Opiliones are one of the largest arachnid orders, with more than 6,500 species in 50 families. Many of these families have been erected or reorganized in the last few years since the publication of Recent years have also seen an explosion in phylogenetic work on Opiliones, as well as in studies using Opiliones as test cases to address biogeographic and evolutionary questions more broadly. Accelerated activity in the study of Opiliones evolution has been facilitated by the discovery of several key fossils, including the oldest known Opiliones fossil, which represents a new, extinct suborder. Study of the group's biology has also benefited from rapid accrual of genomic resources, particularly with respect to transcriptomes and functional genetic tools. The rapid emergence and utility of as a model for evolutionary developmental biology of arthropods serve as demonstrative evidence of a new area of study in Opiliones biology, made possible through transcriptomic data.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Akiyama-Oda Y, Oda H. 1.  2003. Early patterning of the spider embryo: a cluster of mesenchymal cells at the cumulus produces Dpp signals received by germ disc epithelial cells. Development 130:1735–47 [Google Scholar]
  2. Allard CM, Yeargan KV. 2.  2005. Effect of diet on development and reproduction of the harvestman Phalangium opilio (Opiliones: Phalangiidae). Environ. Entomol. 34:6–13 [Google Scholar]
  3. Arango CP. 3.  2002. Morphological phylogenetics of the sea spiders (Arthropoda: Pycnogonida). Org. Divers. Evol. 2:107–25 [Google Scholar]
  4. Barnett AA, Thomas RH. 4.  2013. The expression of limb gap genes in the mite Archegozetes longisetosus reveals differential patterning mechanisms in chelicerates. Evol. Dev. 15:280–92 [Google Scholar]
  5. Benavides LR, Giribet G. 5.  2013. A revision of selected clades of Neotropical mite harvestmen (Arachnida, Opiliones, Cyphophthalmi, Neogoveidae) with the description of eight new species. Bull. Mus. Comp. Zool. 161:1–44 [Google Scholar]
  6. Boyer SL, Baker JM, Giribet G. 6.  2007. Deep genetic divergences in Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi): a widespread ‘mite harvestman’ defies DNA taxonomy. Mol. Ecol. 16:4999–5016 [Google Scholar]
  7. Boyer SL, Clouse RM, Benavides LR, Sharma P, Schwendinger PJ. 7.  et al. 2007. Biogeography of the world: a case study from cyphophthalmid Opiliones, a globally distributed group of arachnids. J. Biogeogr. 34:2070–85 [Google Scholar]
  8. Boyer SL, Giribet G. 8.  2007. A new model Gondwanan taxon: systematics and biogeography of the harvestman family Pettalidae (Arachnida, Opiliones, Cyphophthalmi), with a taxonomic revision of genera from Australia and New Zealand. Cladistics 23:337–61 [Google Scholar]
  9. Boyer SL, Giribet G. 9.  2009. Welcome back New Zealand: regional biogeography and Gondwanan origin of three endemic genera of mite harvestmen (Arachnida, Opiliones, Cyphophthalmi). J. Biogeogr. 36:1084–99 [Google Scholar]
  10. Briggs DEG, Siveter DJ, Siveter DJ, Sutton MD, Garwood RJ, Legg D. 10.  2012. Silurian horseshoe crab illuminates the evolution of arthropod limbs. Proc. Natl. Acad. Sci. USA 109:15702–5 [Google Scholar]
  11. Buzatto BA, Tomkins JL, Simmons LW, Machado G. 11.  2014. Correlated evolution of sexual dimorphism and male dimorphism in a clade of neotropical harvestmen. Evolution 68:1671–86 [Google Scholar]
  12. Caetano DS, Machado G. 12.  2013. The ecological tale of Gonyleptidae (Arachnida, Opiliones) evolution: phylogeny of a Neotropical lineage of armoured harvestmen using ecological, behavioural and chemical characters. Cladistics 29:589–609 [Google Scholar]
  13. Clouse RM, de Bivort BL, Giribet G. 13.  2009. A phylogenetic analysis for the South-east Asian mite harvestman family Stylocellidae (Opiliones: Cyphophthalmi)—a combined analysis using morphometric and molecular data. Invertebr. Syst. 23:515–29 [Google Scholar]
  14. Clouse RM, General DM, Diesmos AC, Giribet G. 14.  2011. An old lineage of Cyphophthalmi (Opiliones) discovered on Mindanao highlights the need for biogeographical research in the Philippines. J. Arachnol. 39:147–53 [Google Scholar]
  15. Clouse RM, Giribet G. 15.  2007. Across Lydekker's Line—first report of mite harvestmen (Opiliones: Cyphophthalmi: Stylocellidae) from New Guinea. Invertebr. Syst. 21:207–27 [Google Scholar]
  16. Clouse RM, Giribet G. 16.  2010. When Thailand was an island—the phylogeny and biogeography of mite harvestmen (Opiliones, Cyphophthalmi, Stylocellidae) in Southeast Asia. J. Biogeogr. 37:1114–30 [Google Scholar]
  17. Clouse RM, Sharma PP, Giribet G, Wheeler WC. 17.  2013. Elongation factor-1α, a putative single-copy nuclear gene, has divergent sets of paralogs in an arachnid. Mol. Phylogenet. Evol. 68:471–81 [Google Scholar]
  18. Crosby CR. 18.  1904. Notes on some Phalangids collected near Ithaca, N. Y. J. N. Y. Entomol. Soc. 12:253–56 [Google Scholar]
  19. Damen WGM, Hausdorf M, Seyfarth EA, Tautz D. 19.  1998. A conserved mode of head segmentation in arthropods revealed by the expression pattern of Hox genes in a spider. Proc. Natl. Acad. Sci. USA 95:10665–70 [Google Scholar]
  20. DaSilva MB, Gnaspini P. 20.  2009. A systematic revision of Goniosomatinae (Arachnida: Opiliones: Gonyleptidae), with a cladistic analysis and biogeographical notes. Invertebr. Syst. 23:530–624 [Google Scholar]
  21. de Bivort B, Clouse RM, Giribet G. 21.  2010. A morphometrics-based phylogeny of the temperate Gondwanan mite harvestmen (Opiliones, Cyphophthalmi, Pettalidae). J. Zool. Syst. Evol. Res. 48:294–309 [Google Scholar]
  22. de Bivort B, Giribet G. 22.  2010. A systematic revision of the South African Pettalidae (Arachnida: Opiliones: Cyphophthalmi) based on a combined analysis of discrete and continuous morphological characters with the description of seven new species. Invertebr. Syst. 24:371–406 [Google Scholar]
  23. de Bivort BL, Giribet G. 23.  2004. A new genus of cyphophthalmid from the Iberian Peninsula with a phylogenetic analysis of the Sironidae (Arachnida: Opiliones: Cyphophthalmi) and a SEM database of external morphology. Invertebr. Syst. 18:7–52 [Google Scholar]
  24. Dearden PK, Donly C, Grbic M. 24.  2002. Expression of pair-rule gene homologues in a chelicerate: early patterning of the two-spotted spider mite Tetranychus urticae. Development 129:5461–72 [Google Scholar]
  25. Dehal P, Boore JL. 25.  2005. Two rounds of whole genome duplication in the ancestral vertebrate. PLOS Biol. 3:1700–8 [Google Scholar]
  26. Dunlop JA. 26.  2006. Baltic amber harvestman types (Arachnida: Opiliones: Eupnoi and Dyspnoi). Fossil Rec. 9:167–82 [Google Scholar]
  27. Dunlop JA. 27.  2007. Paleontology. See Ref. 73 247–65
  28. Dunlop JA, Anderson LI, Kerp H, Hass H. 28.  2003. Preserved organs of Devonian harvestmen. Nature 425:916 [Google Scholar]
  29. Dunlop JA, Anderson LI, Kerp H, Hass H. 29.  2004. A harvestman (Arachnida: Opiliones) from the Early Devonian Rhynie cherts, Aberdeenshire, Scotland. Trans. R. Soc. Edinburgh Earth Sci. 94:341–54 [Google Scholar]
  30. Dunlop JA, Mitov PG. 30.  2011. The first fossil cyphophthalmid harvestman from Baltic amber. Arachnologische Mitt. 40:47–54 [Google Scholar]
  31. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE. 31.  et al. 2008. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–49 [Google Scholar]
  32. Fernández R, Giribet G. 32.  2014. Phylogeography and species delimitation in the New Zealand endemic, genetically hypervariable harvestman species, Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi). Invertebr. Syst. 28401–14
  33. Firstman B. 33.  1973. The relationship of the chelicerate arterial system to the evolution of the endosternite. J. Arachnol. 1:1–54 [Google Scholar]
  34. Forster RR. 34.  1948. A new genus and species of the family Acropsopilionidae (Opiliones) from New Zealand. Trans. R. Soc. N. Z. 77:139–41 [Google Scholar]
  35. Garwood RJ, Dunlop JA, Giribet G, Sutton MD. 35.  2011. Anatomically modern Carboniferous harvestmen demonstrate early cladogenesis and stasis in Opiliones. Nat. Commun. 2:444 [Google Scholar]
  36. Garwood RJ, Sharma PP, Dunlop JA, Giribet G. 36.  2014. A new stem-group Palaeozoic harvestman revealed through integration of phylogenetics and development. Curr. Biol. 24:1017–23Comprehensive approach to basal Opiliones phylogeny, incorporating morphology, molecules, fossils, and developmental gene expression data. [Google Scholar]
  37. Gillespie RG, Roderick GK. 37.  2002. Arthropods on islands: colonization, speciation, and conservation. Annu. Rev. Entomol. 47:595–632 [Google Scholar]
  38. Giribet G. 38.  2003. Karripurcellia, a new pettalid genus (Arachnida: Opiliones: Cyphophthalmi) from Western Australia, with a cladistic analysis of the family Pettalidae. Invertebr. Syst. 17:387–406 [Google Scholar]
  39. Giribet G, Boyer SL. 39.  2002. A cladistic analysis of the cyphophthalmid genera (Opiliones, Cyphophthalmi). J. Arachnol. 30:110–28 [Google Scholar]
  40. Giribet G, Dunlop JA. 40.  2005. First identifiable Mesozoic harvestman (Opiliones: Dyspnoi) from Cretaceous Burmese amber. Proc. R. Soc. B 272:1007–13 [Google Scholar]
  41. Giribet G, Edgecombe GD, Wheeler WC, Babbitt C. 41.  2002. Phylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data. Cladistics 18:5–70 [Google Scholar]
  42. Giribet G, Kury AB. 42.  2007. Phylogeny and biogeography. See Ref. 73 62–87
  43. Giribet G, Sharma PP, Benavides LR, Boyer SL, Clouse RM. 43.  et al. 2012. Evolutionary and biogeographical history of an ancient and global group of arachnids (Arachnida: Opiliones: Cyphophthalmi) with a new taxonomic arrangement. Biol. J. Linn. Soc. 105:92–130 [Google Scholar]
  44. Giribet G, Shear WA. 44.  2010. The genus Siro Latreille, 1796 (Opiliones, Cyphophthalmi, Sironidae), in North America with a phylogenetic analysis based on molecular data and the description of four new species. Bull. Mus. Comp. Zool. 160:1–33 [Google Scholar]
  45. Giribet G, Tourinho AL, Shih C, Ren D. 45.  2012. An exquisitely preserved harvestman (Arthropoda, Arachnida, Opiliones) from the Middle Jurassic of China. Org. Divers. Evol. 12:51–56 [Google Scholar]
  46. Giribet G, Vogt L, Pérez González A, Sharma P, Kury AB. 46.  2010. A multilocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores. Cladistics 26:408–37First comprehensive molecular phylogeny of Opiliones including a nearly complete family-level sampling. [Google Scholar]
  47. González-Sponga MA. 47.  1992. Aracnidos de Venezuela. Nueva especie del género Acropsopilio de la Cordillera de la Costa (Caddidae). Bol. Acad. Ciencias Físicas Mat. Nat. 52:43–51 [Google Scholar]
  48. Gorlov IP, Tsurusaki N. 48.  2000. Analysis of the phenotypic effects of B chromosomes in a natural population of Metagagrella tenuipes (Arachnida: Opiliones). Heredity 84:209–17 [Google Scholar]
  49. Groh S, Giribet G. 49.  2014. Polyphyly of Caddoidea, reinstatement of the family Acropsopilionidae in Dyspnoi, and a revised classification system of Palpatores (Arachnida, Opiliones). Cladistics In press. doi: 10.1111/cla.12087
  50. Hedin M, Starrett J, Akhter S, Schönhofer AL, Shultz JW. 50.  2012. Phylogenomic resolution of Paleozoic divergences in harvestmen (Arachnida, Opiliones) via analysis of next-generation transcriptome data. PLOS ONE 7:e428888 [Google Scholar]
  51. Hedin M, Tsurusaki N, Macías-Ordóñez R, Shultz JW. 51.  2012. Molecular systematics of sclerosomatid harvestmen (Opiliones, Phalangioidea, Sclerosomatidae): Geography is better than taxonomy in predicting phylogeny. Mol. Phylogenet. Evol. 62:224–36 [Google Scholar]
  52. Huang D, Selden PA, Dunlop JA. 52.  2009. Harvestmen (Arachnida: Opiliones) from the Middle Jurassic of China. Naturwissenchaften 96:955–62 [Google Scholar]
  53. Hughes CL, Kaufman TC. 53.  2002. Hox genes and the evolution of the arthropod body plan. Evol. Dev. 4:459–99 [Google Scholar]
  54. Hunt GS, Cokendolpher JC. 54.  1991. Ballarrinae, a new subfamily of harvestmen from the southern hemisphere (Arachnida, Opiliones, Neopilionidae). Rec. Aust. Museum 43:131–69 [Google Scholar]
  55. Janssen R, Damen WGM, Budd GE. 55.  2011. Expression of collier in the premandibular segment of myriapods: support for the traditional Atelocerata concept or a case of convergence?. BMC Evol. Biol. 11:50 [Google Scholar]
  56. Jell PA, Duncan PM. 56.  1986. Invertebrates, mainly insects, from the freshwater Lower Cretaceous Koonwarra Fossil Bed (Korumburra Group), South Gippsland, Victoria. Mem. Assoc. Aust. Paleontol. 3:111–205 [Google Scholar]
  57. Kury AB. 57.  1993. Análise filogenética de Gonyleptoidea (Arachnida, Opiliones, Laniatores) PhD Thesis, Univ. São Paulo, São Paulo [Google Scholar]
  58. Kury AB. 58.  2011. Order Opiliones Sundevall, 1833. Animal Biodiversity: An Outline of Higher-Level Classification and Survey of Taxonomic Richness Z-Q Zhang 112–14 Auckland, NZ: Magnolia [Google Scholar]
  59. Kury AB. 59.  2013. Order Opiliones Sundevall, 1833. Zootaxa 3703:27–33 [Google Scholar]
  60. Legg G. 60.  1975. Sperm transfer and mating in Ricinoides hanseni (sp. nov.) (Ricinulei: Arachnida). J. Zool. 182:51–61 [Google Scholar]
  61. Machado G, Macías-Ordóñez R. 61.  2007. Reproduction. See Ref. 73 414–54
  62. Machado G, Macías-Ordóñez R. 62.  2007. Social behavior. See Ref. 73 400–13
  63. Markl J. 63.  1986. Evolution and function of structurally diverse subunits in the respiratory protein hemocyanin from arthropods. Biol. Bull. 171:90–115 [Google Scholar]
  64. Martens J. 64.  1980. Versuch eines Phylogenetischen Systems der Opiliones Presented at 8th Int. Congr. Arachnol., July 7–12, Vienna
  65. Martens J. 65.  1986. Die Grossgliederung der Opiliones und die Evolution der Ordnung (Arachnida). Actas X Congr. Int. Arachnol. 1: JA Barrientos, pp. 289–310 Barcelona: Juvenil [Google Scholar]
  66. Martens J, Hoheisel U, Götze M. 66.  1981. Vergleichende Anatomie der Legeröhren der Opiliones als Beitrag zur Phylogenie der Ordnung (Arachnida). Zool. Jahrb. Abt. Anat. Ontog. Tiere 105:13–76 [Google Scholar]
  67. Masta SE. 67.  2010. Mitochondrial rRNA secondary structures and genome arrangements distinguish chelicerates: comparisons with a harvestman (Arachnida: Opiliones: Phalangium opilio). Gene 449:9–21 [Google Scholar]
  68. Mendes AC. 68.  2009. Avaliação do status sistemático dos táxons supragenéricos da infra-ordem Insidiatores Loman, 1902 (Arachnida, Opiliones, Laniatores) PhD Thesis, Univ. Fed. Rio Jan. [Google Scholar]
  69. Mendes AC, Kury AB. 69.  2008. Intercontinental Triaenonychidae—the case of Ceratomontia (Opiliones, Insidiatores). J. Arachnol. 36:273–79 [Google Scholar]
  70. Murienne J, Karaman I, Giribet G. 70.  2010. Explosive evolution of an ancient group of Cyphophthalmi (Arachnida: Opiliones) in the Balkan Peninsula. J. Biogeogr. 37:90–102 [Google Scholar]
  71. Özdikmen H, Kury AB. 71.  2007. Replacement names for Oncopus and Oncopodidae (Arachnida, Opiliones). J. Arachnol. 35:407–8 [Google Scholar]
  72. Pinto-da-Rocha R, Bragagnolo C, Marques FPL, Antunes Junior M. 72.  2014. Phylogeny of harvestmen family Gonyleptidae inferred from a multilocus approach (Arachnida: Opiliones). Cladistics 30519–39
  73. Pinto-da-Rocha R, Machado G, Giribet G. 73.  2007. Harvestmen: The Biology of Opiliones Cambridge, MA: Harvard Univ. Press
  74. Poinar G. 74.  2008. Palaeosiro burmanicum n. gen., n. sp., a fossil Cyphophthalmi (Arachnida: Opiliones: Sironidae) in Early Cretaceous Burmese amber. Advances in Arachnology and Developmental Biology: Papers Dedicated to Professor Božidar P.M. Ćurčić SE Makarov, RN Dimitrijevic 267–74 Belgrade: Inst. Zool., Fac. Biol., Univ. Belgrade [Google Scholar]
  75. Punzo B. 75.  1998. The Biology of Camel-Spiders (Arachnida, Solifugae) Boston: Kluwer Acad. [Google Scholar]
  76. Regier JC, Shultz JW, Zwick A, Hussey A, Ball B. 76.  et al. 2010. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–83 [Google Scholar]
  77. Regier JC, Zwick A. 77.  2011. Sources of signal in 62 protein-coding nuclear genes for higher-level phylogenetics of arthropods. PLOS ONE 6:e23408 [Google Scholar]
  78. Rehm P, Pick C, Borner J, Markl J, Burmester T. 78.  2012. The diversity and evolution of chelicerate hemocyanins. BMC Evol. Biol. 12:19 [Google Scholar]
  79. Riesgo A, Andrade SC, Sharma PP, Novo M, Pérez-Porro AR. 79.  et al. 2012. Comparative description of ten transcriptomes of newly sequenced invertebrates and efficiency estimation of genomic sampling in non-model taxa. Front. Zool. 9:33 [Google Scholar]
  80. Salichos L, Rokas A. 80.  2013. Inferring ancient divergences requires genes with strong phylogenetic signals. Nature 497:327–31 [Google Scholar]
  81. Scannell DR, Byrne KP, Gordon JL, Wong S, Wolfe KH. 81.  2006. Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature 440:341–45 [Google Scholar]
  82. Schönhofer AL. 82.  2013. A taxonomic catalogue of the Dyspnoi Hansen and Sørensen, 1904 (Arachnida: Opiliones). Zootaxa 3679:1–68 [Google Scholar]
  83. Schönhofer AL, McCormack M, Tsurusaki N, Martens J, Hedin M. 83.  2013. Molecular phylogeny of the harvestmen genus Sabacon (Arachnida: Opiliones: Dyspnoi) reveals multiple Eocene-Oligocene intercontinental dispersal events in the Holarctic. Mol. Phylogenet. Evol. 66:303–15 [Google Scholar]
  84. Schwager EE, Schoppmeier M, Pechmann M, Damen WG. 84.  2007. Duplicated Hox genes in the spider Cupiennius salei. Front. Zool. 4:10 [Google Scholar]
  85. Schwendinger PJ, Giribet G. 85.  2005. The systematics of the south-east Asian genus Fangensis Rambla (Opiliones: Cyphophthalmi: Stylocellidae). Invertebr. Syst. 19:297–323 [Google Scholar]
  86. Sharma P, Giribet G. 86.  2009. A relict in New Caledonia: phylogenetic relationships of the family Troglosironidae (Opiliones: Cyphophthalmi). Cladistics 25:279–94 [Google Scholar]
  87. Sharma P, Giribet G. 87.  2009. Sandokanid phylogeny based on eight molecular markers—the evolution of a southeast Asian endemic family of Laniatores (Arachnida, Opiliones). Mol. Phylogenet. Evol. 52:432–47 [Google Scholar]
  88. Sharma PP, Giribet G. 88.  2011. The evolutionary and biogeographic history of the armoured harvestmen—Laniatores phylogeny based on ten molecular markers, with the description of two new families of Opiliones (Arachnida). Invertebr. Syst. 25:106–42 [Google Scholar]
  89. Sharma PP, Giribet G. 89.  2012. Out of the Neotropics: late Cretaceous colonization of Australasia by American arthropods. Proc. R. Soc. B 279:3501–9 [Google Scholar]
  90. Sharma PP, Giribet G. 90.  2014. A revised dated phylogeny of the arachnid order Opiliones. Front. Genet. 5:255 [Google Scholar]
  91. Sharma PP, Gupta T, Schwager EE, Wheeler WC, Extavour CG. 91.  2014. Subdivision of arthropod cap-n-collar expression domains is restricted to Mandibulata. EvoDevo 5:3 [Google Scholar]
  92. Sharma PP, Kaluziak S, Pérez-Porro AR, González VL, Hormiga G. 92.  et al. 2014. Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal. Mol. Biol. Evol. In press. doi: 10.1093/molbev/msu235
  93. Sharma PP, Prieto CE, Giribet G. 93.  2011. A new family of Laniatores (Arachnida: Opiliones) from the Afrotropics. Invertebr. Syst. 25:143–54 [Google Scholar]
  94. Sharma PP, Schwager EE, Extavour CG, Giribet G. 94.  2012. Evolution of the chelicera: A dachshund domain is retained in the deutocerebral appendage of Opiliones (Arthropoda, Chelicerata). Evol. Dev. 14:522–33 [Google Scholar]
  95. Sharma PP, Schwager EE, Extavour CG, Giribet G. 95.  2012. Hox gene expression in the harvestman Phalangium opilio reveals divergent patterning of the chelicerate opisthosoma. Evol. Dev. 14:450–63First study of developmental gene expression in Opiliones, employing transcriptomic approach to identification of Hox gene orthologs. [Google Scholar]
  96. Sharma PP, Schwager EE, Extavour CG, Wheeler WC. 96.  2014. Hox gene duplications correlate with posterior heteronomy in scorpions. Proc. R. Soc. B 281:20140661 [Google Scholar]
  97. Sharma PP, Schwager EE, Giribet G, Jockusch EL, Extavour CG. 97.  2013. Distal-less and dachshund pattern both plesiomorphic and apomorphic structures in chelicerates: RNA interference in the harvestman Phalangium opilio (Opiliones). Evol. Dev. 15:228–42First functional genetic approach in a species of Opiliones, investigating genetic basis of appendage patterning with gene silencing techniques. [Google Scholar]
  98. Sharma PP, Wheeler WC. 98.  2013. Revenant clades in historical biogeography: the geology of New Zealand predisposes endemic clades to root age shifts. J. Biogeogr. 40:1609–18 [Google Scholar]
  99. Sharma PP, Wheeler WC. 99.  2014. Cross-bracing uncalibrated nodes in molecular dating improves congruence of fossil and molecular age estimates. Front. Zool. 11:57 [Google Scholar]
  100. Shear WA. 100.  1975. The opilionid family Caddidae in North America, with notes on species from other regions (Opiliones, Palpatores, Caddoidea). J. Arachnol. 2:65–88 [Google Scholar]
  101. Shear WA. 101.  1980. A review of the Cyphophthalmi of the United States and Mexico, with a proposed reclassification of the suborder (Arachnida, Opiliones). Am. Mus. Novit. 2705:1–34 [Google Scholar]
  102. Shear WA. 102.  1996. Hesperopilio mainae, a new genus and species of harvestman from Western Australia (Opiliones: Caddidae: Acropsopilioninae). Rec. Western Aust. Museum 17:455–60 [Google Scholar]
  103. Shear WA. 103.  2004. Description of the female of Acropsopilio chomulae (Goodnight & Goodnight 1948) from Chiapas, Mexico (Opiliones, Caddidae, Acropsopilioninae). J. Arachnol. 32:432–35 [Google Scholar]
  104. Shultz JW. 104.  1990. Evolutionary morphology and phylogeny of Arachnida. Cladistics 6:1–38 [Google Scholar]
  105. Shultz JW. 105.  1998. Phylogeny of Opiliones (Arachnida): an assessment of the “Cyphopalpatores” concept. J. Arachnol. 26:257–72 [Google Scholar]
  106. Shultz JW. 106.  2007. A phylogenetic analysis of the arachnid orders based on morphological characters. Zool. J. Linn. Soc. 150:221–65 [Google Scholar]
  107. Shultz JW, Regier JC. 107.  2001. Phylogenetic analysis of Phalangida (Arachnida, Opiliones) using two nuclear protein-encoding genes supports monophyly of Palpatores. J. Arachnol. 29:189–200 [Google Scholar]
  108. Shultz JW, Regier JC. 108.  2009. Caddo agilis and C. pepperella (Opiliones, Caddidae) diverged phylogenetically before acquiring their disjunct, sympatric distributions in Japan and North America. J. Arachnol. 37:238–40 [Google Scholar]
  109. Silvestri F. 109.  1904. Note arachnologiche II. Descrizione di un nuovo genere di Opilionidi del Chile. Redia 2:254–56 [Google Scholar]
  110. Stelbrink B, Albrecht C, Hall R, von Rintelen T. 110.  2012. The biogeography of Sulawesi revisited: Is there evidence for a vicariant origin of taxa on Wallace's “anomalous island”?. Evolution 66:2252–71 [Google Scholar]
  111. Suzuki S, Tomishima K, Yano S, Tsurusaki N. 111.  1977. Discontinuous distributions in relict harvestmen (Opiliones, Arachnida). Acta Arachnol. 27:121–38 [Google Scholar]
  112. Taylor CK. 112.  2011. Revision of the genus Megalopsalis (Arachnida: Opiliones: Phalangioidea) in Australia and New Zealand and implications for phalangioid classification. Zootaxa 2773:1–65 [Google Scholar]
  113. Telford MJ, Thomas RH. 113.  1998. Expression of homeobox genes shows chelicerate arthropods retain their deutocerebral segment. Proc. Natl. Acad. Sci. USA 95:10671–75 [Google Scholar]
  114. Telford MJ, Thomas RH. 114.  1998. Of mites and zen: expression studies in a chelicerate arthropod confirm zen is a divergent Hox gene. Dev. Genes Evol. 208:591–94 [Google Scholar]
  115. Thomas RH, Telford MJ. 115.  1999. Appendage development in embryos of the oribatid mite Archegozetes longisetosus (Acari, Oribatei, Trhypochthoniidae). Acta Zool. 80:193–200 [Google Scholar]
  116. Thomas SM, Hedin M. 116.  2008. Multigenic phylogeographic divergence in the paleoendemic southern Appalachian opilionid Fumontana deprehendor Shear (Opiliones, Laniatores, Triaenonychidae). Mol. Phylogenet. Evol. 46:645–58 [Google Scholar]
  117. Townsend JP. 117.  2007. Profiling phylogenetic informativeness. Syst. Biol. 56:222–31 [Google Scholar]
  118. Tsurusaki N. 118.  2007. Cytogenetics. See Ref. 73 266–79
  119. Tsurusaki N, Shimada T. 119.  2004. Geographic and seasonal variations of the number of B chromosomes and external morphology in Psathyropus tenuipes (Arachnida: Opiliones). Cytogenet. Genome Res. 106:365–75 [Google Scholar]
  120. Weygoldt P, Paulus HF. 120.  1979. Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata. II. Cladogramme und die Entfaltung der Chelicerata. J. Zool. Syst. Evol. Res. 17:177–200 [Google Scholar]
  121. Wheeler WC, Hayashi CY. 121.  1998. The phylogeny of the extant chelicerate orders. Cladistics 14:173–92 [Google Scholar]
  122. Willemart RH, Osses F, Chelini MC, Macías-Ordóñez R, Machado G. 122.  2009. Sexually dimorphic legs in a Neotropical harvestman (Arachnida, Opiliones): ornament or weapon?. Behav. Process. 80:51–59 [Google Scholar]
  123. Yamaguti HY, Pinto-da-Rocha R. 123.  2009. Taxonomic review of Bourguyiinae, cladistic analysis, and a new hypothesis of biogeographic relationships of the Brazilian Atlantic Rainforest (Arachnida: Opiliones, Gonyleptidae). Zool. J. Linn. Soc. 156:319–62 [Google Scholar]
  124. Yoshikura M. 124.  1975. Comparative embryology and phylogeny of Arachnida. Kumamoto J. Sci. Biol. 12:71–142 [Google Scholar]
  125. Zatz C, Werneck RM, Macías-Ordóñez R, Machado G. 125.  2011. Alternative mating tactics in dimorphic males of the harvestman Longiperna concolor (Arachnida: Opiliones). Behav. Ecol. Sociobiol. 65:995–1005 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error