Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Akhtar N, Shafait F, Mian A. 1.  2015. Futuristic greedy approach to sparse unmixing of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 53:2157–74 [Google Scholar]
  2. Aldrich BT, Maghirang EB, Dowell FE, Kambhampati S. 2.  2007. Identification of termite species and subspecies of the genus Zootermopsis using near-infrared reflectance spectroscopy. J. Insect Sci. 7:1–7 [Google Scholar]
  3. Anderson K, Gaston KJ. 3.  2013. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 11:138–46 [Google Scholar]
  4. Aw WC, Dowell FE, Ballard JWO. 4.  2012. Using near-infrared spectroscopy to resolve the species, gender, age, and the presence of Wolbachia infection in laboratory-reared Drosophila. G3 2:1057–65 [Google Scholar]
  5. Backoulou GF, Elliott NC, Giles K, Phoofolo M, Catana V. 5.  2011. Development of a method using multispectral imagery and spatial pattern metrics to quantify stress to wheat fields caused by Diuraphis noxia. Comput. Electron. Agric. 75:64–70 [Google Scholar]
  6. Backoulou GF, Elliott NC, Giles KL, Phoofolo M, Catana V, Mirik M. 6.  2011. Spatially discriminating Russian wheat aphid induced plant stress from other wheat stressing factors. Comput. Electron. Agric. 78:123–29 [Google Scholar]
  7. Backoulou GF, Elliott NC, Giles KL, Rao MN. 7.  2013. Differentiating stress to wheat fields induced by Diuraphis noxia from other stress causing factors. Comput. Electron. Agric. 90:47–53 [Google Scholar]
  8. Baghzouz M, Devitt DA, Morris RL. 8.  2006. Evaluating temporal variability in the spectral reflectance response of annual ryegrass to changes in nitrogen applications and leaching fractions. Int. J. Remote Sens. 27:4137–57 [Google Scholar]
  9. Beddington J. 9.  2010. Food security: contributions from science to a new and greener revolution. Philos. Trans. R. Soc. B 365:61–71 [Google Scholar]
  10. Beerwinkle KR, Lopez JDJ, Schleider PG, Lingren PD. 10.  1995. Annual patterns of aerial insect densities at altitudes from 500 to 2400 meters in east-central Texas indicated by continuously-operating vertically-orientated radar. Southw. Entomol. Suppl. 18:63–80 [Google Scholar]
  11. Beerwinkle KR, Lopez JDJ, Witz JA, Schleider PG, Eyster RS, Lingren PD. 11.  1994. Seasonal radar and meteorological observations associated with nocturnal insect flight at altitudes to 900 meters. Environ. Entomol. 23:676–83 [Google Scholar]
  12. Billingsley FC. 12.  1984. Remote sensing for monitoring vegetation: an emphasis on satellites. The Role of Terrestrial Vegetation in the Global Carbon Cycle: Measurement by Remote Sensing GM Woodwell 161–80 New York: Wiley [Google Scholar]
  13. Burleigh JG, Alphonse K, Alverson AJ, Bik HM, Blank C. 13.  et al. 2013. Next-generation phenomics for the Tree of Life. PLOS Curr. Tree Life doi: 10.1371/currents.tol.085c713acafc8711b2ff7010a4b03733
  14. Butler SM, Moon RD, Hinkle NC, Millar JG, Mcelfresh JS, Mullens BA. 14.  2009. Characterization of age and cuticular hydrocarbon variation in mating pairs of house fly, Musca domestica, collected in the field. Med. Vet. Entomol. 23:426–42 [Google Scholar]
  15. Camargo A, Molina JP, Cadena-Torres J, Jimenez N, Kim JT. 15.  2012. Intelligent systems for the assessment of crop disorders. Comput. Electron. Agric. 85:1–7 [Google Scholar]
  16. Carrière Y, Ellsworth PC, Dutilleul P, Ellers-Kirk C, Barkley V, Antilla L. 16.  2006. A GIS-based approach for areawide pest management: the scales of Lygus hesperus movements to cotton from alfalfa, weeds, and cotton. Entomol. Exp. Appl. 118:203–10 [Google Scholar]
  17. Carroll MW, Glaser JA, Hellmich RL, Hunt TE, Sappington TW. 17.  et al. 2008. Use of spectral vegetation indices derived from airborne hyperspectral imagery for detection of European corn borer infestation in Iowa corn plots. J. Econ. Entomol. 101:1614–23 [Google Scholar]
  18. Carter GA. 18.  1994. Ratios of leaf reflectance in narrow wavebands as indicators of plant stress. Int. J. Remote Sens. 15:697–703 [Google Scholar]
  19. Carter GA, Knapp AK. 19.  2001. Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. Am. J. Bot. 88:677–84 [Google Scholar]
  20. Chapman JW, Drake VA, Reynolds DR. 20.  2011. Recent insights from radar studies of insect flight. Annu. Rev. Entomol. 56:337–56 [Google Scholar]
  21. Chapman JW, Reynolds DR, Smith AD. 21.  2003. Vertical-looking radar: a new tool for monitoring high-altitude insect migration. Bioscience 53:503–11 [Google Scholar]
  22. Chapman JW, Reynolds DR, Smith AD, Riley JR, Pedgley DE, Woiwod IP. 22.  2002. High-altitude migration of the diamondback moth Plutella xylostella to the U.K.: a study using radar, aerial netting, and ground trapping. Ecol. Entomol. 27:641–50 [Google Scholar]
  23. Chiao CC, Wu W-Y, Chen S-H, Yang E-C. 23.  2009. Visualization of the spatial and spectral signals of orb-weaving spiders, Nephila pilipes, through the eyes of a honeybee. J. Exp. Biol. 212:2269–78 [Google Scholar]
  24. Coops NC, Stone C, Culvenor DS, Chisholm L. 24.  2004. Assessment of crown condition in eucalypt vegetation by remotely sensed optical indices. J. Environ. Qual. 33:956–64 [Google Scholar]
  25. Datt B. 25.  1998. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in Eucalyptus leaves. Remote Sens. Environ. 66:111–21 [Google Scholar]
  26. Dawson TP, Curran PJ. 26.  1998. A new technique for interpolating red edge position. Int. J. Remote Sens. 19:2133–39 [Google Scholar]
  27. de Loof A, Huybrechts J, Geens M, Vandersmissen T, Boerjan B, Schoofs L. 27.  2010. Sexual differentiation in adult insects: male-specific cuticular yellowing in Schistocerca gregaria as a model for reevaluating some current (neuro)endocrine concepts. J. Insect Physiol. 56:919–25 [Google Scholar]
  28. Defernez M, Kemsley EK. 28.  1997. The use and misuse of chemometrics for treating classification problems. Trends Anal. Chem. 16:216–21 [Google Scholar]
  29. DeFries R. 29.  2008. Terrestrial vegetation in the coupled human-earth system: contributions of remote sensing. Annu. Rev. Environ. Resour. 33:369–90 [Google Scholar]
  30. Dianguirard M, Slater PN. 30.  1999. Calibration of space-multispectral imaging sensors: a review. Remote Sens. Environ. 68:194–205 [Google Scholar]
  31. Dickinson M, Farman G, Frye M, Bekyarova T, Gore D. 31.  et al. 2005. Molecular dynamics of cyclically contracting insect flight muscle in vivo. Nature 433:330–34 [Google Scholar]
  32. Dopido I, Zortea M, Villa A, Plaza A, Gamba P. 32.  2011. Unmixing prior to supervised classification of remotely sensed hyperspectral images. IEEE Geosci. Remote Sens. Lett. 8:760–64 [Google Scholar]
  33. Dowell FE, Throne JE, Wang D, Baker JE. 33.  1999. Identifying stored-grain insects using near-infrared spectroscopy. J. Econ. Entomol. 92:165–69 [Google Scholar]
  34. Dunagan SC, Gilmore MS, Varekamp JC. 34.  2007. Effects of mercury on visible/near-infrared reflectance spectra of mustard spinach plants (Brassica rapa P.). Environ. Pollut. 148:301–11 [Google Scholar]
  35. Ehlers M, Klonus S, Johan PA, Rosso P. 35.  2010. Multi-sensor image fusion for pansharpening in remote sensing. Int. J. Image Data Fusion 1:25–45 [Google Scholar]
  36. Eklundh L, Johansson T, Solberg S. 36.  2009. Mapping insect defoliation in Scots pine with MODIS time-series data. Remote Sens. Environ. 113:1566–73 [Google Scholar]
  37. Faria FA, Perre P, Zucchi RA, Jorge LR, Lewinsohn TM. 37.  et al. 2014. Automatic identification of fruit flies (Diptera: Tephritidae). J. Vis. Commun. Image Represent. 25:1516–27 [Google Scholar]
  38. Ferreira-Caliman MJ, Nascimento FS, Turatti IC, Mateus S, Lopes NP, Zucchi R. 38.  2010. The cuticular hydrocarbons profiles in the stingless bee Melipona marginata reflect task-related differences. J. Insect Physiol. 56:800–4 [Google Scholar]
  39. Floreano D, Wood RJ. 39.  2015. Science, technology and the future of small autonomous drones. Nature 521:460–66 [Google Scholar]
  40. Geiselhardt S, Otte T, Hilker M. 40.  2009. The role of cuticular hydrocarbons in male mating behavior of the mustard leaf beetle, Phaedon cochleariae (F.). J. Chem. Ecol. 35:1162–71 [Google Scholar]
  41. Gitelson A, Merzlyak MN. 41.  1994. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 143:286–92 [Google Scholar]
  42. Gowen AA, Marini F, Esquerre C, O'Donnell C, Downey G, Burger J. 42.  2011. Time series hyperspectral chemical imaging data: challenges, solutions and applications. Anal. Chim. Acta 705:272–82 [Google Scholar]
  43. Guo B, Gunn SR, Damper RI, Nelson JDB. 43.  2008. Customizing kernel functions for SVM-based hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 17:622–29 [Google Scholar]
  44. Ha W, Gowda PH, Howell TA. 44.  2013. A review of downscaling methods for remote sensing-based irrigation management: part I. Irrig. Sci. 31:831–50 [Google Scholar]
  45. Hawkins DM. 45.  2004. The problem of overfitting. J. Chem. Inf. Comput. Sci. 1:1–12 [Google Scholar]
  46. Honkavaara E, Arbiol R, Markelin L, Martinez L, Cramer M. 46.  et al. 2009. Digital airborne photogrammetry—a new tool for quantitative remote sensing? A state-of-the-art review on radiometric aspects of digital photogrammetric images. Remote Sens. 1:577–605 [Google Scholar]
  47. Horler DNH, Dockray M, Barber J, Barringer AR. 47.  1983. Red edge measurements for remotely sensing plant chlorophyll content. Adv. Space Res. 3:273–77 [Google Scholar]
  48. Houle D, Govindaraju DR, Omholt S. 48.  2010. Phenomics: the next challenge. Nat. Rev. Genet. 11:855–66 [Google Scholar]
  49. Howard RW, Baker JE. 49.  2003. Cuticular hydrocarbons and wax esters of the ectoparasitoid Habrobracon hebetor: ontogenetic, reproductive, and nutritional effects. Arch. Insect Biochem. Physiol. 53:1–18 [Google Scholar]
  50. Howard RW, Blomquist GJ. 50.  2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50:371–93 [Google Scholar]
  51. Howard RW, Pérez-Lachaud G. 51.  2002. Cuticular hydrocarbons of the ectoparasitic wasp Cephalonomia hyalinipennis (Hymenoptera: Bethylidae) and its alternative host, the stored product pest Caulophilus oryzae (Coleoptera: Curculionidae). Arch. Insect Biochem. Physiol. 50:75–84 [Google Scholar]
  52. Huang F, Leonard BR, Moore SH, Cook DR, Baldwin J. 52.  et al. 2008. Allele frequency of resistance to Bacillus thuringiensis Cry1Ab corn in Louisiana populations of sugarcane borer (Lepidoptera: Crambidae). J. Econ. Entomol. 101:492–98 [Google Scholar]
  53. Huang J, Liao H, Zhu Y, Sun J, Sun Q, Liu X. 53.  2012. Hyperspectral detection of rice damaged by rice leaf folder (Cnaphalocrocis medinalis). Comput. Electron. Agric. 82:100–7 [Google Scholar]
  54. Huang Y, Lan Y, Westbrook JK, Hoffmann WC. 54.  2008. Remote sensing and GIS applications for precision area-wide pest management: implications for Homeland Security. Geospatial Technologies and Homeland Security DZ Sui 94241–55 Dordrecht, Neth: Springer [Google Scholar]
  55. Iordache MD, Bioucas-Dias JM, Plaza A. 55.  2011. Sparse unmixing of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 49:2014–39 [Google Scholar]
  56. Irving TC, Maughan DW. 56.  2000. In vivo X-ray diffraction of indirect flight muscle from Drosophila melanogaster. Biophys. J. 78:2511–15 [Google Scholar]
  57. Isaaks EH, Srivastava RM. 57.  1989. Applied Geostatistics New York: Oxford Univ. Press
  58. Jean-Philippe S, Labbé N, Damay J, Franklin J, Hughes K. 58.  2012. Effect of mercuric compounds on pine and sycamore germination and early survival. Am. J. Plant Sci. 3:150–58 [Google Scholar]
  59. Jia F, Magghirang E, Dowell F, Abel C, Ramaswamy S. 59.  2007. Differentiating tobacco budworm and corn earworm using near-infrared spectroscopy. J. Econ. Entomol. 100:759–64 [Google Scholar]
  60. Joseph G. 60.  2005. Fundamentals of Remote Sensing Hyderabad, India: Universities Press
  61. Kelly M, Guo Q. 61.  2007. Integrated agricultural pest management through remote sensing and spatial analyses. General Concepts in Integrated Pest and Disease Management A Ciancio, KG Mukerji 1191–207 Dordrecht, Neth: Springer [Google Scholar]
  62. Kemsley EK. 62.  1996. Discriminant analysis of high-dimensional data: a comparison of principal components analysis and partial least squares data reduction methods. Chemom. Intell. Lab. Syst. 33:47–61 [Google Scholar]
  63. Klarica J, Bittner L, Pallua J, Pezzei C, Huck-Pezzei V. 63.  et al. 2011. Near-infrared imaging spectroscopy as a tool to discriminate two cryptic Tetramorium ant species. J. Chem. Ecol. 37:549–52 [Google Scholar]
  64. Korie S, Perry JN, Mugglestone MA, Clark SJ, Thomas CFG, Roff MN. 64.  2000. Spatio-temporal associations in beetle and virus count data. J. Agric. Biol. Environ. Stat. 5:214–39 [Google Scholar]
  65. Kruse FA, Taranik JV, Coolbaugh M, Michaels J, Littlefield EF. 65.  et al. 2011. Effect of reduced spatial resolution on mineral mapping using imaging spectrometry—examples using hyperspectral infrared imager (HyspIRI)-simulated data. Remote Sens. 3:1584–602 [Google Scholar]
  66. Lacoste C, Nansen C, Thompson S, Moir-Barnetson L, Mian A. 66.  et al. 2015. Increased susceptibility to aphids of flowering wheat plants exposed to low temperatures. Environ. Entomol. 44:610–18 [Google Scholar]
  67. Laliberte AS, Goforth MA, Steele CM, Rango A. 67.  2011. Multispectral remote sensing from unmanned aircraft: image processing workflows and applications for rangeland environments. Remote Sens. 3:2529–51 [Google Scholar]
  68. Lammertyn J, Peirs A, de Baerdemaeker J, Nicolaı B. 68.  2000. Light penetration properties of NIR radiation in fruit with respect to non-destructive quality assessment. Postharvest Biol. Technol. 18:121–32 [Google Scholar]
  69. Land MF, Horwood J, Lim MLM, Li D. 69.  2007. Optics of the ultraviolet reflecting scales of a jumping spider. Proc. R. Soc. B 274:1583–89 [Google Scholar]
  70. Lapointe SL, Hunter WB, Alessandro RT. 70.  2004. Cuticular hydrocarbons on elytra of the Diaprepes root weevil Diaprepes abbreviatus (L.) (Coleoptera: Curculionidae). Agric. Forest Entomol. 6:251–57 [Google Scholar]
  71. Lee WS, Alchanatis V, Yang C, Hirafuji M, Moshoue D, Li C. 71.  2010. Sensing technologies for precision specialty crop production. Comput. Electron. Agric. 74:2–33 [Google Scholar]
  72. Lefsky MA, Cohen WB, Parker GG, Harding DJ. 72.  2002. Lidar remote sensing for ecosystem studies. Bioscience 52:19–30 [Google Scholar]
  73. Lei W, Huaguo H, Youqing L. 73.  2010. Remote sensing of insect pests in larch forest based on physical model Presented at Proc. Geosci. Remote Sens. Symp. (IGARSS), IEEE Int., July 25–30, Honolulu, HI
  74. Lévesque J, King DJ. 74.  2003. Spatial analysis of radiometric fractions from high-resolution multispectral imagery for modelling individual tree crown and forest canopy structure and health. Remote Sens. Environ. 84:589–602 [Google Scholar]
  75. Liebhold AM, Rossi RE, Kemp WP. 75.  1993. Geostatistics and geographic information systems in applied insect ecology. Annu. Rev. Entomol. 38:303–27 [Google Scholar]
  76. Lim MLM, Land MF, Li D. 76.  2007. Sex-specific UV and fluorescence function as courtship signals in jumping spiders. Science 315:481 [Google Scholar]
  77. Lu H, Zheng H, Hu Y, Lou H, Kong X. 77.  2011. Bruise detection on red bayberry (Myrica rubra Sieb. & Zucc.) using fractal analysis and support vector machine. J. Food Eng. 104:149–53 [Google Scholar]
  78. Luo C, Wei C, Nansen C. 78.  2015. How do “mute” cicadas produce their calling songs?. PLOS ONE 10:e0118554 [Google Scholar]
  79. Luo J, Huang W, Yuan L, Zhao C, Du S. 79.  et al. 2013. Evaluation of spectral indices and continuous wavelet analysis to quantify aphid infestation in wheat. Precis. Agric. 14:151–61 [Google Scholar]
  80. Manickavasagan A, Jayas DS, White NDG. 80.  2008. Thermal imaging to detect infestation by Cryptolestes ferrugineus inside wheat kernels. J. Stored Prod. Res. 44:186–92 [Google Scholar]
  81. Mantuano A, Pickler A, Barroso RC, de Almeida AP, Braz D. 81.  et al. 2012. Elemental changes in hemolymph and urine of Rhodnius prolixus induced by in-vivo exposure to mercury: a study using synchrotron radiation total reflection X-ray fluorescence. Spectrochim. Acta B 71–72:127–30 [Google Scholar]
  82. Markelin L, Honkavaara E, Peltoniemi J, Ahokas E, Kuittinen R. 82.  et al. 2008. Radiometric calibration and characterization of large-format digital photogrammetric sensors in a test field. Photogramm. Eng. Remote Sens. 74:1487–500 [Google Scholar]
  83. Mietchen D, Keupp H, Manz B, Volke F. 83.  2005. Non-invasive diagnostics in fossils—magnetic resonance imaging of pathological belemnites. Biogeosciences 2:133–40 [Google Scholar]
  84. Mietchen D, Manz B, Volke F, Storey K. 84.  2008. Assessment of cold adaptation in insect larvae by magnetic resonance imaging and magnetic resonance spectroscopy. PLOS ONE 3:e3826 [Google Scholar]
  85. Mirik M, Ansley RJ, Michels JGJ, Elliott NC. 85.  2012. Spectral vegetation indices selected for quantifying Russian wheat aphid (Diuraphis noxia) feeding damage in wheat (Triticum aestivum L.). Precis. Agric. 13:501–16 [Google Scholar]
  86. Mirik M, Michels GJ, Kassymzhanova-Mirik S, Elliott NC, Bowling R. 86.  2006. Hyperspectral spectrometry as a means to differentiate uninfested and infested winter wheat by greenbug (Hemiptera: Aphididae). J. Econ. Entomol. 99:1682–90 [Google Scholar]
  87. Mogren CL, Webb SM, Walton WE, Trumble JT. 87.  2013. Micro X-ray absorption spectroscopic analysis of arsenic localization and biotransformation in Chironomus riparius Meigen (Diptera: Chironomidae) and Culex tarsalis Coquillett (Culicidae). Environ. Pollut. 180:78–83 [Google Scholar]
  88. Müller J, Brandl R. 88.  2009. Assessing biodiversity by remote sensing in mountainous terrain: the potential of LiDAR to predict forest beetle assemblages. J. Appl. Ecol. 46:897–905 [Google Scholar]
  89. Muñoz-Huerta R, Guevara-Gonzalez R, Contreras-Medina L, Torres-Pacheco I, Prado-Olivarez J, Ocampo-Velazquez R. 89.  2013. A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances. Sensors 13:10823–43 [Google Scholar]
  90. Nansen C. 90.  2011. Robustness of analyses of imaging data. Opt. Express 19:15173–80 [Google Scholar]
  91. Nansen C. 91.  2012. Use of variogram parameters in analysis of hyperspectral imaging data acquired from dual-stressed crop leaves. Remote Sens. 4:180–93 [Google Scholar]
  92. Nansen C, Abidi N, Sidumo AJ, Gharalari AH. 92.  2010. Using spatial structure analysis of hyperspectral imaging data and Fourier transformed infrared analysis to determine bioactivity of surface pesticide treatment. Remote Sens. 2:908–25 [Google Scholar]
  93. Nansen C, Coelho AJ, Mendes JV, Parra JRP. 93.  2014. Reflectance-based identification of parasitized host eggs and adult Trichogramma specimens. J. Exp. Biol. 217:1187–92 [Google Scholar]
  94. Nansen C, Geremias LD, Xue Y, Huang F, Parra JR. 94.  2013. Agricultural case studies of classification accuracy, spectral resolution, and model over-fitting. Appl. Spectrosc. 67:1332–38 [Google Scholar]
  95. Nansen C, Macedo T, Swanson R, Weaver DK. 95.  2009. Use of spatial structure analysis of hyperspectral data cubes for detection of insect-induced stress in wheat plants. Int. J. Remote Sens. 30:2447–64 [Google Scholar]
  96. Nansen C, Ribeiro LP, Dadour I, Roberts JD. 96.  2015. Detection of temporal changes in insect body reflectance in response to killing agents. PLOS ONE doi: 10.1371/journal.pone.0124866
  97. Nansen C, Sidumo AJ, Capareda S. 97.  2010. Variogram analysis of hyperspectral data analysis to characterize impact of biotic and abiotic stress of maize plants and to estimate biofuel potential. Appl. Spectrosc. 64:627–36 [Google Scholar]
  98. Nansen C, Sidumo AJ, Martini X, Stefanova K, Roberts JD. 98.  2013. Reflectance-based assessment of spider mite “bio-response” to maize leaves and plant potassium content in different irrigation regimes. Comput. Electron. Agric. 97:21–26 [Google Scholar]
  99. Nansen C, Weaver DK, Sing SE, Runyon JB, Morrill WL. 99.  et al. 2005. Within-field spatial distribution of Cephus cinctus (Hymenoptera: Cephidae) larvae in Montana wheat fields. Can. Entomol. 137:202–14 [Google Scholar]
  100. Nansen C, Zhang X, Aryamanesh N, Yan G. 100.  2014. Use of variogram analysis to classify field peas with and without internal defects caused by weevil infestation. J. Food Eng. 123:17–22 [Google Scholar]
  101. Newey P, Robson SKA, Crozier RH. 101.  2009. Nest and colony-specific spectra in the weaver ant Oecophylla smaragdina. Insectes Soc. 56:261–68 [Google Scholar]
  102. Newey PS, Robson SKA, Crozier RH. 102.  2008. Near-infrared spectroscopy as a tool in behavioural ecology: a case study of the weaver ant, Oecophylla smaragdina. Anim. Behav. 76:1727–33 [Google Scholar]
  103. Nguyen CV, Lovell DR, Adcock M, La Salle J. 103.  2014. Capturing natural-colour 3D models of insects for species discovery and diagnostics. PLOS ONE 9:e94346 [Google Scholar]
  104. Nunes TM, Turatti ICC, Mateus S, Nascimento FS, Lopes NP, Zucchi R. 104.  2009. Cuticular hydrocarbons in the stingless bee Schwarziana quadripunctata (Hymenoptera, Apidae, Meliponini): differences between colonies, castes and age. Genet. Mol. Res. 8:589–95 [Google Scholar]
  105. Patterson MCL, Brescia A. 105.  2010. Operation of small sensor payloads on tactical sized unmanned air vehicles. Aeronaut. J. 114:427–36 [Google Scholar]
  106. Peddle DR, Hall FG, LeDrew EF. 106.  1999. Spectral mixture analysis and geometric-optical reflectance modeling of boreal forest biophysical structure. Remote Sens. Environ. 67:288–97 [Google Scholar]
  107. Peleg K, Anderson GL, Yang C. 107.  2005. Repeatability of hyperspectral imaging systems: quantification and improvement. Int. J. Remote Sens. 26:115–39 [Google Scholar]
  108. Perrings C, Dehnen-Schmutz K, Touza J, Williamson M. 108.  2005. How to manage biological invasions under globalization. Trends Ecol. Evol. 20:212–15 [Google Scholar]
  109. Pimentel D, Zuniga R, Morrison D. 109.  2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52:273–88 [Google Scholar]
  110. Pinter PJ, Hatfield JL, Schepers JS, Barnes EM, Moran MS. 110.  et al. 2003. Remote sensing for crop management. Photogramm. Eng. Remote Sens. 69:647–64 [Google Scholar]
  111. Prabhakar M, Prasad YG, Rao MN. 111.  2012. Remote sensing of biotic stress in crop plants and its applications for pest management. Crop Stress and Its Management: Perspectives and Strategies B Venkateswarlu, AK Shanker, C Shanker, M Maheswari 517–49 New York: Springer [Google Scholar]
  112. Qin J, Lu R. 112.  2008. Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique. Postharvest Biol. Technol. 49:355–65 [Google Scholar]
  113. Raven PH, Evert RF, Eichorn SE. 113.  1986. Biology of Plants New York: Worth
  114. Reeves WK, Peiris KHS, Scholte E-J, Wirtz RA, Dowell FE. 114.  2010. Age-grading the biting midge Culicoides sonorensis using near-infrared spectroscopy. Med. Vet. Entomol. 24:32–37 [Google Scholar]
  115. Reisig DD, Godfrey LD. 115.  2010. Remotely sensing arthropod and nutrient stressed plants: a case study with nitrogen and cotton aphid (Hemiptera: Aphididae). Environ. Entomol. 39:1255–63 [Google Scholar]
  116. Riedell WE, Blackmer TM. 116.  1999. Leaf reflectance spectra of cereal aphid-damaged wheat. Crop Sci. 39:1835–40 [Google Scholar]
  117. Riley JR. 117.  1989. Remote sensing in entomology. Annu. Rev. Entomol. 34:247–71 [Google Scholar]
  118. Riley JR, Xia-Nian C, Xiao-Xi Z, Reynolds DR, Guo-Min XU. 118.  et al. 1991. The long-distance migration of Nilaparvata lugens (Stål) (Delphacidae) in China: radar observations of mass return flight in the autumn. Ecol. Entomol. 16:471–89 [Google Scholar]
  119. Roux O, Gers C, Legal L. 119.  2008. Ontogenetic study of three Calliphoridae of forensic importance through cuticular hydrocarbon analysis. Med. Vet. Entomol. 22:309–17 [Google Scholar]
  120. Royle DD, Lathrop RG. 120.  2002. Discriminating Tsuga canadensis hemlock forest defoliation using remotely sensed change detection. J. Nematol. 34:213–21 [Google Scholar]
  121. Schotzko DJ, Quisenberry SS. 121.  1999. Pea leaf weevil (Coleoptera: Curculionidae) spatial distribution in peas. Environ. Entomol. 28:477–84 [Google Scholar]
  122. Sikulu M, Killeen GF, Hugo LE, Ryan PA, Dowell KM. 122.  et al. 2010. Short report near-infrared spectroscopy as a complementary age grading and species identification tool for African malaria vectors. Parasites Vectors 3:1–7 [Google Scholar]
  123. Sikulu MT, Majambere S, Khatib BO, Ali AS, Hugo LE, Dowell FE. 123.  2014. Using a near-infrared spectrometer to estimate the age of Anopheles mosquitoes exposed to pyrethroids. PLOS ONE 9:1–6 [Google Scholar]
  124. Simonett DS. 124.  1983. Manual of Remote Sensing Falls Church, VA: Am. Soc. Photogramm
  125. Singh CB, Jayas DS, Paliwal J, White NDG. 125.  2009. Detection of insect-damaged wheat kernels using near-infrared hyperspectral imaging. J. Stored Prod. Res. 45:151–58 [Google Scholar]
  126. Singh CB, Jayas DS, Paliwal J, White NDG. 126.  2010. Identification of insect-damaged wheat kernels using short-wave near-infrared hyperspectral and digital colour imaging. Comput. Electron. Agric. 73:118–25 [Google Scholar]
  127. Smith AD, Reynolds DR, Riley JR. 127.  2000. The use of vertical-looking radar to continuously monitor the insect fauna flying at altitude over southern England. Bull. Entomol. Res. 90:265–77 [Google Scholar]
  128. Stavrakoudis D, Dragozi E, Gitas I, Karydas C. 128.  2014. Decision fusion based on hyperspectral and multispectral satellite imagery for accurate forest species mapping. Remote Sens. 6:6897–928 [Google Scholar]
  129. Steiner S, Mumm R, Ruther J. 129.  2007. Courtship pheromones in parasitic wasps: comparison of bioactive and inactive hydrocarbon profiles by multivariate statistical methods. J. Chem. Ecol. 33:825–38 [Google Scholar]
  130. Stone C, Coops NC. 130.  2004. Assessment and monitoring of damage from insects in Australian eucalypt forests and commercial plantations. Aust. J. Entomol. 43:283–92 [Google Scholar]
  131. Sudbrink DL, Harris FA, Robbins JT, English PJ, Willers JL. 131.  2003. Evaluation of remote sensing to identify variability in cotton plant growth and correlation with larval densities of beet armyworm and cabbage looper (Lepidoptera: Noctuidae). Fla. Entomol. 86:290–94 [Google Scholar]
  132. Taylor LR. 132.  1984. Assessing and interpreting the spatial distributions of insect populations. Annu. Rev. Entomol. 29:321–57 [Google Scholar]
  133. Thorp KR, Tian LF. 133.  2004. A review on remote sensing of weeds in agriculture. Precis. Agric. 5:477–508 [Google Scholar]
  134. Trumble JT, Kolodny-Hirsch DM, Ting IP. 134.  1993. Plant compensation for arthropod herbivory. Annu. Rev. Entomol. 38:93–119 [Google Scholar]
  135. Tueller PT. 135.  1982. Remote sensing for range management. Remote Sensing in Resource Management CJ Johannsen, JL Sanders 125–40 Ankeny, IN: Soil Conserv. Soc. Am. [Google Scholar]
  136. Vadivambal R, Jayas DS. 136.  2011. Applications of thermal imaging in agriculture and food industry—a review. Food Bioprocess Technol. 4:186–99 [Google Scholar]
  137. Villa A, Chanussot J, Benediktsson JA, Jutten C. 137.  2011. Spectral unmixing for the classification of hyperspectral images at a finer spatial resolution. IEEE J. Sel. Top. Signal Process. 5:521–33 [Google Scholar]
  138. Wakabayashi K, Tokunaga M, Kohno I. 138.  1992. Small-angle synchrotron X-ray scattering reveals distinct shape changes of the myosin head during hydrolysis of ATP. Science 258:443–47 [Google Scholar]
  139. Wang J, Nakano K, Ohashi S. 139.  2011. Non-destructive detection of internal insect infestation in jujubes using visible and near-infrared spectroscopy. Postharvest Biol. Technol. 59:272–79 [Google Scholar]
  140. Wang J, Nakano K, Ohashi S, Takizawa K, He JG. 140.  2010. Comparison of different modes of visible and near-infrared spectroscopy for detecting internal insect infestation in jujubes. J. Food Eng. 101:78–84 [Google Scholar]
  141. Wang Y, Nansen C, Zhang Y. 141.  2015. Integrative insect taxonomy based on morphology, mitochondrial DNA and hyperspectral reflectance profiling. Zool. J. Linn. Soc. In press
  142. Webster TC, Dowell FE, Maghirang EB, Thacker EM. 142.  2009. Visible and near-infrared spectroscopy detects queen honey bee insemination. Apidologie 40:565–69 [Google Scholar]
  143. Westneat MW, Socha JJ, Lee WK. 143.  2008. Advances in biological structure, function, and physiology using synchrotron X-ray imaging. Annu. Rev. Physiol. 70:119–42 [Google Scholar]
  144. Willers JL, Jenkins JN, Ladner WL, Gerard PD, Boykin DL. 144.  et al. 2005. Site-specific approaches to cotton insect control. sampling and remote sensing analysis techniques. Precis. Agric. 6:431–52 [Google Scholar]
  145. Wilson BC, Jacques SL. 145.  1990. Optical reflectance and transmittance of tissues: principles and applications. IEEE J. Quantum Electron. 26:2186–99 [Google Scholar]
  146. Winder L, Perry JN, Holland JM. 146.  1999. The spatial and temporal distribution of the grain aphid Sitobion avenae in winter wheat. Entomol. Exp. Appl. 93:277–90 [Google Scholar]
  147. Xie Y, Sha Z, Yu M. 147.  2008. Remote sensing imagery in vegetation mapping: a review. J. Plant Ecol. 1:9–23 [Google Scholar]
  148. Yang C, Everitt JH, Bradford JM, Murden D. 148.  2009. Comparison of airborne multispectral and hyperspectral imagery for estimating grain sorghum yield. Trans. ASABE 52:641–49 [Google Scholar]
  149. Yang C, Everitt JH, Fernandez CJ. 149.  2010. Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root rot. Biosyst. Eng. 107:131–39 [Google Scholar]
  150. Yang Z, Rao MN, Elliott NC, Kindler SD, Popham TW. 150.  2005. Using ground-based multispectral radiometry to detect stress in wheat caused by greenbug (Homoptera: Aphididae) infestation. Comput. Electron. Agric. 47:121–35 [Google Scholar]
  151. Yang Z, Rao MN, Elliott NC, Kindler SD, Popham TW. 151.  2009. Differentiating stress induced by greenbugs and Russian wheat aphids in wheat using remote sensing. Comput. Electron. Agric. 67:64–70 [Google Scholar]
  152. Yang Z, Rao MN, Kindler SD, Elliott NC. 152.  2004. Remote sensing to detect plant stress, with particular reference to stress caused by the greenbug: a review. Southwest. Entomol. 29:227–36 [Google Scholar]
  153. Yeh C. 153.  1994. Applied Photonics San Diego, CA: Academic
  154. Young AM. 154.  1971. Wing coloration and reflectance in Morpho butterflies as related to reproductive behavior and escape from avian predators. Oecologia (Berlin) 7:209–22 [Google Scholar]
  155. Young T. 155.  1807. A Course of Lectures on Natural Philosophy and the Mechanical Arts London: Johnson
  156. Zhang C, Kovacs JM. 156.  2012. The application of small unmanned aerial systems for precision agriculture: a review. Precis. Agric. 13:693–712 [Google Scholar]
  157. Zhang C, Walters D, Kovacs JM. 157.  2014. Applications of low altitude remote sensing in agriculture upon farmers' requests—a case study in northeastern Ontario, Canada. PLOS ONE 9:e112894 [Google Scholar]
  158. Zhang X, Nansen C, Aryamanesh N, Yan G, Boussaid F. 158.  2015. Importance of spatial and spectral data reduction in detection of internal defects in food products. Appl. Spectrosc. 69:473–80 [Google Scholar]
  159. Zhu GH, Ye GY, Hu C, Xu XH, Li K. 159.  2006. Development changes of cuticular hydrocarbons in Chrysomya rufifacies larvae: potential for determining larval age. Med. Vet. Entomol. 20:438–44 [Google Scholar]
  160. Zhu Y, Yao X, Tian Y, Liu X, Cao W. 160.  2008. Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice. Int. J. Appl. Earth Obs. Geoinf. 10:1–10 [Google Scholar]
  161. Zschokke S. 161.  2002. Ultraviolet reflectance of spiders and their webs. J. Arachnol. 30:246–54 [Google Scholar]
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error