1932

Abstract

The evolution of a mutualism requires reciprocal interactions whereby one species provides a service that the other species cannot perform or performs less efficiently. Services exchanged in insect–fungus mutualisms include nutrition, protection, and dispersal. In ectosymbioses, which are the focus of this review, fungi can be consumed by insects or can degrade plant polymers or defensive compounds, thereby making a substrate available to insects. They can also protect against environmental factors and produce compounds antagonistic to microbial competitors. Insects disperse fungi and can also provide fungal growth substrates and protection. Insect–fungus mutualisms can transition from facultative to obligate, whereby each partner is no longer viable on its own. Obligate dependency has () resulted in the evolution of morphological adaptations in insects and fungi, () driven the evolution of social behaviors in some groups of insects, and () led to the loss of sexuality in some fungal mutualists.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011019-024910
2020-01-07
2024-05-19
Loading full text...

Full text loading...

/deliver/fulltext/ento/65/1/annurev-ento-011019-024910.html?itemId=/content/journals/10.1146/annurev-ento-011019-024910&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aanen DK. 2006. As you reap, so shall you sow: coupling of harvesting and inoculating stabilizes the mutualism between termites and fungi. Biol. Lett. 2:209–12
    [Google Scholar]
  2. 2. 
    Aanen DK, Boomsma JJ. 2006. The evolutionary origin and maintenance of the mutualistic symbiosis between termites and fungi. Insect Symbiosis, Vol. 2 K Bourtzis, TA Miller 79–95 Boca Raton, FL: CRC Press
    [Google Scholar]
  3. 3. 
    Aanen DK, de Fine Licht HH, Debets AJ, Kerstes NA, Hoekstra RF, Boomsma JJ 2009. High symbiont relatedness stabilizes mutualistic cooperation in fungus-growing termites. Science 326:1103–6
    [Google Scholar]
  4. 4. 
    Anagnostou C, LeGrand EA, Rohlfs M 2010. Friendly food for fitter flies? Influence of dietary microbial species on food choice and parasitoid resistance in Drosophila. Oikos 119:533–41
    [Google Scholar]
  5. 5. 
    Archetti M, Scheuring I, Hoffman M, Frederickson ME, Pierce NE, Yu DW 2011. Economic game theory for mutualism and cooperation. Ecol. Lett. 14:1300–12
    [Google Scholar]
  6. 6. 
    Armitage SA, Fernandez-Marin H, Wcislo WT, Boomsma JJ 2012. An evaluation of the possible adaptive function of fungal brood covering by attine ants. Evolution 66:1966–75
    [Google Scholar]
  7. 7. 
    Aylward FO, Currie CR, Suen G 2012. The evolutionary innovation of nutritional symbioses in leaf-cutter ants. Insects 3:41–61
    [Google Scholar]
  8. 8. 
    Bass M, Cherrett JM. 1996. Leaf-cutting ants (Formicidae, Attini) prune their fungus to increase and direct its productivity. Funct. Ecol. 10:55–61
    [Google Scholar]
  9. 9. 
    Batra LR, Francke-Grosmann H. 1961. Contributions to our knowledge of ambrosia fungi. I. Ascoidea hylecoeti sp. nov. (Ascomycetes). Am. J. Bot. 48:453–56
    [Google Scholar]
  10. 10. 
    Batra LR, Michie MD. 1963. Pleomorphism in some ambrosia and related fungi. Trans. Kansas Acad. Sci. 66:470–81
    [Google Scholar]
  11. 11. 
    Baumberger JP. 1919. A nutritional study of insects, with special reference to microorganisms and their substrata. J. Exp. Zool. 28:1–81
    [Google Scholar]
  12. 12. 
    Biedermann PH, Rohlfs M. 2017. Evolutionary feedbacks between insect sociality and microbial management. Curr. Opin. Insect Sci. 22:92–100
    [Google Scholar]
  13. 13. 
    Biedermann PHW, De Fine Licht HH, Rohlfs M 2018. Evolutionary chemo-ecology of insect-fungus interactions: still in its infancy but advancing. Fungal Ecol 38:1–6
    [Google Scholar]
  14. 14. 
    Biedermann PHW, Taborsky M. 2011. Larval helpers and age polyethism in ambrosia beetles. PNAS 108:17064–69
    [Google Scholar]
  15. 15. 
    Birkemoe T, Jacobsen RM, Sverdrup-Thygeson A, Biedermann PH 2018. Insect-fungus interactions in dead wood systems. Saproxylic Insects: Diversity, Ecology and Conservation MD Ulyshen 377–427 Berlin: Springer
    [Google Scholar]
  16. 16. 
    Boddy L, Jones TH. 2008. Interactions between basidiomycota and invertebrates. Ecology of Saprophytic Basidiomycetes L Boddy, JC Frankland, P van West pp.155–79 New York: Academic Press
    [Google Scholar]
  17. 17. 
    Boucher DH, James S, Keeler KH 1982. The ecology of mutualism. Annu. Rev. Ecol. Syst. 13:315–47
    [Google Scholar]
  18. 18. 
    Bourguignon T, Lo N, Cameron SL, Šobotník J, Hayashi Y et al. 2015. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 32:406–21
    [Google Scholar]
  19. 19. 
    Bourke AFG. 2011. Principles of Social Evolution Oxford, UK: Oxford Univ. Press
  20. 20. 
    Bracewell RR, Six DL. 2014. Broadscale specificity in a bark beetle-fungal symbiosis: a spatio-temporal analysis of the mycangial fungi of the western pine beetle. Microb. Ecol. 68:859–70
    [Google Scholar]
  21. 21. 
    Branstetter MG, Ješovnik A, Sosa-Calvo J, Lloyd MW, Faircloth BC et al. 2017. Dry habitats were crucibles of domestication in the evolution of agriculture in ants. Proc. R. Soc. B 284:20170095
    [Google Scholar]
  22. 22. 
    Briand F, Yodzis P. 1982. The phylogenetic distribution of obligate mutualism: evidence of limiting similarity and global instability. Oikos 39:273–75
    [Google Scholar]
  23. 23. 
    Bronstein JL 2015. Mutualism Oxford, UK: Oxford Univ. Press
  24. 24. 
    Brundrett MC, Kendrick B. 1987. The relationship between the ash bolete (Boletinellus merulioides) and an aphid parasitic on ash tree roots. Symbiosis 3:315–20
    [Google Scholar]
  25. 25. 
    Buchner P. 1928. Holznahrung und Symbiose Berlin: Springer
  26. 26. 
    Buser CC, Newcomb RD, Gaskett AC, Goddard MR 2014. Niche construction initiates the evolution of mutualistic interactions. Ecol. Lett. 17:1257–64
    [Google Scholar]
  27. 27. 
    Cardoza YJ, Klepzig KD, Raffa KF 2006. Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi. Ecol. Entomol. 31:636–45
    [Google Scholar]
  28. 28. 
    Ceja-Navarro JA, Karaoz U, Bill M, Hao Z, White RA et al. 2019. Gut anatomical development and microbial functional assembly promote lignocellulose deconstruction and colony subsistence of a wood-feeding beetle. Nat. Microbiol. 4:864–75
    [Google Scholar]
  29. 29. 
    Cochran DG. 1985. Nitrogen excretion in cockroaches. Annu. Rev. Entomol. 30:29–49
    [Google Scholar]
  30. 30. 
    Couch JN. 1938. The Genus Septobasidium Chapel Hill: Univ. North Carolina Press
  31. 31. 
    Darwin C. 1859. On the Origin of Species London: John Murray
  32. 32. 
    Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK 2013. Microbial volatile emissions as insect semiochemicals. J. Chem. Ecol. 39:840–59
    [Google Scholar]
  33. 33. 
    Davis TS, Stewart JE, Mann A, Bradley C, Hofstetter RW 2018. Evidence for multiple ecological roles of Leptographium abietinum, a symbiotic fungus associated with the North American spruce beetle. Fungal Ecol 38:62–70
    [Google Scholar]
  34. 34. 
    De Fine Licht HH, Biedermann PHW 2012. Patterns of functional enzyme activity in fungus farming ambrosia beetles. Front. Zool. 9:13
    [Google Scholar]
  35. 35. 
    De Fine Licht HH, Boomsma JJ, Tunlid A 2014. Symbiotic adaptations in the fungal cultivar of leaf-cutting ants. Nat. Commun. 5:5675
    [Google Scholar]
  36. 36. 
    De Fine Licht HH, Schiøtt M, Rogowska-Wrzesinska A, Nygaard S, Roepstorff P, Boomsma JJ 2013. Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts. PNAS 110:583–87
    [Google Scholar]
  37. 37. 
    Dowd PF. 1992. Insect fungal symbionts: a promising source of detoxifying enzymes. J. Ind. Microbiol. 9:149–61
    [Google Scholar]
  38. 38. 
    Dreaden TJ, Hughes MA, Ploetz RC, Black A, Smith JA 2019. Genetic analyses of the laurel wilt pathogen, Raffaelea lauricola, in Asia provide clues on the source of the clone that is responsible for the current USA epidemic. Forests 10:37e
    [Google Scholar]
  39. 39. 
    Ellers J, Kiers ET, Currie CR, McDonald BR, Visser B 2012. Ecological interactions drive evolutionary loss of traits. Ecol. Lett. 15:1071–82
    [Google Scholar]
  40. 40. 
    Fagan WF, Siemann E, Mitter C, Denno RF, Huberty AF et al. 2002. Nitrogen in insects: implications for trophic complexity and species diversification. Am. Nat. 160:784–802
    [Google Scholar]
  41. 41. 
    Felsenstein J. 1974. The evolutionary advantage of recombination. Genetics 78:737–56
    [Google Scholar]
  42. 42. 
    Fermaud M, Menn RL. 1989. Association of Botrytis cinerea with grape berry moth larvae. Phytopathology 79:651–56
    [Google Scholar]
  43. 43. 
    Filipiak M, Weiner J. 2014. How to make a beetle out of wood: multi-elemental stoichiometry of wood decay, xylophagy and fungivory. PLOS ONE 9:e115104
    [Google Scholar]
  44. 44. 
    Fisher RM, Henry LM, Cornwallis CK, Kiers ET, West SA 2017. The evolution of host-symbiont dependence. Nat. Commun. 8:15973e
    [Google Scholar]
  45. 45. 
    Flórez LV, Biedermann PH, Engl T, Kaltenpoth M 2015. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat. Product Rep. 32:904–36
    [Google Scholar]
  46. 46. 
    Francke-Grosmann H. 1956. Hautdrüsen als Träger der Pilzsymbiose bei Ambrosiakäfern. Z. Ökol. Morphol. Tiere 45:275–308
    [Google Scholar]
  47. 47. 
    Francke-Grosmann H. 1967. Ectosymbiosis in wood-inhabiting beetles. Symbiosis SM Henry 141–205 New York: Academic Press
    [Google Scholar]
  48. 48. 
    Frank SA. 1996. Host-symbiont conflict over the mixing of symbiotic lineages. Proc. R. Soc. B 263:339–44
    [Google Scholar]
  49. 49. 
    Frank SA. 1997. Models of symbiosis. Am. Nat. 150:S80–99
    [Google Scholar]
  50. 50. 
    French JRJ, Roeper RA. 1973. Patterns of nitrogen utilization between the ambrosia beetle Xyleborus dispar and its symbiotic fungus. J. Insect Physiol. 19:593–605
    [Google Scholar]
  51. 51. 
    Gavrilov-Zimin IA. 2017. A remarkable example of symbiosis between an animal and a fungus in a new species of legless mealybug (Insecta: Pseudococcidae). J. Nat. Hist. 51:2211–24
    [Google Scholar]
  52. 52. 
    Gonçalves CR. 1940. Observações sobre Pseudococcus comstocki (Kuw., 1902) atacando citrus na Baixada Fluminense. Rodriguésia 4:179–98
    [Google Scholar]
  53. 53. 
    Grimaldi D, Engel MS. 2005. Evolution of the Insects Cambridge, UK: Cambridge Univ. Press
  54. 54. 
    Gullan PJ, Cranston PS. 2014. The Insects: An Outline of Entomology Hoboken, NJ: Wiley. , 5th ed..
  55. 55. 
    Günther CS, Goddard MR. 2018. Do yeasts and Drosophila interact just by chance?. Fungal Ecol 38:37–43
    [Google Scholar]
  56. 56. 
    Haack RA, Slansky F. 1987. Nutritional ecology of wood feeding Coleoptera, Lepidoptera and Hymenoptera. Nutritional Ecology of Insects, Mites and Spiders F Slansky, JG Rodriguez 449–86 Hoboken, NJ: Wiley
    [Google Scholar]
  57. 57. 
    Hansen AK, Moran NA. 2014. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol. Ecol. 23:1473–96
    [Google Scholar]
  58. 58. 
    Harrington TC. 2005. Ecology and evolution of mycophagous bark beetles and their fungal partners. Insect-Fungal Associations: Ecology and Evolution FE Vega, M Blackwell 257–91 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  59. 59. 
    Heath JJ, Abbot P, Stireman JO III 2018. Adaptive divergence in a defense symbiosis driven from the top down. Am. Nat. 192:E21–36
    [Google Scholar]
  60. 60. 
    Henk DA, Vilgalys R. 2007. Molecular phylogeny suggests a single origin of insect symbiosis in the Pucciniomycetes with support for some relationships within the genus Septobasidium. Am. J. Bot 94:1515–26
    [Google Scholar]
  61. 61. 
    Huang Y-T, Skelton J, Hulcr J 2018. Multiple evolutionary origins lead to diversity in the metabolic profiles of ambrosia fungi. Fungal Ecol 38:80–88
    [Google Scholar]
  62. 62. 
    Hughes DP, Pierce NE, Boomsma JJ 2008. Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol. Evol. 23:672–77
    [Google Scholar]
  63. 63. 
    Hulcr J, Stelinski LL. 2017. The ambrosia symbiosis: from evolutionary ecology to practical management. Annu. Rev. Entomol. 62:285–303
    [Google Scholar]
  64. 64. 
    Humber RA. 2008. Evolution of entomopathogenicity in fungi. J. Invert. Pathol. 98:262–66
    [Google Scholar]
  65. 65. 
    Itoh H, Tago K, Hayatsu M, Kikuchi Y 2018. Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat. Product Rep. 35:434–54
    [Google Scholar]
  66. 66. 
    Jordal BH, Cognato AI. 2012. Molecular phylogeny of bark and ambrosia beetles reveals multiple origins of fungus farming during periods of global warming. BMC Evol. Biol. 12:133
    [Google Scholar]
  67. 67. 
    Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP 1972. Fatty acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother. 2:23–28
    [Google Scholar]
  68. 68. 
    Kandasamy D, Gershenzon J, Hammerbacher A 2016. Volatile organic compounds emitted by fungal associates of conifer bark beetles and their potential in bark beetle control. J. Chem. Ecol. 42:952–69
    [Google Scholar]
  69. 69. 
    Kehr V, Kost G. 1999. Mikrohabitat Pflanzengalle: das Zusammenleben von Gallmücken und Pilzen. Biol. Unserer Zeit 29:18–25
    [Google Scholar]
  70. 70. 
    Kiers ET, Rousseau RA, West SA, Denison RF 2003. Host sanctions and the legume-rhizobium mutualism. Nature 425:78–81
    [Google Scholar]
  71. 71. 
    Kijpornyongpan T, Urbina H, Suh S-O, Aime MC, Luangsaard JJ, Blackwell M 2019. The Suhomyces clade: from single isolate to multiple species to disintegrating sex loci. FEMS Yeast Res 19:foy125
    [Google Scholar]
  72. 72. 
    Kirkendall LR, Biedermann PHW, Jordal BH 2015. Evolution and diversity of bark and ambrosia beetles. Bark Beetles: Biology and Ecology of Native and Invasive Species FE Vega, RW Hofstetter 85–156 New York: Academic Press
    [Google Scholar]
  73. 73. 
    Kjer KM, Simon C, Yavorskaya M, Beutel RG 2016. Progress, pitfalls and parallel universes: a history of insect phylogenetics. J. R. Soc. Interface 13:20160363
    [Google Scholar]
  74. 74. 
    Klepzig KD, Adams AS, Handelsman J, Raffa KF 2009. Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environ. Entomol. 38:67–77
    [Google Scholar]
  75. 75. 
    Kobune S, Kajimura H, Masuya H, Kubono T 2012. Symbiotic fungal flora in leaf galls induced by Illiciomyia yukawai (Diptera: Cecidomyiidae) and in its mycangia. Microb. Ecol. 63:619–27
    [Google Scholar]
  76. 76. 
    Korb J, Aanen D. 2003. The evolution of uniparental transmission of fungal symbionts in fungus-growing termites (Macrotermitinae). Behav. Ecol. Sociobiol. 53:65–71
    [Google Scholar]
  77. 77. 
    Korb J, Heinze J. 2008. Ecology of Social Evolution Berlin: Springer
  78. 78. 
    Korpi A, Jarnberg J, Pasanen AL 2009. Microbial volatile organic compounds. Crit. Rev. Toxicol. 39:139–93
    [Google Scholar]
  79. 79. 
    Krzywiec D. 1964. Morphology and biology of Mimeuria ulmiphila (Del Guercio) (Homoptera, Aphidina). Part II. Bull. Soc. Amis Sci. Lett. Poznań 5:3–29
    [Google Scholar]
  80. 80. 
    Kukor JJ, Martin MM. 1983. Acquisition of digestive enzymes by siricid woodwasps from their fungal symbiont. Science 220:1161–63
    [Google Scholar]
  81. 81. 
    Lange L, Grell MN. 2014. The prominent role of fungi and fungal enzymes in the ant-fungus biomass conversion symbiosis. Appl. Microbiol. Biotechnol. 98:4839–51
    [Google Scholar]
  82. 82. 
    Lehenberger M, Biedermann PHW, Benz JP 2019. Molecular identification and enzymatic profiling of Trypodendron (Curculionidae: Xyloterini) ambrosia beetle-associated fungi of the genus Phialophoropsis (Microascales: Ceratocystidaceae). Fungal Ecol 38:89–97
    [Google Scholar]
  83. 83. 
    Lewis DH. 1973. The relevance of symbiosis to taxonomy and ecology, with particular reference to mutualistic symbioses and exploitation of marginal habitats. Taxonomy and Ecology: Proceedings of an International Symposium Held at the Department of Botany, University of Reading VH Heywood 151–72 New York: Academic Press
    [Google Scholar]
  84. 84. 
    Li X, Guo W, Ding J 2012. Mycangial fungus benefits the development of a leaf-rolling weevil, Euops chinesis. J. Insect Physiol. 58:867–73
    [Google Scholar]
  85. 85. 
    Li X, Wheeler G, Ding J 2012. A leaf-rolling weevil benefits from general saprophytic fungi in polysaccharide degradation. Arthropod-Plant Interact 6:417–24
    [Google Scholar]
  86. 86. 
    Little AEF, Murakami T, Mueller UG, Currie CR 2003. The infrabuccal pellet piles of fungus-growing ants. Naturwissenschaften 90:558–62
    [Google Scholar]
  87. 87. 
    Lombardo M. 2008. Access to mutualistic endosymbiotic microbes: an underappreciated benefit of group living. Behav. Ecol. Sociobiol. 62:479–97
    [Google Scholar]
  88. 88. 
    Martin MM. 1983. Cellulose digestion in insects. Comp. Biochem. Physiol. A 75:313–24
    [Google Scholar]
  89. 89. 
    Martin MM. 1992. The evolution of insect-fungus associations: from contact to stable symbiosis. Am. Zool. 32:593–605
    [Google Scholar]
  90. 90. 
    Martin MM, Martin JS. 1978. Cellulose digestion in the midgut of the fungus-growing termite Macrotermes natalensis: the role of acquired digestive enzymes. Science 199:1453–55
    [Google Scholar]
  91. 91. 
    Mayers CG, Harrington TC, Ranger CM 2017. First report of a sexual state in an ambrosia fungus: Ambrosiella cleistominuta sp. nov. associated with the ambrosia beetle Anisandrus maiche. Botany 95:503–12
    [Google Scholar]
  92. 92. 
    Mayers CG, McNew DL, Harrington TC, Roeper RA, Fraedrich SW et al. 2015. Three genera in the Ceratocystidaceae are the respective symbionts of three independent lineages of ambrosia beetles with large, complex mycangia. Fungal Biol 119:1075–92
    [Google Scholar]
  93. 93. 
    Maynard-Smith J, Szathmáry E. 1995. The Major Transitions in Evolution Oxford, UK: Oxford Univ. Press
  94. 94. 
    McCutcheon JP, Moran NA. 2011. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10:13–26
    [Google Scholar]
  95. 95. 
    Mehdiabadi NJ, Hughes B, Mueller UG 2006. Cooperation, conflict, and coevolution in the attine ant-fungus symbiosis. Behav. Ecol. 17:291–96
    [Google Scholar]
  96. 96. 
    Menezes C, Vollet-Neto A, Marsaioli AJ, Zampieri D, Fontoura IC et al. 2015. A Brazilian social bee must cultivate fungus to survive. Curr. Biol. 25:2851–55
    [Google Scholar]
  97. 97. 
    Meunier J. 2015. Social immunity and the evolution of group living in insects. Philos. Trans. R. Soc. B 370:20140102
    [Google Scholar]
  98. 98. 
    Misof B, Liu S, Meusemann K, Peters RS, Donath A et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–67
    [Google Scholar]
  99. 99. 
    Möller A. 1893. Die Pilzgärten einiger südamerikanischer Ameisen Jena, Ger: G. Fischer
  100. 100. 
    Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR 2005. The evolution of agriculture in insects. Annu. Rev. Ecol. Evol. Syst. 36:563–95
    [Google Scholar]
  101. 101. 
    Mueller UG, Kardish MR, Ishak HD, Wright AM, Solomon SE et al. 2018. Phylogenetic patterns of ant-fungus associations indicate that farming strategies, not only a superior fungal cultivar, explain the ecological success of leafcutter ants. Mol. Ecol. 27:2414–34
    [Google Scholar]
  102. 102. 
    Mueller UG, Ortiz A, Bacci M Jr 2010. Planting of fungus onto hibernating workers of the fungus-growing ant Mycetosoritis clorindae (Attini, Formicidae). Insectes Soc 57:209–15
    [Google Scholar]
  103. 103. 
    Mueller UG, Rehner SA, Schultz TR 1998. The evolution of agriculture in ants. Science 281:2034–38
    [Google Scholar]
  104. 104. 
    Mueller UG, Schultz TR, Currie CR, Adams RMM, Malloch D 2001. The origin of the attine ant-fungus mutualism. Q. Rev. Biol. 76:169–97
    [Google Scholar]
  105. 105. 
    Neger FW. 1908. Ambrosiapilze. Ber. Dtsch. Bot. Ges. 26a:735–54
    [Google Scholar]
  106. 106. 
    Nepel M, Voglmayr H, Schönenberger J, Mayer VE 2014. High diversity and low specificity of chaetothyrialean fungi in carton galleries in a neotropical ant-plant association. PLOS ONE 9:e112756
    [Google Scholar]
  107. 107. 
    Nygaard S, Hu H, Li C, Schiøtt M, Chen Z et al. 2016. Reciprocal genomic evolution in the ant-fungus agricultural symbiosis. Nat. Commun. 7:12233e
    [Google Scholar]
  108. 108. 
    Pagnocca FC, Bacci M, Fungaro MH, Bueno OC, Hebling MJ et al. 2001. RAPD analysis of the sexual state and sterile mycelium of the fungus cultivated by the leaf-cutting ant Acromyrmex hispidus fallax. Mycol. Res 105:173–76
    [Google Scholar]
  109. 109. 
    Paludo CR, Menezes C, Silva EA, Vollet-Neto A, Andrade-Dominguez A et al. 2018. Stingless bee larvae require fungal steroid to pupate. Sci. Rep. 8:1122
    [Google Scholar]
  110. 110. 
    Pistone D, Gohli J, Jordal BH 2018. Molecular phylogeny of bark and ambrosia beetles (Curculionidae: Scolytinae) based on 18 molecular markers. Syst. Entomol. 43:387–406
    [Google Scholar]
  111. 111. 
    Poinar GO Jr, Vega FE. 2018. A mid-Cretaceous ambrosia fungus, Paleoambrosia entomophila gen. nov. et sp. nov. (Ascomycota: Ophiostomatales) in Burmese (Myanmar) amber, and evidence for a femoral mycangium. Fungal Biol 122:1159–62
    [Google Scholar]
  112. 112. 
    Poinar GO Jr, Vega FE, Legalov AA. 2019. New subfamily of ambrosia beetles (Coleoptera: Platypodidae) from mid-Cretaceous Burmese amber. Hist. Biol In press
    [Google Scholar]
  113. 113. 
    Poulsen M, Boomsma JJ. 2005. Mutualistic fungi control crop diversity in fungus-growing ants. Science 307:741–44
    [Google Scholar]
  114. 114. 
    Poulsen M, Hu H, Li C, Chen Z, Xu L et al. 2014. Complementary symbiont contributions to plant decomposition in a fungus-farming termite. PNAS 111:14500–5
    [Google Scholar]
  115. 115. 
    Ranger CM, Biedermann PHW, Phuntumart V, Beligala GU, Ghosh S et al. 2018. Symbiont selection via alcohol benefits fungus farming by ambrosia beetles. PNAS 115:4447–52
    [Google Scholar]
  116. 116. 
    Rayner ADM, Boddy L. 1988. Fungal Decomposition of Wood: Its Biology and Ecology Hoboken, NJ: Wiley
  117. 117. 
    Rohfritsch O. 1992. A fungus associated gall midge, Lasioptera arundinis (Schiner), on Phragmites australis (Cav.) Trin. Bull. Soc. Bot. France Lett. Bot. 139:45–59
    [Google Scholar]
  118. 118. 
    Rohfritsch O. 2008. Plants, gall midges, and fungi: a three-component system. Entomol. Exp. Appl. 128:208–16
    [Google Scholar]
  119. 119. 
    Rohlfs M. 2005. Density-dependent insect-mold interactions: effects on fungal growth and spore production. Mycologia 97:996–1001
    [Google Scholar]
  120. 120. 
    Rohlfs M, Obmann B, Petersen R 2005. Competition with filamentous fungi and its implication for a gregarious lifestyle in insects living on ephemeral resources. Ecol. Entomol. 30:556–63
    [Google Scholar]
  121. 121. 
    Roy BA. 1994. The use and abuse of pollinators by fungi. Trends Ecol. Evol. 9:335–39
    [Google Scholar]
  122. 122. 
    Sachs JL, Mueller UG, Wilcox TP, Bull JJ 2004. The evolution of cooperation. Q. Rev. Biol. 79:135–60
    [Google Scholar]
  123. 123. 
    Sachs JL, Skophammer RG, Regus JU 2011. Evolutionary transitions in bacterial symbiosis. PNAS 108:10800–7
    [Google Scholar]
  124. 124. 
    Scheuring I, Yu DW. 2012. How to assemble a beneficial microbiome in three easy steps. Ecol. Lett. 15:1300–7
    [Google Scholar]
  125. 125. 
    Schlick-Steiner BC, Steiner FM, Konrad H, Seifert B, Christian E et al. 2008. Specificity and transmission mosaic of ant nest-wall fungi. PNAS 105:940–43
    [Google Scholar]
  126. 126. 
    Schneider I, Rudinsky JA. 1969. Anatomical and histological changes in internal organs of adult Trypodendron lineatum, Gnathotrichus retusus, and G. sulcatus (Coleoptera—Scolytidae). Ann. Entomol. Soc. Am. 62:995–1003
    [Google Scholar]
  127. 127. 
    Schneider IA, Rudinsky JA. 1969. Mycetangial glands and their seasonal changes in Gnathotrichus retusus and G. sulcatus. Ann. Entomol. Soc. Am 62:39–43
    [Google Scholar]
  128. 128. 
    Schultz TR, Brady SG. 2008. Major evolutionary transitions in ant agriculture. PNAS 105:5435–40
    [Google Scholar]
  129. 129. 
    Sherwood-Pike MA, Gray J. 1985. Silurian fungal remains: probable records of the class Ascomycetes. Lethaia 18:1–20
    [Google Scholar]
  130. 130. 
    Shukla SP, Plata C, Reichelt M, Steiger S, Heckel DG et al. 2018. Microbiome-assisted carrion preservation aids larval development in a burying beetle. PNAS 115:11274–79
    [Google Scholar]
  131. 131. 
    Six DL. 2012. Ecological and evolutionary determinants of bark beetle—fungus symbioses. Insects 3:339–66
    [Google Scholar]
  132. 132. 
    Six DL. 2013. The bark beetle holobiont: why microbes matter. J. Chem. Ecol. 39:989–1002
    [Google Scholar]
  133. 133. 
    Six DL, Elser JJ. 2019. Extreme ecological stoichiometry of a bark beetle-fungus mutualism. Ecol. Entomol. 44:543–51
    [Google Scholar]
  134. 134. 
    Skelton J, Johnson AJ, Jusino MA, Bateman CC, Li Y, Hulcr J 2019. A selective fungal transport organ (mycangium) maintains coarse phylogenetic congruence between fungus-farming ambrosia beetles and their symbionts. Proc. R. Soc. B 286:20182127
    [Google Scholar]
  135. 135. 
    Slippers B, de Groot P, Wingfield MJ, eds. 2011. The Sirex Woodwasp and Its Fungal Symbiont: Research and Management of a Worldwide Invasive Pest Berlin: Springer
  136. 136. 
    Smith SM, Kent DS, Boomsma JJ, Stow AJ 2018. Monogamous sperm storage and permanent worker sterility in a long-lived ambrosia beetle. Nat. Ecol. Evol. 2:1009–18
    [Google Scholar]
  137. 137. 
    Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME et al. 2016. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–46
    [Google Scholar]
  138. 138. 
    Starmer WT, Fogleman JC. 1986. Coadaptation of Drosophila and yeasts in their natural habitat. J. Chem. Ecol. 12:1037–55
    [Google Scholar]
  139. 139. 
    Stefanini I. 2018. Yeast-insect associations: It takes guts. Yeast 35:315–30
    [Google Scholar]
  140. 140. 
    Stork NE, McBroom J, Gely C, Hamilton AJ 2015. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. PNAS 112:7519–23
    [Google Scholar]
  141. 141. 
    Strassmann JE, Queller DC. 2014. Privatization and property in biology. Anim. Behav. 92:305–11
    [Google Scholar]
  142. 142. 
    Taylor DL, Bruns TD, Hodges SA 2004. Evidence for mycorrhizal races in a cheating orchid. Proc. R. Soc. Lond. B 271:35–43
    [Google Scholar]
  143. 143. 
    Thompson BM, Bodart J, McEwen C, Gruner DS 2014. Adaptations for symbiont-mediated external digestion in Sirex noctilio (Hymenoptera: Siricidae). Ann. Entomol. Soc. Am. 107:453–60
    [Google Scholar]
  144. 144. 
    Toki W, Tanahashi M, Togashi K, Fukatsu T 2012. Fungal farming in a non-social beetle. PLOS ONE 7:e41893
    [Google Scholar]
  145. 145. 
    van de Peppel LJJ, Aanen DK, Biedermann PHW 2018. Low intraspecific genetic diversity indicates asexuality and vertical transmission in the fungal cultivars of ambrosia beetles. Fungal Ecol 32:57–64
    [Google Scholar]
  146. 146. 
    Vanderpool D, Bracewell RR, McCutcheon JP 2018. Know your farmer: ancient origins and multiple independent domestications of ambrosia beetle fungal cultivars. Mol. Ecol. 27:2077–94
    [Google Scholar]
  147. 147. 
    Voglmayr H, Mayer V, Maschwitz U, Moog J, Djieto-Lordon C, Blatrix R 2011. The diversity of ant-associated black yeasts: insights into a newly discovered world of symbiotic interactions. Fungal Biol 115:1077–91
    [Google Scholar]
  148. 148. 
    Wang L, Feng Y, Tian J, Xiang M, Sun J et al. 2015. Farming of a defensive fungal mutualist by an attelabid weevil. ISME J 9:1793–801
    [Google Scholar]
  149. 149. 
    Watkinson SC, Boddy L, Money NP 2015. The Fungi New York: Academic Press. , 3rd ed..
  150. 150. 
    West SA, Fisher RM, Gardner A, Kiers ET 2015. Major evolutionary transitions in individuality. PNAS 112:10112–19
    [Google Scholar]
  151. 151. 
    Yamada R, Deshpande SA, Bruce KD, Mak EM, William WJ 2015. Microbes promote amino acid harvest to rescue undernutrition in Drosophila. Cell Rep 10:865–72
    [Google Scholar]
  152. 152. 
    Zhao T, Kandasamy D, Krokene P, Chen J, Gershenzon J, Hammerbacher A 2019. Fungal associates of the tree-killing bark beetle, Ips typographus, vary in virulence, ability to degrade conifer phenolics and influence bark beetle tunneling behavior. Fungal Ecol 38:71–79
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011019-024910
Loading
/content/journals/10.1146/annurev-ento-011019-024910
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error