1932

Abstract

Plants secrete extrafloral nectar (EFN) as an induced defense against herbivores. EFN contains not only carbohydrates and amino acids but also pathogenesis-related proteins and other protective enzymes, making EFN an exclusive reward. EFN secretion is commonly induced after wounding, likely owing to a jasmonic acid–induced cell wall invertase, and is limited by phloem sucrose availability: Both factors control EFN secretion according to the optimal defense hypothesis. Non-ant EFN consumers include parasitoids, wasps, spiders, mites, bugs, and predatory beetles. Little is known about the relevance of EFN to the nutrition of its consumers and, hence, to the structuring of arthropod communities. The mutualism can be established quickly among noncoevolved (e.g., invasive) species, indicating its easy assembly is due to ecological fitting. Therefore, increasing efforts are directed toward using EFN in biocontrol. However, documentation of the importance of EFN for the communities of plants and arthropods in natural, invasive, and agricultural ecosystems is still limited.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-010814-020753
2015-01-07
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/ento/60/1/annurev-ento-010814-020753.html?itemId=/content/journals/10.1146/annurev-ento-010814-020753&mimeType=html&fmt=ahah

Literature Cited

  1. Agarwal VM, Rastogi N. 1.  2010. Ants as dominant insect visitors of the extrafloral nectaries of sponge gourd plant, Luffa cylindrica (L.) (Cucurbitaceae). Asian Myrmecol. 3:45–54 [Google Scholar]
  2. Agrawal AA, Karban R. 2.  1997. Domatia mediate plant-arthropod mutualism. Nature 387:562–63 [Google Scholar]
  3. Agrawal AA, Karban R, Colfer RG. 3.  2000. How leaf domatia and induced plant resistance affect herbivores, natural enemies and plant performance. Oikos 89:70–80 [Google Scholar]
  4. Aguirre A, Coates R, Cumplido-Barragán G, Campos-Villanueva A, Díaz-Castelazo C. 4.  2013. Morphological characterization of extrafloral nectaries and associated ants in tropical vegetation of Los Tuxtlas, Mexico. Flora 208:147–56 [Google Scholar]
  5. Almeida LM, Correa GH, Giorgi JA, Grossi PC. 5.  2011. New record of predatory ladybird beetle (Coleoptera, Coccinellidae) feeding on extrafloral nectaries. Rev. Bras. Entomol. 55:447–50 [Google Scholar]
  6. Alves-Silva E, Barônio GJ, Torezan-Silingardi HM, Del-Claro K. 6.  2013. Foraging behavior of Brachygastra lecheguana (Hymenoptera: Vespidae) on Banisteriopsis malifolia (Malpighiaceae): extrafloral nectar consumption and herbivore predation in a tending ant system. Entomol. Sci. 16:162–69 [Google Scholar]
  7. Anderson KE, Russell JA, Moreau CS, Kautz S, Sullam KE. 7.  et al. 2012. Highly similar microbial communities are shared among related and trophically similar ant species. Mol. Ecol. 21:2282–96 [Google Scholar]
  8. Arnold T, Appel H, Patel V, Stocum E, Kavalier A, Schultz JC. 8.  2004. Carbohydrate translocation determines the phenolic content of Populus foliage: a test of the sink–source model of plant defense. New Phytol. 164:157–64 [Google Scholar]
  9. Arnold TM, Schultz JC. 9.  2002. Induced sink strength as a prerequisite for induced tannin biosynthesis in developing leaves of Populus. Oecologia 130:585–93 [Google Scholar]
  10. Assunção MA, Torezan-Silingardi HM, Del-Claro K. 10.  2014. Do ant visitors to extrafloral nectaries of plants repel pollinators and cause an indirect cost of mutualism?. Flora 209:244–49 [Google Scholar]
  11. Barrett LG, Heil M. 11.  2012. Unifying concepts and mechanisms in the specificity of plant-enemy interactions. Trends Plant Sci. 17:282–92 [Google Scholar]
  12. Beach RM, Todd JW, Baker SH. 12.  1985. Nectaried and nectariless cotton cultivars as nectar sources for the adult soybean looper. J. Entomol. Sci. 20:233–36 [Google Scholar]
  13. Belt T. 13.  1874. The Naturalist in Nicaragua London: Dent [Google Scholar]
  14. Benrey B, Callejas A, Rios L, Oyama K, Denno RF. 14.  1998. The effects of domestication of Brassica and Phaseolus on the interaction between phytophagous insects and parasitoids. Biol. Contr. 11:130–40 [Google Scholar]
  15. Bentley BL. 15.  1976. Plants bearing extrafloral nectaries and the associated ant community: interhabitat differences in the reduction of herbivore damage. Ecology 57:815–20 [Google Scholar]
  16. Bentley BL. 16.  1977. Extrafloral nectaries and protection by pugnacious bodyguards. Annu. Rev. Ecol. Syst. 8:407–27 [Google Scholar]
  17. Bixenmann RJ, Coley PD, Kursar TA. 17.  2011. Is extrafloral nectar production induced by herbivores or ants in a tropical facultative ant-plant mutualism?. Oecologia 165:417–25 [Google Scholar]
  18. Bleil R, Bluethgen N, Junker RR. 18.  2011. Ant-plant mutualism in Hawai'i? Invasive ants reduce flower parasitism but also exploit floral nectar of the endemic shrub Vaccinium reticulatum (Ericaceae). Pacific Sci. 65:291–300 [Google Scholar]
  19. Bogatek R, Côme D, Corbineau F, Ranjan R, Lewak S. 19.  2002. Jasmonic acid affects dormancy and sugar catabolism in germinating apple embryos. Plant Physiol. Biochem. 40:167–73 [Google Scholar]
  20. Brown MW, Mathews CR, Krawczyk G. 20.  2010. Extrafloral nectar in an apple ecosystem to enhance biological control. J. Econ. Entomol. 103:1657–64 [Google Scholar]
  21. Byk J, Del-Claro K. 21.  2011. Ant-plant interaction in the Neotropical savanna: direct beneficial effects of extrafloral nectar on ant colony fitness. Popul. Ecol. 53:327–32 [Google Scholar]
  22. Cardoso-Gustavson P, Bignelli Valente Aguiar JMR, Pansarin ER, de Barros F. 22.  2013. A light in the shadow: the use of Lucifer Yellow technique to demonstrate nectar reabsorption. Plant Methods 9:20 [Google Scholar]
  23. Carter C, Thornburg RW. 23.  2000. Tobacco Nectarin I: purification and characterization as a germin-like, manganese superoxide dismutase implicated in the defense of floral reproductive tissues. J. Biol. Chem. 275:36726–33 [Google Scholar]
  24. Carter C, Thornburg RW. 24.  2004. Is the nectar redox cycle a floral defense against microbial attack?. Trends Plant Sci. 9:320–24 [Google Scholar]
  25. Chamberlain SA, Holland JN. 25.  2009. Quantitative synthesis of context dependency in ant-plant protection mutualisms. Ecology 90:2384–92 [Google Scholar]
  26. Chamberlain SA, Kilpatrick JR, Holland JN. 26.  2010. Do extrafloral nectar resources, species abundances, and body sizes contribute to the structure of ant-plant mutualistic networks?. Oecologia 164:741–50 [Google Scholar]
  27. Chamberlain SA, Rudgers JA. 27.  2012. How do plants balance multiple mutualists? Correlations among traits for attracting protective bodyguards and pollinators in cotton (Gossypium). Evol. Ecol. 26:65–77 [Google Scholar]
  28. Chavarro-Rodríguez N, Díaz-Castelazo C, Rico-Gray V. 28.  2013. Characterization and functional ecology of the extrafloral nectar of Cedrela odorata in contrasting growth environments in central Veracruz, Mexico. Bot. Botanique 91:695–701 [Google Scholar]
  29. Choh Y, Kugimiya S, Takabayashi J. 29.  2006. Induced production of extrafloral nectar in intact lima bean plants in response to volatiles from spider mite-infested conspecific plants as a possible indirect defense against spider mites. Oecologia 147:455–60 [Google Scholar]
  30. Choh Y, Takabayashi J. 30.  2006. Herbivore-induced extrafloral nectar production in lima bean plants enhanced by previous exposure to volatiles from infested conspecifics. J. Chem. Ecol. 32:2073–77 [Google Scholar]
  31. Coulter A, Poulis BAD, von Aderkas P. 31.  2012. Pollination drops as dynamic apoplastic secretions. Flora 207:482–90 [Google Scholar]
  32. Darwin F. 32.  1876. On the glandular bodies on Acacia sphaerocephala and Cecropia peltata serving as food for ants. With an appendix on the nectar-glands of the common brake fern, Pteris Aquilina. Bot. J. Linn. Soc. Lond. 15:398–409 [Google Scholar]
  33. Davidson DW, Cook SC, Snelling RR, Chua TH. 33.  2003. Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300:969–72 [Google Scholar]
  34. Delpino F. 34.  1874. Rapporti tra insetti e nettari extranuziali nelle plante. Boll. Soc. Entomol. Ital. 6:234–39 [Google Scholar]
  35. Delpino F. 35.  1886. Funzione mirmecofila nel regno vegetale. Memoria Acad. Sci. Inst. Bologna 4:215–323 [Google Scholar]
  36. Escalante-Pérez M, Jaborsky M, Lautner S, Fromm J, Müller T. 36.  et al. 2012. Poplar extrafloral nectaries: two types, two strategies of indirect defenses against herbivores. Plant Physiol. 159:1176–91 [Google Scholar]
  37. Fiala B, Linsenmair KE. 37.  1995. Distribution and abundance of plants with extrafloral nectaries in the woody flora of a lowland primary forest in Malaysia. Biodiv. Conserv. 4:165–82 [Google Scholar]
  38. Frey-Wyssling A, Zimmermann M, Maurizio A. 38.  1954. Über den enzymatischen Zuckerumbau in Nektarien. Experientia 10:490–91 [Google Scholar]
  39. Gaffal KP. 39.  2012. How common is the ability of extrafloral nectaries to produce nectar droplets, to secrete nectar during the night and to store starch?. Plant Biol. 14:691–95 [Google Scholar]
  40. Géneau CE, Wäckers FL, Luka H, Balmer O. 40.  2013. Effects of extrafloral and floral nectar of Centaurea cyanus on the parasitoid wasp Microplitis mediator: olfactory attractiveness and parasitization rates. Biol. Contr. 66:16–20 [Google Scholar]
  41. Géneau CE, Wäckers FL, Luka H, Daniel C, Balmer O. 41.  2012. Selective flowers to enhance biological control of cabbage pests by parasitoids. Basic Appl. Ecol. 13:85–93 [Google Scholar]
  42. González-Teuber M, Eilmus S, Muck A, Svatos A, Heil M. 42.  2009. Pathogenesis-related proteins protect extrafloral nectar from microbial infestation. Plant J. 58:464–73 [Google Scholar]
  43. González-Teuber M, Heil M. 43.  2009. Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters. Plant Signal. Behav. 4:809–13 [Google Scholar]
  44. González-Teuber M, Heil M. 44.  2009. The role of extrafloral nectar amino acids for the preferences of facultative and obligate ant mutualists. J. Chem. Ecol. 35:459–68 [Google Scholar]
  45. González-Teuber M, Kaltenpoth M, Boland W. 45.  2014. Mutualistic ants as an indirect defence against leaf pathogens. New Phytol. 202:640–50 [Google Scholar]
  46. González-Teuber M, Pozo MJ, Muck A, Svatos A, Adame-Álvarez RM, Heil M. 46.  2010. Glucanases and chitinases as causal agents in the protection of Acacia extrafloral nectar from infestation by phytopathogens. Plant Physiol. 152:1705–15 [Google Scholar]
  47. González-Teuber M, Silva-Bueno JC, Boland W, Heil M. 47.  2012. Increased host investment in extrafloral nectar (EFN) improves the efficiency of a mutualistic defensive service. PLOS ONE 7e46598 [Google Scholar]
  48. Gouinguené S, Degen T, Turlings TCJ. 48.  2001. Variability in herbivore-induced odour emissions among maize cultivars and their wild ancestors (teosinte). Chemoecology 11:9–16 [Google Scholar]
  49. Guillermo-Ferreira R, Cardoso-Leite R, Gandolfo R. 49.  2012. First observation of alternative food usage (extrafloral nectar) by the assassin bug Atopozelus opsimus (Hemiptera, Reduviidae). Revista Brasil. Entomol. 56:489–91 [Google Scholar]
  50. Guimarães PR, Rico-Gray V, dos Reis SF, Thompson JN. 50.  2006. Asymmetries in specialization in ant-plant mutualistic networks. Proc. R. Soc. Lond. B 273:2041–47 [Google Scholar]
  51. Guimarães PR, Rico-Gray V, Oliveira PS, Izzo TJ, dos Reis SF, Thompson JN. 51.  2007. Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Curr. Biol. 17:1797–803 [Google Scholar]
  52. Hagenbucher S, Olson DM, Ruberson JR, Wäckers FL, Romeis J. 52.  2013. Resistance mechanisms against arthropod herbivores in cotton and their interactions with natural enemies. Crit. Rev. Plant Sci. 32:458–82 [Google Scholar]
  53. Heil M. 53.  2004. Induction of two indirect defences benefits lima bean (Phaseolus lunatus, Fabaceae) in nature. J. Ecol. 92:527–36 [Google Scholar]
  54. Heil M. 54.  2008. Indirect defence via tritrophic interactions. New Phytol. 178:41–61 [Google Scholar]
  55. Heil M. 55.  2011. Nectar: generation, regulation and ecological functions. Trends Plant Sci. 16:191–200 [Google Scholar]
  56. Heil M. 56.  2013. Let the best one stay: Screening of ant defenders by Acacia host plants functions independently of partner choice or host sanctions. J. Ecol. 101:684–88 [Google Scholar]
  57. Heil M, Barajas-Barron A, Orona-Tamayo D, Wielsch N, Svatos A. 57.  2014. Partner manipulation stabilises a horizontally transmitted mutualism. Ecol. Lett. 17:185–92 [Google Scholar]
  58. Heil M, Fiala B, Baumann B, Linsenmair KE. 58.  2000. Temporal, spatial and biotic variations in extrafloral nectar secretion by Macaranga tanarius. Funct. Ecol. 14:749–57 [Google Scholar]
  59. Heil M, Fiala B, Boller T, Linsenmair KE. 59.  1999. Reduced chitinase activities in ant plants of the genus Macaranga. Naturwissenschaften 86:146–49 [Google Scholar]
  60. Heil M, Greiner S, Meimberg H, Krüger R, Noyer J-L. 60.  et al. 2004. Evolutionary change from induced to constitutive expression of an indirect plant resistance. Nature 430:205–8 [Google Scholar]
  61. Heil M, Hilpert A, Krüger R, Linsenmair KE. 61.  2004. Competition among visitors to extrafloral nectaries as a source of ecological costs of an indirect defence. J. Trop. Ecol. 20:201–8 [Google Scholar]
  62. Heil M, Ibarra-Laclette E, Adame-Álvarez RM, Martínez O, Ramirez-Chávez E. 62.  et al. 2012. How plants sense wounds: damaged-self recognition is based on plant-derived elicitors and induces octadecanoid signaling. PLOS ONE 7:e30537 [Google Scholar]
  63. Heil M, Koch T, Hilpert A, Fiala B, Boland W, Linsenmair KE. 63.  2001. Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proc. Natl. Acad. Sci. USA 98:1083–88 [Google Scholar]
  64. Heil M, Kost C. 64.  2006. Priming of indirect defences. Ecol. Lett. 9:813–17 [Google Scholar]
  65. Heil M, McKey D. 65.  2003. Protective ant-plant interactions as model systems in ecological and evolutionary research. Annu. Rev. Ecol. Evol. Syst. 34:425–53 [Google Scholar]
  66. Heil M, Rattke J, Boland W. 66.  2005. Post-secretory hydrolysis of nectar sucrose and specialization in ant/plant mutualism. Science 308:56063 [Google Scholar]
  67. Heil M, Silva Bueno JC. 67.  2007. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc. Natl. Acad. Sci. USA 104:5467–72 [Google Scholar]
  68. Hernandez LM, Tupac Otero J, Manzano MR. 68.  2013. Biological control of the greenhouse whitefly by Amitus fuscipennis: understanding the role of extrafloral nectaries from crop and non-crop vegetation. Biol. Contr. 67:227–34 [Google Scholar]
  69. Hernández-Cumplido J, Benrey B, Heil M. 69.  2010. Attraction of flower visitors to plants that express indirect defence can minimize ecological costs of ant–pollinator conflicts. J. Trop. Ecol. 26:555–57 [Google Scholar]
  70. Hillwig MS, Kanobe C, Thornburg RW, MacIntosh GC. 70.  2011. Identification of S-RNase and peroxidase in petunia nectar. J. Plant Physiol. 168:734–38 [Google Scholar]
  71. Holland JN, Chamberlain SA, Horn KC. 71.  2009. Optimal defence theory predicts investment in extrafloral nectar resources in an ant-plant mutualism. J. Ecol. 97:89–96 [Google Scholar]
  72. Holland JN, Chamberlain SA, Horn KC. 72.  2010. Temporal variation in extrafloral nectar secretion by reproductive tissues of the senita cactus, Pachycereus schottii (Cactaceae), in the Sonoran Desert of Mexico. J. Arid Environ. 74:712–14 [Google Scholar]
  73. Holland JN, Chamberlain SA, Miller TEX. 73.  2011. Consequences of ants and extrafloral nectar for a pollinating seed-consuming mutualism: ant satiation, floral distraction or plant defense?. Oikos 120:381–88 [Google Scholar]
  74. Horner HT, Healy RA, Ren G, Fritz D, Klyne A. 74.  et al. 2007. Amyloplast to chromoplast conversion in developing ornamental tobacco floral nectaries provides sugar for nectar and antioxidants for protection. Am. J. Bot. 94:12–24 [Google Scholar]
  75. Huxley CR, Cutler DF. 75.  1991. Ant-Plant Interactions Oxford, UK: Oxford Univ. Press [Google Scholar]
  76. Izaguirre M, Mazza C, Astigueta M, Ciarla A, Ballaré C. 76.  2013. No time for candy: passionfruit (Passiflora edulis) plants down-regulate damage-induced extra floral nectar production in response to light signals of competition. Oecologia 173:213–21 [Google Scholar]
  77. Jaber LR, Vidal S. 77.  2009. Interactions between an endophytic fungus, aphids and extrafloral nectaries: Do endophytes induce extrafloral-mediated defences in Vicia faba?. Funct. Ecol. 23:707–14 [Google Scholar]
  78. Jamont M, Crépellière S, Jaloux B. 78.  2013. Effect of extrafloral nectar provisioning on the performance of the adult parasitoid Diaeretiella rapae. Biol. Contr. 65:271–77 [Google Scholar]
  79. Janzen DH. 79.  1985. On ecological fitting. Oikos 45:308–10 [Google Scholar]
  80. Jones ME, Paine TD. 80.  2012. Ants impact sawfly oviposition on bracken fern in Southern California. Arthropod-Plant Interact. 6:283–87 [Google Scholar]
  81. Katayama N, Hembry DH, Hojo MK, Suzuki N. 81.  2013. Why do ants shift their foraging from extrafloral nectar to aphid honeydew?. Ecol. Res. 28:919–26 [Google Scholar]
  82. Katayama N, Suzuki N. 82.  2011. Anti-herbivory defense of two Vicia species with and without extrafloral nectaries. Plant Ecol. 212:743–52 [Google Scholar]
  83. Keeler KH. 83.  1979. Distribution of plants with extrafloral nectaries and ants at two different elevations in Jamaica. Biotropica 11:152–54 [Google Scholar]
  84. Keeler KH. 84.  1980. Distribution of plants with extrafloral nectaries in temperate communities. Am. Midland Nat. 104:274–79 [Google Scholar]
  85. Koptur S. 85.  1989. Is extrafloral nectar an inducible defense?. The Evolutionary Ecology of Plants JH Bock, YB Linhart 323–29 Boulder, CO: Westview [Google Scholar]
  86. Koptur S, Palacios-Rios M, Díaz-Castelazo C, Mackay WP, Rico-Gray V. 86.  2013. Nectar secretion on fern fronds associated with lower levels of herbivore damage: field experiments with a widespread epiphyte of Mexican cloud forest remnants. Ann. Bot. 111:1277–83 [Google Scholar]
  87. Koptur S, Rico-Gray V, Palacios-Rios M. 87.  1998. Ant protection of the nectaried fern Polypodium plebeium in Central Mexico. Am. J. Bot. 85:736–39 [Google Scholar]
  88. Koricheva J, Romero GQ. 88.  2012. You get what you pay for: reward-specific trade-offs among direct and ant-mediated defences in plants. Biol. Lett. 8:628–30 [Google Scholar]
  89. Kost C, Heil M. 89.  2005. Increased availability of extrafloral nectar reduces herbivory in lima bean plants (Phaseolus lunatus, Fabaceae). Basic Appl. Ecol. 6:237–48 [Google Scholar]
  90. Kost C, Heil M. 90.  2006. Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. J. Ecol. 94:619–28 [Google Scholar]
  91. Lach L. 91.  2003. Invasive ants: unwanted partners in ant-plant interactions?. Ann. Mo. Bot. Gard. 90:91–108 [Google Scholar]
  92. Lach L, Hobbs RJ, Majer JD. 92.  2009. Herbivory-induced extrafloral nectar increases native and invasive ant worker survival. Popul. Ecol. 51:237–43 [Google Scholar]
  93. Lach L, Hoffmann BD. 93.  2011. Are invasive ants better plant-defense mutualists? A comparison of foliage patrolling and herbivory in sites with invasive yellow crazy ants and native weaver ants. Oikos 120:9–16 [Google Scholar]
  94. Lach L, Tillberg CV, Suarez AV. 94.  2010. Contrasting effects of an invasive ant on a native and an invasive plant. Biol. Invasions 12:3123–33 [Google Scholar]
  95. Lanan MC, Bronstein JL. 95.  2013. An ant's-eye view of an ant-plant protection mutualism. Oecologia 172:779–90 [Google Scholar]
  96. Lee JC, Heimpel GE. 96.  2007. Sugar feeding reduces short-term activity of a parasitoid wasp. Physiol. Entomol. 32:99–103 [Google Scholar]
  97. Li T, Holopainen JK, Kokko H, Tervahauta AI, Blande JD. 97.  2012. Herbivore-induced aspen volatiles temporally regulate two different indirect defences in neighbouring plants. Funct. Ecol. 26:1176–85 [Google Scholar]
  98. Lin IW, Sosso D, Chen L-Q, Gase K, Kim S-G. 98.  et al. 2014. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature 508:546–49 [Google Scholar]
  99. Loughrin J, Manukian A, Heath R, Tumlinson J. 99.  1995. Volatiles emitted by different cotton varieties damaged by feeding beet armyworm larvae. J. Chem. Ecol. 21:1217–27 [Google Scholar]
  100. Lundgren JG, Seagraves MP. 100.  2011. Physiological benefits of nectar feeding by a predatory beetle. Biol. J. Linn. Soc. 104:661–69 [Google Scholar]
  101. Lüttge U. 101.  2013. Green nectaries: the role of photosynthesis in secretion. Bot. J. Linn. Soc. Lond. 137:1–11 [Google Scholar]
  102. Marazzi B, Ane C, Simon MF, Delgado-Salinas A, Luckow M, Sanderson MJ. 102.  2012. Locating evolutionary precursors on a phylogenetic tree. Evolution 66:3918–30 [Google Scholar]
  103. Marazzi B, Bronstein J, Koptur S. 103.  2013. The diversity, ecology and evolution of extrafloral nectaries: current perspectives and future challenges. Ann. Bot. 111:1243–50 [Google Scholar]
  104. Marazzi B, Sanderson MJ. 104.  2010. Large-scale patterns of diversification in the widespread legume genus Senna and evolutionary role of extrafloral nectaries. Evolution 64:3570–92 [Google Scholar]
  105. Mathews CR, Bottrell DG, Brown MW. 105.  2009. Extrafloral nectaries alter arthropod community structure and mediate peach (Prunus persica) plant defense. Ecol. Appl. 19:722–30 [Google Scholar]
  106. Mathews CR, Bottrell DG, Brown MW. 106.  2011. Interactions between extrafloral nectaries, ants (Hymenoptera: Formicidae), and other natural enemies affect biological control of Grapholita molesta (Lepidoptera: Tortricidae) on peach (Rosales: Rosaceae). Environ. Entomol. 40:42–51 [Google Scholar]
  107. Mathews CR, Brown MW, Bottrell DG. 107.  2007. Leaf extrafloral nectaries enhance biological control of a key economic pest, Grapholita molesta (Lepidoptera: Tortricidae), in peach (Rosales: Rosaceae). Environ. Entomol. 36:383–89 [Google Scholar]
  108. Mathur V, Wagenaar R, Caissard J-C, Reddy AS, Vet LEM. 108.  et al. 2013. A novel indirect defence in Brassicaceae: structure and function of extrafloral nectaries in Brassica juncea. Plant Cell Environ. 36:528–41 [Google Scholar]
  109. McKey D. 109.  1974. Adaptive patterns in alkaloid physiology. Am. Nat. 108:305–20 [Google Scholar]
  110. McKey D. 110.  1979. The distribution of secondary compounds within plants. Herbivores: Their Interactions with Secondary Plant Metabolites GA Rosenthal, DH Janzen 55–133 New York: Academic [Google Scholar]
  111. Melo Y, Machado SR, Alves M. 111.  2010. Anatomy of extrafloral nectaries in Fabaceae from dry-seasonal forest in Brazil. Bot. J. Linn. Soc. Lond. 163:87–98 [Google Scholar]
  112. Millán-Cañongo C, Orona-Tamayo D, Heil M. 112.  2014. Phloem sugar flux and jasmonic acid-responsive cell wall invertase control extrafloral nectar secretion in Ricinus communis. J. Chem. Ecol. 40:760–769 [Google Scholar]
  113. Mondor EB, Addicott JF. 113.  2003. Conspicuous extra-floral nectaries are inducible in Vicia faba. Ecol. Lett. 6:495–97 [Google Scholar]
  114. Nahas L, Gonzaga MO, Del-Claro K. 114.  2012. Emergent impacts of ant and spider interactions: herbivory reduction in a tropical savanna tree. Biotropica 44:498–505 [Google Scholar]
  115. Navarro-Meléndez AL, Heil M. 115.  2014. Symptomless endophytic fungi suppress endogenous levels of salicylic acid and interact with the jasmonate-dependent indirect defense traits of their host, Lima bean (Phaseolus lunatus). J. Chem. Ecol. 40:816–25 [Google Scholar]
  116. Nepi M, Soligo C, Nocentini D, Abate M, Guarnieri M. 116.  et al. 2012. Amino acids and protein profile in floral nectar: much more than a simple reward. Flora 207:475–81 [Google Scholar]
  117. Nepi M, von Aderkas P, Wagner R, Mugnaini S, Coulter A, Pacini E. 117.  2009. Nectar and pollination drops: How different are they?. Ann. Bot. 104:205–19 [Google Scholar]
  118. Ness JH. 118.  2003. Catalpa bignonioides alters extrafloral nectar production after herbivory and attracts ant bodyguards. Oecologia 134:210–18 [Google Scholar]
  119. Ness JH, Bronstein JL. 119.  2004. The effects of invasive ants on prospective ant mutualists. Biol. Invasions 6:445–61 [Google Scholar]
  120. Newman JR, Wagner D. 120.  2013. The influence of water availability and defoliation on extrafloral nectar secretion in quaking aspen (Populus tremuloides). Botany 91:761–67 [Google Scholar]
  121. Nicklen EF, Wagner D. 121.  2006. Conflict resolution in an ant-plant interaction: Acacia constricta traits reduce ant costs to reproduction. Oecologia 148:81–87 [Google Scholar]
  122. Nicolson SW, Thornburg RW. 122.  2007. Nectar chemistry. Nectaries and Nectar SW Nicolson, M Nepi, E Pacini 215–63 Dordrecht, Neth: Springer [Google Scholar]
  123. Nieuwenhuis-von Üxküll-Güldenband M. 123.  1907. Extraflorale Zuckerausscheidungen und Ameisenschutz. Ann. Jard. Bot. Buitenzorg, Ser. 2 6:195–328 [Google Scholar]
  124. Nogueira A, Guimarães E, Machado SR, Lohmann LG. 124.  2012. Do extrafloral nectaries present a defensive role against herbivores in two species of the family Bignoniaceae in a Neotropical savannas?. Plant Ecol. 213:289–301 [Google Scholar]
  125. Oliveira PS, Brandão CRF. 125.  1991. The ant community associated with extrafloral nectaries in the Brazilian cerrados. See Ref. 75 198–212
  126. Olson DM, Wäckers FL. 126.  2007. Management of field margins to maximize multiple ecological services. J. Appl. Ecol. 44:13–21 [Google Scholar]
  127. Orona-Tamayo D, Wielsch N, Blanco-Labra A, Svatos A, Faría-Rodríguez R, Heil M. 127.  2013. Exclusive rewards in mutualisms: ant proteases and plant protease inhibitors create a lock-key system to protect Acacia food bodies from exploitation. Mol. Ecol. 22:4087–100 [Google Scholar]
  128. Orona-Tamayo D, Wielsch N, Escalante-Pérez M, Svatos A, Molina-Torres J. 128.  et al. 2013. Short-term proteomic dynamics reveal metabolic factory for active extrafloral nectar secretion by Acacia cornigera ant-plants. Plant J. 73:546–54 [Google Scholar]
  129. Orre-Gordon G, Wratten SD, Jonsson M, Simpson M, Hale R. 129.  2013. ‘Attract and reward’: combining a herbivore-induced plant volatile with floral resource supplementation—multi-trophic level effects. Biol. Contr. 64:106–15 [Google Scholar]
  130. Paiva EAS, Martins LC. 130.  2014. Structure of the receptacular nectary and circadian metabolism of starch in the ant-guarded plant Ipomoea cairica (Convolvulaceae). Plant Biol. 16:244–51 [Google Scholar]
  131. Passmore HA, Bruna EM, Heredia SM, Vasconcelos HL. 131.  2012. Resilient networks of ant-plant mutualists in Amazonian forest fragments. PLOS ONE 7:e40803 [Google Scholar]
  132. Pemberton RW, Lee JH. 132.  1996. The influence of extrafloral nectaries on parasitism of an insect herbivore. Am. J. Bot. 83:1187–94 [Google Scholar]
  133. Pereira MF, Trigo JR. 133.  2013. Ants have a negative rather than a positive effect on extrafloral nectaried Crotalaria pallida performance. Acta Oecol. 51:49–53 [Google Scholar]
  134. Pfannenstiel RS, Patt JM. 134.  2012. Feeding on nectar and honeydew sugars improves survivorship of two nocturnal cursorial spiders. Biol. Contr. 63:231–36 [Google Scholar]
  135. Philpott SM, Foster PF. 135.  2005. Nest-site limitation in coffee agroecosystems: Artificial nests maintain diversity of arboreal ants. Ecol. Appl. 15:1478–85 [Google Scholar]
  136. Piovia-Scott J. 136.  2011. The effect of disturbance on an ant-plant mutualism. Oecologia 166:411–20 [Google Scholar]
  137. Portillo N, Alomar O, Wäckers F. 137.  2012. Nectarivory by the plant-tissue feeding predator Macrolophus pygmaeus Rambur (Heteroptera: Miridae): nutritional redundancy or nutritional benefit?. J. Insect Physiol. 58:397–401 [Google Scholar]
  138. Possobom CCF, Guimaraes E, Machado SR. 138.  2010. Leaf glands act as nectaries in Diplopterys pubipetala (Malpighiaceae). Plant Biol. 12:863–70 [Google Scholar]
  139. Pulice CE, Packer AA. 139.  2008. Simulated herbivory induces extrafloral nectary production in Prunus avium. Funct. Ecol. 22:801–7 [Google Scholar]
  140. Pumarino L, Alomar O, Lundgren JG. 140.  2012. Effects of floral and extrafloral resource diversity on the fitness of an omnivorous bug, Orius insidiosus. Entomol. Exp. Appl. 145:181–90 [Google Scholar]
  141. Radhika V, Kost C, Bartram S, Heil M, Boland W. 141.  2008. Testing the optimal defence hypothesis for two indirect defences: extrafloral nectar and volatile organic compounds. Planta 228:449–57 [Google Scholar]
  142. Radhika V, Kost C, Boland W, Heil M. 142.  2010. The role of jasmonate signalling in floral nectar secretion. PLOS ONE 5:e9265 [Google Scholar]
  143. Radhika V, Kost C, Mithöfer A, Boland W. 143.  2010. Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent. Proc. Natl. Acad. Sci. USA 107:17228–33 [Google Scholar]
  144. Rhoades DF. 144.  1979. Evolution of plant chemical defense against herbivores. Herbivores: Their Interaction with Secondary Plant Metabolites GA Rosenthal, DH Janzen 4–53 New York: Academic [Google Scholar]
  145. Rico-Gray V, Díaz-Castelazo C, Ramírez-Hernández A, Guimarães PR, Holland JN. 145.  2012. Abiotic factors shape temporal variation in the structure of an ant-plant network. Arthropod-Plant Interact. 6:289–95 [Google Scholar]
  146. Rogers WE, Siemann E, Lankau RA. 146.  2003. Damage induced production of extrafloral nectaries in native and invasive seedlings of Chinese tallow tree (Sapium sebiferum). Am. Midl. Nat. 149:413–17 [Google Scholar]
  147. Romero GQ, Koricheva J. 147.  2011. Contrasting cascade effects of carnivores on plant fitness: a meta-analysis. J. Anim. Ecol. 80:696–704 [Google Scholar]
  148. Röse USR, Lewis J, Tumlinson JH. 148.  2006. Extrafloral nectar from cotton (Gossypium hirsutum) as a food source for parasitic wasps. Funct. Ecol. 20:67–74 [Google Scholar]
  149. Rostás M, Eggert K. 149.  2008. Ontogenetic and spatio-temporal patterns of induced volatiles in Glycine max in the light of the optimal defence hypothesis. Chemoecology 18:29–38 [Google Scholar]
  150. Rosumek FB, Silveira FAO, de S Neves F, de U Barbosa NP, Diniz L. 150.  et al. 2009. Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia 160:537–49 [Google Scholar]
  151. Rudgers J, Gardener MC. 151.  2004. Extrafloral nectar as a resource mediating multispecies interactions. Ecology 85:1495–502 [Google Scholar]
  152. Rudgers JA. 152.  2004. Enemies of herbivores can shape plant traits: selection in a facultative ant-plant mutualism. Ecology 85:192–205 [Google Scholar]
  153. Ruhlmann JM, Kram BW, Carter CJ. 153.  2010. CELL WALL INVERTASE 4 is required for nectar production in Arabidopsis. J. Exp. Bot. 61:395–404 [Google Scholar]
  154. Russell JA, Moreau CS, Goldman-Huertas B, Fujiwara M, Lohman DJ, Pierce NE. 154.  2009. Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc. Natl. Acad. Sci. USA 106:21236–41 [Google Scholar]
  155. Savage AM, Rudgers JA. 155.  2013. Non-additive benefit or cost? Disentangling the indirect effects that occur when plants bearing extrafloral nectaries and honeydew-producing insects share exotic ant mutualists. Ann. Bot. 111:1295–307 [Google Scholar]
  156. Savage AM, Whitney KD. 156.  2011. Trait-mediated indirect interactions in invasions: unique behavioral responses of an invasive ant to plant nectar. Ecosphere 2:106 [Google Scholar]
  157. Schremmer F. 157.  1969. Extranuptiale Nektarien. Beobachtungen an Salix eleagnos Scop. und Pteridium aquilinum (L.) Kuhn. Österr. Bot. Z. 117:205–22 [Google Scholar]
  158. Schupp EW, Feener DH. 158.  1991. Phylogeny, life form, and habitat dependence of ant-defended plants in a Panamanian forest. See Ref. 75 175–97
  159. Seo PJ, Wielsch N, Kessler D, Svatos A, Park CM. 159.  et al. 2013. Natural variation in floral nectar proteins of two Nicotiana attenuata accessions. BMC Plant Biol. 13:101 [Google Scholar]
  160. Shenoy M, Radhika V, Satish S, Borges RM. 160.  2012. Composition of extrafloral nectar influences interactions between the myrmecophyte Humboldtia brunonis and its ant associates. J. Chem. Ecol. 38:88–99 [Google Scholar]
  161. Soren R, Chowdhury S. 161.  2011. Spider nectivory by Phintella vittata Koch (Araneae: Salticidae) from the extrafloral nectaries of Urena lobata L. from the Indian region. Curr. Sci. 100:1123–24 [Google Scholar]
  162. Stapel JO, Cortesero AM, DeMoraes CM, Tumlinson JH, Lewis WJ. 162.  1997. Extrafloral nectar, honeydew, and sucrose effects on searching behavior and efficiency of Microplitis croceipes (Hymenoptera: Braconidae) in cotton. Environ. Entomol. 26:617–23 [Google Scholar]
  163. Stephenson AG. 163.  1982. The role of the extrafloral nectaries of Catalpa speciosa in limiting herbivory and increasing fruit production. Ecology 63:663–69 [Google Scholar]
  164. Tempel AS. 164.  1983. Bracken fern (Pteridium aquilinum) and nectar-feeding ants: a nonmutualistic interaction. Ecology 64:1411–22 [Google Scholar]
  165. Tobin JE. 165.  1995. Ecology and diversity of tropical forest canopy ants. Forest Canopies MD Lowman, NM Nadkarni 129–47 San Diego, CA: Academic [Google Scholar]
  166. Trager MD, Bhotika S, Hostetler JA, Andrade GV, Rodriguez-Cabal MA. 166.  et al. 2010. Benefits for plants in ant-plant protective mutualisms: a meta-analysis. PLOS ONE 5:e14308 [Google Scholar]
  167. Villamil N, Márquez-Guzmán J, Boege K. 167.  2013. Understanding ontogenetic trajectories of indirect defence: ecological and anatomical constraints in the production of extrafloral nectaries. Ann. Bot. 112:701–9 [Google Scholar]
  168. Wäckers FL, Bonifay C. 168.  2004. How to be sweet? Extrafloral nectar allocation by Gossypium hirsutum fits optimal defense theory predictions. Ecology 85:1512–18 [Google Scholar]
  169. Wäckers FL, van Rijn PCJ, Bruin J. 169.  2005. Plant-Provided Food for Carnivorous Insects: A Protective Mutualism and Its Applications Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  170. Wäckers FL, Wunderlin R. 170.  1999. Induction of cotton extrafloral nectar production in response to herbivory does not require a herbivore-specific elicitor. Entomol. Exp. Appl. 91:149–54 [Google Scholar]
  171. Wäckers FL, Zuber D, Wunderlin R, Keller F. 171.  2001. The effect of herbivory on temporal and spatial dynamics of foliar nectar production in cotton and castor. Ann. Bot. 87:365–70 [Google Scholar]
  172. Wagner D, Nicklen EF. 172.  2010. Ant nest location, soil nutrients and nutrient uptake by ant-associated plants: Does extrafloral nectar attract ant nests and thereby enhance plant nutrition?. J. Ecol. 98:614–24 [Google Scholar]
  173. Wang Y, Carrillo J, Siemann E, Wheeler GS, Zhu L. 173.  et al. 2013. Specificity of extrafloral nectar induction by herbivores differs among native and invasive populations of tallow tree. Ann. Bot. In press [Google Scholar]
  174. Weber MG, Clement WL, Donoghue MJ, Agrawal AA. 174.  2012. Phylogenetic and experimental tests of interactions among mutualistic plant defense traits in Viburnum (Adoxaceae). Am. Nat. 180:450–63 [Google Scholar]
  175. Weber MG, Keeler KH. 175.  2013. The phylogenetic distribution of extrafloral nectaries in plants. Ann. Bot. 111:1251–61 [Google Scholar]
  176. White RA, Turner MD. 176.  2012. The anatomy and occurrence of foliar nectaries in Cyathea (Cyatheaceae). Am. Fern J. 102:91–113 [Google Scholar]
  177. Wilder SM, Eubanks MD. 177.  2010. Extrafloral nectar content alters foraging preferences of a predatory ant. Biol. Lett. 6:177–79 [Google Scholar]
  178. Wilder SM, Holway DA, Suarez AV, Eubanks MD. 178.  2011. Macronutrient content of plant-based food affects growth of a carnivorous arthropod. Ecology 92:325–32 [Google Scholar]
  179. Wu L, Yun Y, Li J, Chen J, Zhang H, Peng Y. 179.  2011. Preference for feeding on honey solution and its effect on survival, development, and fecundity of Ebrechtella tricuspidata. Entomol. Exp. Appl. 140:52–58 [Google Scholar]
  180. Wunderlin R, Keller F, Wäckers FL. 180.  1997. A comparison between Spodoptera littoralis (Boisduval) damaged and undamaged Gossypium herbaceum (L.) with respect to sugar composition and concentration of extrafloral nectar. Proc. Sect. Exp. Appl. Entomol. Neth. Entomol. Soc. 8:189–92 [Google Scholar]
  181. Zhang L, Cohn NS, Mitchell JP. 181.  1996. Induction of a pea cell-wall invertase gene by wounding and its localized expression in phloem. Plant Physiol. 112:1111–17 [Google Scholar]
  182. Zimmermann J. 182.  1932. Über die extrafloralen Nektarien der Angiosperm. Beih. Bot. Cent. 49:99–196 [Google Scholar]
  183. Zimmermann M. 183.  1954. Über die Sekretion saccharosespaltender Transglucosidasen im pflanzlichen Nektar. Experientia 15:145–46 [Google Scholar]
/content/journals/10.1146/annurev-ento-010814-020753
Loading
/content/journals/10.1146/annurev-ento-010814-020753
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error