1932

Abstract

Crop domestication is the process of artificially selecting plants to increase their suitability to human requirements: taste, yield, storage, and cultivation practices. There is increasing evidence that crop domestication can profoundly alter interactions among plants, herbivores, and their natural enemies. Overall, little is known about how these interactions are affected by domestication in the geographical ranges where these crops originate, where they are sympatric with the ancestral plant and share the associated arthropod community. In general, domestication consistently has reduced chemical resistance against herbivorous insects, improving herbivore and natural enemy performance on crop plants. More studies are needed to understand how changes in morphology and resistance-related traits arising from domestication may interact with environmental variation to affect species interactions across multiple scales in agroecosystems and natural ecosystems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-010814-020601
2015-01-07
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/ento/60/1/annurev-ento-010814-020601.html?itemId=/content/journals/10.1146/annurev-ento-010814-020601&mimeType=html&fmt=ahah

Literature Cited

  1. Agrawal AA. 1.  1999. Induced plant defense: evolution of induction and adaptive phenotypic plasticity. Induced Plant Defenses Against Pathogens and Herbivores: Biochemstry, Ecology and Agriculture AA Agrawal, S Tuzun, E Bent 251–68 St. Paul, MN: APS [Google Scholar]
  2. Ali JG, Agrawal AA. 2.  2012. Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci. 17:5293–302 [Google Scholar]
  3. Altieri MA, Merrick L. 3.  1987. In situ conservation of crop genetic resources through maintenance of traditional farming systems. Econ. Bot. 41:186–96 [Google Scholar]
  4. Alvarez N, Hossaert-McKey M, Restoux G, Delgado-Salinas A, Benrey B. 4.  2007. Anthropogenic effects on population genetics of phytophagous insects associated with domesticated plants. Evolution 61:122986–96Insect population differentiation by geographical distance in relation to anthropogenic disturbances. [Google Scholar]
  5. Andow DA. 5.  1991. Vegetational diversity and arthropod population response. Annu. Rev. Entomol. 36:561–86 [Google Scholar]
  6. Ballhorn DJ, Kautz S, Lion U, Heil M. 6.  2008. Trade-offs between direct and indirect defences of lima bean (Phaseolus lunatus). J. Ecol. 96:5971–80 [Google Scholar]
  7. Barton KE, Koricheva J. 7.  2010. The ontogeny of plant defense and herbivory: characterizing general patterns using meta-analysis. Am. Nat. 175:4481–93 [Google Scholar]
  8. Bellota E, Medina RF, Bernal JS. 8.  2013. Physical leaf defenses—altered by Zea life-history evolution, domestication, and breeding—mediate oviposition preference of a specialist leafhopper. Entomol. Exp. Appl. 2:185–95 [Google Scholar]
  9. Benrey B, Callejas A, Rios L, Oyama K, Denno RF. 9.  1998. The effects of domestication of Brassica and Phaseolus on the interaction between phytophagous insects and parasitoids. Biol. Control 11:2130–40First paper investigating herbivore and natural enemy performance and behavior on wild and cultivated relatives. [Google Scholar]
  10. Benrey B, Denno RF. 10.  1997. The slow-growth-high-mortality hypothesis: a test using the cabbage butterfly. Ecology 78:4987–99 [Google Scholar]
  11. Berenbaum MR, Zangerl AR. 11.  2008. Facing the future of plant-insect interaction research: le retour a la “raison d'être.”. Plant Physiol. 146:3804–11 [Google Scholar]
  12. Blanckaert I, Paredes-Flores M, Espinosa-García FJ, Piñero D, Lira R. 12.  2011. Ethnobotanical, morphological, phytochemical and molecular evidence for the incipient domestication of epazote (Chenopodium ambrosioides L.: Chenopodiaceae) in a semi-arid region of Mexico. Genet. Resour. Crop Evol. 59:4557–73 [Google Scholar]
  13. Blande JD, Pickett JA, Poppy GM. 13.  2007. A comparison of semiochemically mediated interactions involving specialist and generalist Brassica-feeding aphids and the braconid parasitoid Diaeretiella rapae. J. Chem. Ecol. 33:4767–79 [Google Scholar]
  14. Brush S, Kesseli R, Ortega R, Cisneros P, Zimmerer K, Quiros C. 14.  1995. Potato diversity in the Andean center of crop domestication. Conserv. Biol. 9:51189–98 [Google Scholar]
  15. Brush SB, Perales HR. 15.  2007. A maize landscape: ethnicity and agro-biodiversity in Chiapas Mexico. Agric. Ecosyst. Environ. 121:3211–21 [Google Scholar]
  16. Bukovinszky T, Gols R, Smid HM, Kiss GB, Dicke M, Harvey JA. 16.  2012. Consequences of constitutive and induced variation in the host's food plant quality for parasitoid larval development. J. Insect Physiol. 58:3367–75 [Google Scholar]
  17. Bukovinszky T, Poelman EH, Gols R, Prekatsakis G, Vet LEM. 17.  et al. 2009. Consequences of constitutive and induced variation in plant nutritional quality for immune defence of a herbivore against parasitism. Oecologia 160:2299–308 [Google Scholar]
  18. Burger JC, Chapman MA, Burke JM. 18.  2008. Molecular insights into the evolution of crop plants. Am. J. Bot. 95:2113–22 [Google Scholar]
  19. Campan E, Benrey B. 19.  2004. Behavior and performance of a specialist and a generalist parasitoid of bruchids on wild and cultivated beans. Biol. Control 30:2220–28 [Google Scholar]
  20. Campan EDM, Benrey B. 20.  2006. Effects of seed type and bruchid genotype on the performance and oviposition behavior of Zabrotes subfasciatus (Coleoptera: Bruchidae). Insect Sci. 13:4309–18 [Google Scholar]
  21. Cardona C, Kornegay J, Posso CE, Morales F, Ramirez H. 21.  1990. Comparative value of 4 arcelin variants in the development of dry bean lines resistant to the Mexican bean weevil. Entomol. Exp. Appl. 56:2197–206 [Google Scholar]
  22. Carmona D, Lajeunesse MJ, Johnson MTJ. 22.  2011. Plant traits that predict resistance to herbivores. Funct. Ecol. 25:2358–67 [Google Scholar]
  23. Casas A, Otero-Arnaiz A, Pérez-Negrón E, Valiente-Banuet A. 23.  2007. In situ management and domestication of plants in Mesoamerica. Ann. Bot. 100:51101–15 [Google Scholar]
  24. Casas AC, Vázquez MDC, Viveros JL, Caballero J. 24.  1996. Plant management among the Nahua and the Mixtec in the Balsas River Basin, Mexico: an ethnobotanical approach to the study of domestication. Hum. Ecol. 24:4455–78 [Google Scholar]
  25. Chao D, Fu Z-H, Zhao H-Y. 25.  2011. Structure and dynamics of arthropod communities in kiwifruit orchards. J. Northwest A F Univ. Nat. Sci. Ed. 39:1189–96 [Google Scholar]
  26. Charlet LD. 26.  1999. Biological control of sunflower pests: searching for parasitoids in native helianthus—challenges, constraints, and potential. See Ref. 28 91–112
  27. Charlet LD. 27.  2001. Biology and seasonal abundance of parasitoids of the banded sunflower moth (Lepidoptera: Tortricidae) in sunflower. Biol. Control 20:2113–21 [Google Scholar]
  28. Charlet LD, Brewer GJ. 28.  1999. Biological Control of Native or Indigenous Insect Pests: Challenges, Constraints, and Potential. Lanham, MD: Entomol. Soc. Am. [Google Scholar]
  29. Charlet LD, Kopp DD, Oseto CY. 29.  1987. Sunflowers: their history and associated insect community in the Northern Great Plains. Bull. Entomol. Soc. Am. 33:69–75 [Google Scholar]
  30. Charlet LD, Seiler GJ. 30.  1994. Sunflower seed weevils (Coleoptera, Curculionidae) and their parasitoids from native sunflowers (Helianthus) from the Northern Great-Plains. Ann. Entomol. Soc. Am. 87:6831–35 [Google Scholar]
  31. Chaudhary B. 31.  2013. Plant domestication and resistance to herbivory. Int. J. Plant Genomics 2013:1–14 [Google Scholar]
  32. Chen YH, Bernal CC. 32.  2011. Arthropod diversity and community composition on wild and cultivated rice. Agric. For. Entomol. 13:2181–89 [Google Scholar]
  33. Chen YH, Langellotto GA, Barrion AT, Cuong NL. 33.  2013. Cultivation of domesticated rice alters arthropod biodiversity and community composition. Ann. Entomol. Soc. Am. 106:1100–10Community composition of arthropods on wild and cultivated rice within the region of crop origin. [Google Scholar]
  34. Chen YH, Romena A. 34.  2006. Feeding patterns of Scirpophaga incertulas (Lepidoptera: Crambidae) on wild and cultivated rice during the booting stage. Environ. Entomol. 35:41094–102 [Google Scholar]
  35. Chen YH, Romena A. 35.  2008. Rice domestication decreases tolerance to the yellow stem borer, Scirpophaga incertulas. Int. Rice Res. Notes 32:221–27 [Google Scholar]
  36. Chen YH, Welter SC. 36.  2002. Abundance of a native moth Homoeosoma electellum (Lepidoptera: Pyralidae) and activity of indigenous parasitoids in native and agricultural sunflower habitats. Environ. Entomol. 31:4626–36 [Google Scholar]
  37. Chen YH, Welter SC. 37.  2003. Confused by domestication: incongruent behavioral responses of the sunflower moth, Homoeosoma electellum (Lepidoptera: Pyralidae) and its parasitoid, Dolichogenidea homoeosomae (Hymenoptera: Braconidae), towards wild and domesticated sunflowers. Biol. Control 28:2180–90 [Google Scholar]
  38. Chen YH, Welter SC. 38.  2005. Crop domestication disrupts a native tritrophic interaction associated with the sunflower, Helianthus annuus (Asterales: Asteraceae). Ecol. Entomol. 30:6673–83 [Google Scholar]
  39. Chen YH, Welter SC. 39.  2007. Crop domestication creates a refuge from parasitism for a native moth. J. Appl. Ecol. 44:1238–45Disruption of an herbivore-parasitoid interaction due to domestication-related morphological changes in a plant trait. [Google Scholar]
  40. Cornelissen T, Wilson Fernandes G, Vasconcellos-Neto J. 40.  2008. Size does matter: variation in herbivory between and within plants and the plant vigor hypothesis. Oikos 117:81121–30 [Google Scholar]
  41. D'Alessandro M, Turlings TCJ. 41.  2006. Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods. Analyst 131:124–32 [Google Scholar]
  42. Darwin C. 42.  1868. The Variation of Animals and Plants Under Domestication London: John Murray [Google Scholar]
  43. Dávila-Flores AM, DeWitt TJ, Bernal JS. 43.  2013. Facilitated by nature and agriculture: performance of a specialist herbivore improves with host-plant life history evolution, domestication, and breeding. Oecologia 173:41425–37 [Google Scholar]
  44. Doebley J. 44.  1990. Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origin of maize. Proc. Natl. Acad. Sci. USA 87:249888–92 [Google Scholar]
  45. Doebley JF, Gaut BS, Smith BD. 45.  2006. The molecular genetics of crop domestication. Cell 127:71309–21 [Google Scholar]
  46. Doust A. 46.  2007. Architectural evolution and its implications for domestication in grasses. Ann. Bot. 100:941–50 [Google Scholar]
  47. Du D, Winsor JA, Smith M, Denicco A, Stephenson AG. 47.  2008. Resistance and tolerance to herbivory changes with inbreeding and ontogeny in a wild gourd (Cucurbitaceae). Am. J. Bot. 95:184–92 [Google Scholar]
  48. Dvorak J, Deal KR, Luo M-C, You FM, von Borstel K, Dehghani H. 48.  2012. The origin of spelt and free-threshing hexaploid wheat. J. Hered. 103:3426–41 [Google Scholar]
  49. Eben A, Benrey B, Sivinski J, Aluja M. 49.  2000. Host species and host plant effects on preference and performance of Diachasmimorpha longicaudata (Hymenoptera: Braconidae). Environ. Entomol. 29:187–94 [Google Scholar]
  50. El-Bouhssini M, Sarker A, Erskine W, Joubi A. 50.  2008. First sources of resistance to Sitona weevil (Sitona crinitus Herbst) in wild Lens species. Genet. Resour. Crop Evol. 55:11–4 [Google Scholar]
  51. Elton CS. 51.  1958. The Ecology of Invasions by Animals and Plants London: Methuen [Google Scholar]
  52. Evans LT. 52.  1993. Crop Evolution, Adaptation, and Yield Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  53. Fraenkel GS. 53.  1959. The raison d'être of secondary plant substances: These odd chemicals arose as a means of protecting plants from insects and now guide insects to food. Science 129:33611466–70 [Google Scholar]
  54. Gaudin ACM, McClymont SA, Raizada MN. 54.  2011. The nitrogen adaptation strategy of the wild teosinte ancestor of modern maize, Zea mays subsp. parviglumis. Crop Sci. 51:62780 [Google Scholar]
  55. Gepts P. 55.  2004. Domestication as a long-term selection experiment. Plant Breed. Rev. 24:1–44 [Google Scholar]
  56. Gols R, Bukovinszky T, van Dam NM, Dicke M, Bullock JM, Harvey JA. 56.  2008. Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica populations. J. Chem. Ecol. 34:2132–43 [Google Scholar]
  57. Gols R, Bullock JM, Dicke M, Bukovinszky T, Harvey JA. 57.  2011. Smelling the wood from the trees: non-linear parasitoid responses to volatile attractants produced by wild and cultivated cabbage. J. Chem. Ecol. 37:8795–807Parasitoids show greater attraction to plant volatiles emitted by wild plants compared with conspecific cultivated plant species. [Google Scholar]
  58. Gols R, Harvey JA. 58.  2009. Plant-mediated effects in the Brassicaceae on the performance and behaviour of parasitoids. Phytochem. Rev. 8:1187–206 [Google Scholar]
  59. Gols R, van Dam NM, Raaijmakers CE, Dicke M, Harvey JA. 59.  2009. Are population differences in plant quality reflected in the preference and performance of two endoparasitoid wasps?. Oikos 118:5733–43 [Google Scholar]
  60. Gols R, Wagenaar R, Bukovinszky T, van Dam NM, Dicke M. 60.  et al. 2008. Genetic variation in defense chemistry in wild cabbages affects herbivores and their endoparasitoids. Ecology 89:61616–26 [Google Scholar]
  61. González-Rodríguez A, Benrey B, Castañeda A, Oyama K. 61.  2000. Population genetic structure of Acanthoscelides obtectus and A. obvelatus (Coleoptera: Bruchidae) from wild and cultivated Phaseolus spp. (Leguminosae). Ann. Entomol. Soc. Am. 93:51100–7 [Google Scholar]
  62. Gouinguene S, Degen T, Turlings TCJ. 62.  2001. Variability in herbivore-induced odour emissions among maize cultivars and their wild ancestors (teosinte). Chemoecology 11:19–16 [Google Scholar]
  63. Grandillo S, Ku HM, Tanksley SD. 63.  1999. Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor. Appl. Genet. 99:6978–87 [Google Scholar]
  64. Hammer K. 64.  1984. The domestication syndrome. Kulturpflanze 32:11–34 [Google Scholar]
  65. Hancock JF. 65.  2012. Plant Evolution and the Origin of Crop Species Wallingford, UK: CABI [Google Scholar]
  66. Hare J, Luck R. 66.  1991. Indirect effects of citrus cultivars on life-history parameters of a parasitic wasp. Ecology 72:51576–85 [Google Scholar]
  67. Harlan JR. 67.  1971. Agricultural origins: centers and noncenters. Science 174:468–74 [Google Scholar]
  68. Harlan JR, de Wet JMJ, Price EG. 68.  1973. Comparative evolution of cereals. Evolution 27:2311–25 [Google Scholar]
  69. Harris MK, Rogers CE. 69.  1988. The Entomology of Indigenous and Naturalized Systems in Agriculture Boulder, CO: Westview [Google Scholar]
  70. Harvey JA, Gols R. 70.  2011. Population-related variation in plant defense more strongly affects survival of an herbivore than its solitary parasitoid wasp. J. Chem. Ecol. 37:101081–90 [Google Scholar]
  71. Harvey JA, van Dam NM, Raaijmakers CE, Bullock JM, Gols R. 71.  2011. Tri-trophic effects of inter- and intra-population variation in defence chemistry of wild cabbage (Brassica oleracea). Oecologia 166:2421–31 [Google Scholar]
  72. Herms DA, Mattson WJ. 72.  1992. The dilemma of plants: to grow or defend. Q. Rev. Biol. 67:3283 [Google Scholar]
  73. Hillman G, Hedges R, Moore A, Colledge S, Pettitt P. 73.  2001. New evidence of late glacial cereal cultivation at Abu Hureyra on the Euphrates. Holocene 11:4383–93 [Google Scholar]
  74. Holt J, Birch N. 74.  1984. Taxonomy, evolution and domestication of Vicia in relation to aphid resistance. Ann. Appl. Biol. 105:3547–56 [Google Scholar]
  75. Idris AB, Grafius E. 75.  1996. Effects of wild and cultivated host plants on oviposition, survival, and development of diamondback moth (Lepidoptera: Plutellidae) and its parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). Environ. Entomol. 25:4825–33 [Google Scholar]
  76. Izzo VM, Mercer N, Armstrong J, Chen YH. 76.  2014. Variation in host usage among geographic populations of Leptinotarsa decemlineata, the Colorado potato beetle. J. Pest Sci. 87:597–608 [Google Scholar]
  77. Jaenike J. 77.  1990. Host specialization in phytophagous insects. Annu. Rev. Entomol. 21:243–73 [Google Scholar]
  78. Johnson AL, Beard BH. 78.  1977. Sunflower moth damage and inheritance of phytomelanin layer in sunflower achenes. Crop Sci. 17:3369–72 [Google Scholar]
  79. Johnson MTJ, Stinchcombe J. 79.  2007. An emerging synthesis between community ecology and evolutionary biology. Trends Ecol. Evol. 22:5250–57 [Google Scholar]
  80. Johnson MTJ, Vellend M, Stinchcomb J. 80.  2009. Evolution in plant populations as a driver of ecological changes in arthropod communities. Philos. Trans. R. Soc. Lond. B 364:15231593–605 [Google Scholar]
  81. Jones DA. 81.  1998. Why are so many food plants cyanogenic?. Phytochemistry 47:2155–62 [Google Scholar]
  82. Karban R, Baldwin IT. 82.  1997. Induced Responses to Herbivory Chicago: Univ. Chicago Press [Google Scholar]
  83. Kennedy GG. 83.  2003. Tomato, pests, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon. Annu. Rev. Entomol. 48:51–72 [Google Scholar]
  84. Köllner TG, Held M, Lenk C, Hiltpold I, Turlings TCJ. 84.  et al. 2008. A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20:2482–94 [Google Scholar]
  85. Kushad MM, Cloyd R, Babadoost MB. 85.  2004. Distribution of glucosinolates in ornamental cabbage and kale cultivars. Sci. Hortic. 101:3215–21 [Google Scholar]
  86. Ladizinsky G. 86.  1998. Plant Evolution Under Domestication Dordrecht, Neth.: Kluwer Acad. [Google Scholar]
  87. Lamb RJ, Tucker JR, Wise IL, Smith MAH. 87.  2000. Trophic interaction between Sitodiplosis mosellana (Diptera: Cecidomyiidae) and spring wheat: implications for yield and seed quality. Can. Entomol. 132:5607–25 [Google Scholar]
  88. Laurin-Lemay S, Angers B, Benrey B, Brodeur J. 88.  2013. Inconsistent genetic structure among members of a multitrophic system: Did bruchid parasitoids (Horismenus spp.) escape the effects of bean domestication?. Bull. Entomol. Res. 103:2182–92 [Google Scholar]
  89. Le Guigo P, Maingeneau A, Le Corff J. 89.  2012. Performance of an aphid Myzus persicae and its parasitoid Diaeretiella rapae on wild and cultivated Brassicaceae. J. Plant Interact. 7:4326–32 [Google Scholar]
  90. Leiss KA, Cristofori G, van Steenis R, Verpoorte R, Klinkhamer PGL. 90.  2013. An eco-metabolomic study of host plant resistance to western flower thrips in cultivated, biofortified and wild carrots. Phytochemistry 93:63–70 [Google Scholar]
  91. Letourneau DK, Armbrecht I, Rivera BS, Lerma JM, Carmona EJ. 91.  et al. 2011. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21:19–21 [Google Scholar]
  92. Letourneau DK, Robinson GS, Hagen JA. 92.  2003. Bt crops: predicting effects of escaped transgenes on the fitness of wild plants and their herbivores. Environ. Biosaf. Res. 2:219–46 [Google Scholar]
  93. Lindig-Cisneros R, Benrey B, Espinosa-García FJ. 93.  1997. Phytoalexins, resistance traits, and domestication status in Phaseolus coccineus and Phaseolus lunatus. J. Chem. Ecol. 23:81997–2011 [Google Scholar]
  94. Londo JP, Chiang YC, Hung KH, Chiang TY, Schaal BA. 94.  2006. Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc. Natl. Acad. Sci. USA 103:259578–83 [Google Scholar]
  95. Macfadyen S, Bohan DA. 95.  2010. Crop domestication and the disruption of species interactions. Basic Appl. Ecol. 11:2116–25 [Google Scholar]
  96. Mahr DL. 96.  1999. Biological control in a high-value native crop: status, opportunities, and constraints in cranberry. See Ref. 28 64–90
  97. McKey D, Cavagnaro TR, Cliff J, Gleadow R. 97.  2010. Chemical ecology in coupled human and natural systems: people, manioc, multitrophic interactions and global change. Chemoecology 20:2109–33 [Google Scholar]
  98. Medina RF, Reyna SM, Bernal JS. 98.  2012. Population genetic structure of a specialist leafhopper on Zea: likely anthropogenic and ecological determinants of gene flow. Entomol. Exp. Appl. 142:3223–35 [Google Scholar]
  99. Meyer RS, DuVal AE, Jensen HR. 99.  2012. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol. 196:129–48Important recent review on the history of crop domestication. [Google Scholar]
  100. Michaud JP. 100.  2011. Challenges to effective management of sunflower insects on the high plains. Sunflowers: Cultivation, Food and Nutrition Uses, and Biodiesel Uses VC Hughes 169–82 Hauppauge, NY: Nova Sci. [Google Scholar]
  101. Michaud JP, Grant AK. 101.  2005. The biology and behavior of the longhorned beetle, Dectes texanus on sunflower and soybean. J. Insect Sci. 5:25 [Google Scholar]
  102. Michaud JP, Grant AK. 102.  2009. The nature of resistance to Dectes texanus (Coleoptera: Cerambycidae) in wild sunflower, Helianthus annuus. J. Appl. Entomol. 133:7518–23 [Google Scholar]
  103. Michaud JP, Grant AK, Jyoti JL. 103.  2007. Impact of the stem borer, Dectes texanus, on yield of the cultivated sunflower, Helianthus annuus. J. Insect Sci. 7:21 [Google Scholar]
  104. Moeller DA, Tiffin P. 104.  2008. Geographic variation in adaptation at the molecular level: a case study of plant immunity genes. Evolution 62:123069–81 [Google Scholar]
  105. Morrell PL, Clegg MT. 105.  2007. Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the fertile crescent. Proc. Natl. Acad. Sci. USA 104:93289–94 [Google Scholar]
  106. Moyes CL, Collin HA, Britton G, Raybould AE. 106.  2000. Glucosinolates and differential herbivory in wild populations of Brassica oleracea. J. Chem. Ecol. 26:112625–41 [Google Scholar]
  107. Moyes CL, Raybould AF. 107.  2001. The role of spatial scale and intraspecific variation in secondary chemistry in host-plant location by Ceutorhynchus assimilis (Coleoptera: Curculionidae). Proc. R. Soc. B 268:14761567–73 [Google Scholar]
  108. Murdoch W, Briggs CJ, Swarbrick S. 108.  2005. Host suppression and stability in a parasitoid-host system: experimental demonstration. Science 309:5734610–13 [Google Scholar]
  109. Newton E, Bullock JM, Hodgson D. 109.  2009. Bottom-up effects of glucosinolate variation on aphid colony dynamics in wild cabbage populations. Ecol. Entomol. 34:5614–23 [Google Scholar]
  110. Ode PJ. 110.  2006. Plant chemistry and natural enemy fitness: effects on herbivore and natural enemy interactions. Annu. Rev. Entomol. 51:163–85 [Google Scholar]
  111. Ode PJ, Charlet LD, Seiler GJ. 111.  2011. Sunflower stem weevil and its larval parasitoids in native sunflowers: Is parasitoid abundance and diversity greater in the U.S. Southwest?. Environ. Entomol. 40:115–22 [Google Scholar]
  112. Olsen KM, Wendel JF. 112.  2013. A bountiful harvest: genomic insights into crop domestication phenotypes. Annu. Rev. Plant Biol. 64:47–70Important recent review on genetics of domestication. [Google Scholar]
  113. Pimentel D. 113.  1961. Species diversity and insect population outbreaks. Ann. Entomol. Soc. Am. 54:76–86 [Google Scholar]
  114. Poelman EH, van Loon JJA, Dicke M. 114.  2008. Consequences of variation in plant defense for biodiversity at higher trophic levels. Trends Plant Sci. 13:10534–41 [Google Scholar]
  115. Price PW. 115.  1991. The plant vigor hypothesis and herbivore attack. Oikos 62:2244 [Google Scholar]
  116. Quintero C, Barton KE, Boege K. 116.  2013. The ontogeny of plant indirect defenses. Perspect. Plant Ecol. Evol. Syst. 15:5245–54 [Google Scholar]
  117. Reid W. 117.  1999. Biological pest suppression in native pecan groves. See Ref. 28 113–22
  118. Renwick JAA, Haribal M, Gouinguene S, Stadler E. 118.  2006. Isothiocyanates stimulating oviposition by the diamondback moth, Plutella xylostella. J. Chem. Ecol. 32:4755–66 [Google Scholar]
  119. Risch SJ. 119.  1987. Agricultural ecology and insect outbreaks. Insect Outbreaks P Barbosa, JC Schultz 217–38 San Diego, CA: Academic [Google Scholar]
  120. Rodriguez-Saona C, Vorsa N, Singh AP, Johnson-Cicalese J, Szendrei Z. 120.  et al. 2011. Tracing the history of plant traits under domestication in cranberries: potential consequences on anti-herbivore defences. J. Exp. Bot. 62:82633–44Effects of domestication on plant chemical defenses along a domestication gradient. [Google Scholar]
  121. Romena AM, Heinrichs EA. 121.  1989. Wild species of rice Oryza spp. as sources of resistance to rice insects. J. Plant Prot. Trop. 6:3213–21 [Google Scholar]
  122. Root RB. 122.  1973. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr. 43:195 [Google Scholar]
  123. Rosenthal JP, Dirzo R. 123.  1997. Effects of life history, domestication and agronomic selection on plant defence against insects: evidence from maizes and wild relatives. Evol. Ecol. 11:3337–55Tests hypothesis of a negative correlation between yield and defense in domesticated plants within a domestication center. [Google Scholar]
  124. Rosenthal JP, Welter SC. 124.  1995. Tolerance to herbivory by a stemboring caterpillar in architecturally distinct maizes and wild relatives. Oecologia 102:2146–55 [Google Scholar]
  125. Rusch A, Valantin Morison M, Sarthou J-P, Roger Estrade J. 125.  2010. Biological control of insect pests in agroecosystems: effects of crop management, farming systems, and seminatural habitats at the landscape scale: a review. Adv. Agron. 109:219–59 [Google Scholar]
  126. Sabzalian MR, Saeidi G, Mirlohi A, Hatami B. 126.  2010. Wild safflower species (Carthamus oxyacanthus): a possible source of resistance to the safflower fly (Acanthiophilus helianthi). Crop Prot. 29:6550–55 [Google Scholar]
  127. Schädler M, Brandl R, Kempel A. 127.  2010. Host plant genotype determines bottom-up effects in an aphid-parasitoid-predator system. Entomol. Exp. Appl. 135:2162–69 [Google Scholar]
  128. Schellhorn NA, Bianchi FJJA, Hsu CL. 128.  2014. Movement of entomophagous arthropods in agricultural landscapes: links to pest suppression. Annu. Rev. Entomol. 59:559–81 [Google Scholar]
  129. Schoonhoven LM, van Loon JJA, Dicke M. 129.  2005. Insect-Plant Biology Oxford, UK: Oxford Univ. Press, 2nd ed.. [Google Scholar]
  130. Schowalter TD. 130.  2006. Insect Ecology: An Ecosystem Approach London: Academic [Google Scholar]
  131. Schwanitz F. 131.  1966. The Origin of Cultivated Plants Cambridge, MA: Harvard Univ. Press [Google Scholar]
  132. Scriber JM, Slansky F. 132.  1981. The nutritional ecology of immature insects. Annu. Rev. Entomol. 26:183–211 [Google Scholar]
  133. Smartt J, Simmonds NW. 133.  1995. Evolution of Crop Plants New York: John Wiley & Sons [Google Scholar]
  134. Sotelo A, Sousa H, Sánchez M. 134.  1995. Comparative study of the chemical composition of wild and cultivated beans (Phaseolus vulgaris). Plant Foods Hum. Nutr. 47:293–100 [Google Scholar]
  135. Stoepler TM, Lill JT, Murphy SM. 135.  2011. Cascading effects of host size and host plant species on parasitoid resource allocation. Ecol. Entomol. 36:6724–35 [Google Scholar]
  136. Sujana G, Sharma HC, Manohar Rao D. 136.  2012. Pod surface exudates of wild relatives of pigeonpea influence the feeding preference of the pod borer, Helicoverpa armigera. Arthropod-Plant Interact. 6:2231–39 [Google Scholar]
  137. Szczepaniec A, Widney SE, Bernal JS, Eubanks MD. 137.  2013. Higher expression of induced defenses in teosintes (Zea spp.) is correlated with greater resistance to fall armyworm, Spodoptera frugiperda. Entomol. Exp. Appl. 146:2242–51 [Google Scholar]
  138. Takahashi CG, Kalns LL, Bernal JS. 138.  2012. Plant defense against fall armyworm in micro-sympatric maize (Zea mays ssp. mays) and Balsas teosinte (Zea mays ssp. parviglumis). Entomol. Exp. Appl. 145:3191–200 [Google Scholar]
  139. Tang H, Sezen U, Paterson AH. 139.  2010. Domestication and plant genomes. Curr. Opin. Plant Biol. 13:2160–66 [Google Scholar]
  140. Tang S, Leon A, Bridges WC, Knapp SJ. 140.  2006. Quantitative trait loci for genetically correlated seed traits are tightly linked to branching and pericarp pigment loci in sunflower. Crop Sci. 46:2721 [Google Scholar]
  141. Teetes GL, Randolph NM. 141.  1969. Seasonal abundance and parasitism of the sunflower moth, Homoeosoma electellum, in Texas. Ann. Entomol. Soc. Am. 62:1461–64 [Google Scholar]
  142. Thrall PH, Oakeshott JG, Fitt G, Southerton S, Burdon JJ. 142.  Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro-ecosystems. Evol. Appl. 4:2200–15 [Google Scholar]
  143. Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D. 143.  et al. 2007. Conservation biological control and enemy diversity on a landscape scale. Biol. Control 43:3294–309 [Google Scholar]
  144. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C. 144.  2005. Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol. Lett. 8:8857–74Effect of landscape at different spatial scales on trophic interactions. [Google Scholar]
  145. Turcotte MM, Turley NE, Johnson MTJ. 145.  2014. The impact of domestication on resistance to two generalist herbivores across 29 independent domestication events. New Phytol. 204:671–81 [Google Scholar]
  146. Turlings TCJ, Benrey B. 146.  1998. Effects of plant metabolites on the behavior and development of parasitic wasps. Ecoscience 5:3321–33 [Google Scholar]
  147. van Heerwaarden J, Doebley J, Briggs WH, Glaubitz JC, Goodman MM. 147.  et al. 2011. Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc. Natl. Acad. Sci. USA 108:31088–92 [Google Scholar]
  148. van Nouhuys S, Via S. 148.  1999. Natural selection and genetic differentiation of behaviour between parasitoids from wild and cultivated habitats. Heredity 83:2127 [Google Scholar]
  149. Vavilov NI. 149.  1951. The origin, variation, immunity and breeding of cultivated plants. Chron. Bot. 13:1–366 [Google Scholar]
  150. Vet LEM, Dicke M. 150.  1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37:141–72 [Google Scholar]
  151. Via S. 151.  1990. Ecological genetics and host adaptation in herbivorous insects—the experimental study of evolution in natural and agricultural systems. Annu. Rev. Entomol. 35:421–46 [Google Scholar]
  152. Welter SC. 152.  2001. Contrasting plant responses to herbivory in wild and domesticated habitats. Biotic Stress and Yield Loss RKD Peterson, LG Higley 161–84 New York: CRC [Google Scholar]
  153. Welter SC, Steggall JW. 153.  1993. Contrasting the tolerance of wild and domesticated tomatoes to herbivory: agroecological implications. Ecol. Appl. 3:2271 [Google Scholar]
  154. Wise IL, Lamb RJ, Smith MAH. 154.  2001. Domestication of wheats (Gramineae) and their susceptibility to herbivory by Sitodiplosis mosellana (Diptera: Cecidomyiidae). Can. Entomol. 133:2255–67 [Google Scholar]
  155. Zaugg I, Benrey B, Bacher S. 155.  2013. Bottom-up and top-down effects influence bruchid beetle individual performance but not population densities in the field. PLOS ONE 8:1e55317 [Google Scholar]
  156. Zizumbo-Villarreal D, Colunga-GarcíaMarín P, Payró de la Cruz E, Delgado-Valerio P, Gepts P. 156.  2005. Population structure and evolutionary dynamics of wild-weedy-domesticated complexes of common bean in a Mesoamerican region. Crop Sci. 45:1073–83 [Google Scholar]
/content/journals/10.1146/annurev-ento-010814-020601
Loading
/content/journals/10.1146/annurev-ento-010814-020601
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error