpillars and their host trees: the importance of synchrony. Annu. Rev. Entomol. 52:37–55 [Google Scholar]
  154. Van Wilgen B, Moran V, Hoffmann J. 154.  2013. Some perspectives on the risks and benefits of biological control of invasive alien plants in the management of natural ecosystems. Environ. Manag. 52:531–40 [Google Scholar]
  155. Visser ME. 155.  2008. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. R. Soc. B 275:649–59 [Google Scholar]
  156. Voigt W, Perner J, Davis AJ, Eggers T, Schumacher J. 156.  et al. 2003. Trophic levels are differentially sensitive to climate. Ecology 84:2444–53 [Google Scholar]
  157. von Euler T, Ågren J, Ehrlén J. 157.  2014. Environmental context influences both the intensity of seed predation and plant demographic sensitivity to attack. Ecology 95:495–504 [Google Scholar]
  158. Watt AD, Woiwod IP. 158.  1999. The effect of phenological asynchrony on population dynamics: analysis of fluctuations of British macrolepidoptera. Oikos 87:411–16 [Google Scholar]
  159. Williams DW, Liebhold AM. 159.  2002. Climate change and the outbreak ranges of two North American bark beetles. Agric. For. Entomol. 4:87–99 [Google Scholar]
  160. Williams JL, Auge H, Maron JL. 160.  2010. Testing hypotheses for exotic plant success: parallel experiments in the native and introduced ranges. Ecology 91:1355–66 [Google Scholar]
  161. Wilson RJ, Gutiérrez D, Gutiérrez J, Martínez D, Agudo R, Monserrat VJ. 161.  2005. Changes to the elevational limits and extent of species ranges associated with climate change. Ecol. Lett. 8:1138–46 [Google Scholar]
  162. Yang L. 162.  2012. The ecological consequences of insect outbreaks. Insect Outbreaks Revisited P Barbosa, DK Letourneau, AA Agrawal 197–218 Hoboken, NJ: Blackwell [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error