1932

Abstract

Dengue is an emerging viral disease principally transmitted by the () mosquito. It is one of the fastest-growing global infectious diseases, with 100–400 million new infections a year, and is now entrenched in a growing number of tropical megacities. Behind this rapid rise is the simple adaptation of to a new entomological niche carved out by human habitation. This review describes the expansion of dengue and explores how key changes in the ecology of allowed it to become a successful invasive species and highly efficient disease vector. We argue that characterizing geographic heterogeneity in mosquito bionomics will be a key research priority that will enable us to better understand future dengue risk and design control strategies to reverse its global spread.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011019-024918
2020-01-07
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ento/65/1/annurev-ento-011019-024918.html?itemId=/content/journals/10.1146/annurev-ento-011019-024918&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Althouse BM, Hanley KA, Diallo M, Sall AA, Ba Y et al. 2015. Impact of climate and mosquito vector abundance on sylvatic arbovirus circulation dynamics in Senegal. Am. J. Trop. Med. Hyg. 92:188–97
    [Google Scholar]
  2. 2. 
    Althouse BM, Lessler J, Sall AA, Diallo M, Hanley KA et al. 2012. Synchrony of sylvatic dengue isolations: a multi-host, multi-vector SIR model of dengue virus transmission in Senegal. PLOS Negl. Trop. Dis. 6:11e1928
    [Google Scholar]
  3. 3. 
    Amarasinghe A, Kuritsk JN, Letson GW, Margolis HS 2011. Dengue virus infection in Africa. Emerg. Infect. Dis. 17:81349–54
    [Google Scholar]
  4. 4. 
    Anders KL, Indriani C, Ahmad RA, Tantowijoyo W, Arguni E et al. 2018. The AWED trial (Applying Wolbachia to Eliminate Dengue) to assess the efficacy of Wolbachia-infected mosquito deployments to reduce dengue incidence in Yogyakarta, Indonesia: study protocol for a cluster randomised controlled trial. Trials 19:1302
    [Google Scholar]
  5. 5. 
    Bae S, Kim H-C, Ye B, Choi W-J, Hong Y-S, Ha M 2017. Causal inference in environmental epidemiology. Environ. Health Toxicol. 32:e2017015
    [Google Scholar]
  6. 6. 
    Banks SD, Murray N, Wilder-Smith A, Logan JG 2014. Insecticide-treated clothes for the control of vector-borne diseases: a review on effectiveness and safety. Med. Vet. Entomol. 28:S114–25
    [Google Scholar]
  7. 7. 
    Barrera R, Amador M, Clark GG 2006. Use of the pupal survey technique for measuring Aedes aegypti (Diptera: Culicidae) productivity in Puerto Rico. Am. J. Trop. Med. Hyg. 74:2290–302
    [Google Scholar]
  8. 8. 
    Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW et al. 2013. The global distribution and burden of dengue. Nature 496:7446504–7
    [Google Scholar]
  9. 9. 
    Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B et al. 2015. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526:207–11
    [Google Scholar]
  10. 10. 
    Bhatt S, Weiss DJ, Mappin B, Dalrymple U, Cameron E et al. 2015. Coverage and system efficiencies of insecticide-treated nets in Africa from 2000 to 2017. eLife 4:e09672
    [Google Scholar]
  11. 11. 
    Black WC, Bennett KE, Gorrochótegui-Escalante N, Barillas-Mury CV, Fernández-Salas I et al. 2002. Flavivirus susceptibility in Aedes aegypti. Arch. Med. Res 33:4379–88
    [Google Scholar]
  12. 12. 
    Boromisa RD, Rai KS, Grimstad PR 1987. Variation in the vector competence of geographic strains of Aedes albopictus for dengue 1 virus. J. Am. Mosq. Control Assoc. 3:3378–86
    [Google Scholar]
  13. 13. 
    Bouri N, Sell TK, Franco C, Adalja AA, Henderson DA, Hynes NA 2012. Return of epidemic dengue in the United States: implications for the public health practitioner. Public Health Rep 127:3259–66
    [Google Scholar]
  14. 14. 
    Bowman LR, Donegan S, McCall PJ 2016. Is dengue vector control deficient in effectiveness or evidence? Systematic review and meta-analysis. PLOS Negl. Trop. Dis. 10:3e0004551
    [Google Scholar]
  15. 15. 
    Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS et al. 2012. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLOS Negl. Trop. Dis. 6:8e1760
    [Google Scholar]
  16. 16. 
    Brady OJ, Godfray HCJ, Tatem AJ, Gething PW, Cohen JM et al. 2016. Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination. Trans. R. Soc. Trop. Med. Hyg. 110:2107–17
    [Google Scholar]
  17. 17. 
    Brady OJ, Golding N, Pigott DM, Kraemer MUG, Messina JP et al. 2014. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasites Vectors 7:1338
    [Google Scholar]
  18. 18. 
    Brady OJ, Johansson MA, Guerra CA, Bhatt S, Golding N et al. 2013. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasites Vectors 6:1351
    [Google Scholar]
  19. 19. 
    Burkot TR, Handzel T, Schmaedick MA, Tufa J, Roberts JM, Graves PM 2007. Productivity of natural and artificial containers for Aedes polynesiensis and Aedes aegypti in four American Samoan villages. Med. Vet. Entomol. 21:122–29
    [Google Scholar]
  20. 20. 
    Canyon DV, Hii JLK, Muller R 1999. The frequency of host biting and its effect on oviposition and survival in Aedes aegypti (Diptera: Culicidae). Bull. Entomol. Res. 89:0135–39
    [Google Scholar]
  21. 21. 
    Carvalho DO, McKemey AR, Garziera L, Lacroix R, Donnelly CA et al. 2015. Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLOS Negl. Trop. Dis. 9:7e0003864
    [Google Scholar]
  22. 22. 
    Cent. Dis. Control Prev. (CDC) 2013. Ongoing dengue epidemic: Angola, June 2013. MMWR. Morb. Mortal. Wkly. Rep. 62:24504–7
    [Google Scholar]
  23. 23. 
    Chadee DD. 2009. Oviposition strategies adopted by gravid Aedes aegypti (L.) (Diptera: Culicidae) as detected by ovitraps in Trinidad, West Indies (2002–2006). Acta Trop 111:3279–83
    [Google Scholar]
  24. 24. 
    Chan M, Johansson MA. 2012. The incubation periods of dengue viruses. PLOS ONE 7:11e50972
    [Google Scholar]
  25. 25. 
    Christophers R. 1960. (L.) the Yellow Fever Mosquito: Its Life History, Bionomics and Structure Cambridge, UK: Cambridge Univ. Press
  26. 26. 
    Colton YM, Chadee DD, Severson DW 2003. Natural skip oviposition of the mosquito Aedes aegypti indicated by codominant genetic markers. Med. Vet. Entomol. 17:2195–204
    [Google Scholar]
  27. 27. 
    Costa RL, Voloch CM, Schrago CG 2012. Comparative evolutionary epidemiology of dengue virus serotypes. Infect. Genet. Evol. 12:2309–14
    [Google Scholar]
  28. 28. 
    Crawford JE, Alves JM, Palmer WJ, Day JP, Sylla M et al. 2017. Population genomics reveals that an anthropophilic population of Aedes aegypti mosquitoes in West Africa recently gave rise to American and Asian populations of this major disease vector. BMC Biol 15:116
    [Google Scholar]
  29. 29. 
    De Benedicts J, Chow-Shaffer E, Coster A, Clark GG, Edman JD, Scott TW 2003. Identification of the people from whom engorged Aedes aegypti took blood meals in Florida, Puerto Rico, using polymerase chain reaction-based DNA profiling. Am. J. Trop. Med. Hyg. 68:4437–46
    [Google Scholar]
  30. 30. 
    de Santos EM, de Melo-Santos MA, de Oliveira CM, Correia JC, de Alburquerque CM 2012. Evaluation of a sticky trap (AedesTraP), made from disposable plastic bottles, as a monitoring tool for Aedes aegypti populations. Parasites Vectors 7:5195
    [Google Scholar]
  31. 31. 
    de Thoisy B, Lacoste V, Germain A, Muñoz Jordán J, Colón C et al. 2009. Dengue infection in neotropical forest mammals. Vector-Borne Zoonotic Dis 9:2157–70
    [Google Scholar]
  32. 32. 
    Diallo D, Sall AA, Diagne CT, Faye O, Faye O et al. 2014. Zika virus emergence in mosquitoes in southeastern Senegal, 2011. PLOS ONE 9:10e109442
    [Google Scholar]
  33. 33. 
    Diallo M, Ba Y, Sall AA, Diop OM, Ndione JA et al. 2003. Amplification of the sylvatic cycle of dengue virus type 2, Senegal, 1999–2000: entomologic findings and epidemiologic considerations. Emerg. Infect. Dis. 9:3362–67
    [Google Scholar]
  34. 34. 
    Duong V, Lambrechts L, Paul RE, Ly S, Lay RS et al. 2015. Asymptomatic humans transmit dengue virus to mosquitoes. PNAS 112:4714688–93
    [Google Scholar]
  35. 35. 
    Fitzpatrick DM, Hattaway LM, Hsueh AN, Ramos-Niño ME, Cheetham SM 2019. PCR-based bloodmeal analysis of Aedes aegypti and Culex quinquefasciatus (Diptera: Culcidae) in St. George parish, Grenada. J. Med. Entomol 56:41170–75
    [Google Scholar]
  36. 36. 
    Flores HA, O'Neill SL. 2018. Controlling vector-borne diseases by releasing modified mosquitoes. Nat. Rev. Microbiol. 16:8508–18
    [Google Scholar]
  37. 37. 
    Garcia GA, Sylvestre G, Aguiar R, da Costa GB, Martins AJ et al. 2019. Matching the genetics of released and local Aedes aegypti populations is critical to assure Wolbachia invasion. PLOS Negl. Trop. Dis. 13:1e0007023
    [Google Scholar]
  38. 38. 
    GBD 2017 Dis. Inj. Incid. Preval. Collab 2018. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392:101591789–858
    [Google Scholar]
  39. 39. 
    Gérardin P, Guernier V, Perrau J, Fianu A, Le Roux K et al. 2008. Estimating Chikungunya prevalence in La Réunion Island outbreak by serosurveys: two methods for two critical times of the epidemic. BMC Infect. Dis. 8:99
    [Google Scholar]
  40. 40. 
    Githeko AK, Adungo NI, Karanja DM, Hawley WA, Vulule JM et al. 1996. Some observations on the biting behavior of Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus and their implications for malaria control. Exp. Parasitol. 82:3306–15
    [Google Scholar]
  41. 41. 
    Gloria-Soria A, Ayala D, Bheecarry A, Calderon-Arguedas O, Chadee DD et al. 2016. Global genetic diversity of Aedes aegypti. Mol. Ecol 25:215377–95
    [Google Scholar]
  42. 42. 
    Gonçalves da Silva A, Cunha ICL, Santos WS, Luz SLB, Ribolla PEM, Abad-Franch F 2012. Gene flow networks among American Aedes aegypti populations. Evol. Appl. 5:7664–76
    [Google Scholar]
  43. 43. 
    Gould E, Solomon T. 2008. Pathogenic flaviviruses. Lancet 371:9611500–9
    [Google Scholar]
  44. 44. 
    Grubaugh ND, Ladner JT, Kraemer MUG, Dudas G, Tan AL et al. 2017. Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature 546:7658401–5
    [Google Scholar]
  45. 45. 
    Guagliardo SA, Barboza JL, Morrison AC, Astete H, Vazquez-Prokopec G, Kitron U 2014. Patterns of geographic expansion of Aedes aegypti in the Peruvian amazon. PLOS Negl. Trop. Dis. 8:8e3033
    [Google Scholar]
  46. 46. 
    Gubler DJ. 2011. Dengue, urbanization and globalization: the unholy trinity of the 21st century. Trop. Med. Health. 39:4 Suppl.3–11
    [Google Scholar]
  47. 47. 
    Gubler DJ. 2014. Dengue viruses: their evolution, history and emergence as a global public health problem. Dengue and Dengue Hemorrhagic Fever DJ Gubler, EE Ooi, G Kuno, S Vasudevan, J Farrar 1–29 Oxford, UK: CABI Int. , 2nd ed..
    [Google Scholar]
  48. 48. 
    Gubler DJ, Novak RJ, Vergne E, Colon NA, Velez M, Fowler J 1985. Aedes (Gymnometopa) mediovittatus (Diptera: Culicidae), a potential maintenance vector of dengue viruses in Puerto Rico. J. Med. Entomol. 22:5469–75
    [Google Scholar]
  49. 49. 
    Guerra CA, Reiner RC, Perkins TA, Lindsay SW, Midega JT et al. 2014. A global assembly of adult female mosquito mark-release-recapture data to inform the control of mosquito-borne pathogens. Parasites Vectors 7:1276
    [Google Scholar]
  50. 50. 
    Guzman M, Buchy P, Enria D, Vazquez S 2014. Laboratory diagnosis of dengue. Dengue and Dengue Hemorrhagic Fever DJ Gubler, EE Ooi, G Kuno, S Vasudevan, J Farrar 184–213 Oxford, UK: CABI Int. , 2nd ed..
    [Google Scholar]
  51. 51. 
    Hammon WM. 1973. Dengue hemorrhagic fever: Do we know its cause. ? Am. J. Trop. Med. Hyg. 22:182–91
    [Google Scholar]
  52. 52. 
    Hanley KA, Monath TP, Weaver SC, Rossi SL, Richman RL, Vasilakis N 2013. Fever versus fever: the role of host and vector susceptibility and interspecific competition in shaping the current and future distributions of the sylvatic cycles of dengue virus and yellow fever virus. Infect. Genet. Evol. 19:292–311
    [Google Scholar]
  53. 53. 
    Harrington LC, Edman JD, Scott TW 2001. Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood. ? J. Med. Entomol. 38:3411–22
    [Google Scholar]
  54. 54. 
    Harrington LC, Scott TW, Lerdthusnee K, Coleman RC, Costero A et al. 2005. Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am. J. Trop. Med. Hyg. 72:2209–20
    [Google Scholar]
  55. 55. 
    Hawley WA. 1988. The biology of Aedes albopictus. J. Am. Mosq. Control Assoc. Suppl 1:1–39
    [Google Scholar]
  56. 56. 
    Hawley WA, Reiter P, Copeland RS, Pumpuni CB, Craig GB 1987. Aedes albopictus in North America: probable introduction in used tires from northern Asia. Science 236:48051114–16
    [Google Scholar]
  57. 57. 
    Howe G. 1977. A World Geography of Human Diseases London: Academic
  58. 58. 
    Huang Y-M, Hitchcock JC. 1980. A revision of the Aedes scutellaris group of Tonga (Diptera: Culicidae). Contrib. Am. Entomol. Inst. 17:31–106
    [Google Scholar]
  59. 59. 
    Int. Air Transp. Assoc 2018. Future of the Airline Industry 2035 Montreal, Can: Int. Air Transp. Assoc.
  60. 60. 
    Intergov. Panel Clim. Change 2014. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change Rep., Intergov. Panel Clim. Change Geneva:
  61. 61. 
    Jaenisch T, Junghanss T, Wills B, Brady OJ, Eckerle I et al. 2014. Dengue expansion in Africa: not recognized or not happening?. Emerg. Infect. Dis.20. http://doi.org/10.3201/eid2010.140487
    [Crossref] [Google Scholar]
  62. 62. 
    Jentes ES, Lash RR, Johansson MA, Sharp TM, Henry R et al. 2016. Evidence-based risk assessment and communication: a new global dengue-risk map for travellers and clinicians. J. Travel Med. 23:6taw062
    [Google Scholar]
  63. 63. 
    Johansson MA, Cummings DAT, Glass GE 2009. Multiyear climate variability and dengue—el niño southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. PLOS Med 6:11e1000168
    [Google Scholar]
  64. 64. 
    Juliano SA, Lounibos LP, O'Meara GF 2004. A field test for competitive effects of Aedes albopictus on A. aegypti in South Florida: differences between sites of coexistence and exclusion. ? Oecologia 139:4583–93
    [Google Scholar]
  65. 65. 
    Juliano SA, O'Meara GF, Morrill JR, Cutwa MM 2002. Desiccation and thermal tolerance of eggs and the coexistence of competing mosquitoes. Oecologia 130:3458–69
    [Google Scholar]
  66. 66. 
    Katzelnick LC, Fonville JM, Gromowski GD, Bustos Arriaga J, Green A et al. 2015. Dengue viruses cluster antigenically but not as discrete serotypes. Science 349:62541338–43
    [Google Scholar]
  67. 67. 
    Katzelnick LC, Gresh L, Halloran ME, Mercado JC, Kuan G et al. 2017. Antibody-dependent enhancement of severe dengue disease in humans. Science 358:6365929–32
    [Google Scholar]
  68. 68. 
    Kotsakiozi P, Gloria-Soria A, Caccone A, Evans B, Schama R et al. 2017. Tracking the return of Aedes aegypti to Brazil, the major vector of the dengue, chikungunya and Zika viruses. PLOS Negl. Trop. Dis. 11:7e0005653
    [Google Scholar]
  69. 69. 
    Kraemer MUG, Reiner RC, Brady OJ, Messina JM, Bisanzio D et al. 2019. Modelling the past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol 4:854–63
    [Google Scholar]
  70. 70. 
    Kraemer MUG, Sinka ME, Duda KA, Mylne A, Shearer FM et al. 2015. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data. 2:150035
    [Google Scholar]
  71. 71. 
    Kraemer MUG, Sinka ME, Duda KA, Mylne AQN, Shearer FM et al. 2015. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4:e08347
    [Google Scholar]
  72. 72. 
    Kutsuna S, Kato Y, Moi ML, Kotaki A, Ota M et al. 2015. Autochthonous dengue fever, Tokyo, Japan, 2014. Emerg. Infect. Dis. 21:3517–20
    [Google Scholar]
  73. 73. 
    Lambrechts L, Scott TW, Gubler DJ 2010. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLOS Negl. Trop. Dis. 4:5e646
    [Google Scholar]
  74. 74. 
    Lenhart A, Trongtokit Y, Alexander N, Apiwathnasorn C, Satimai W et al. 2013. A cluster-randomized trial of insecticide-treated curtains for dengue vector control in Thailand. Am. J. Trop. Med. Hyg. 88:2254–59
    [Google Scholar]
  75. 75. 
    Lim JK, Carabali M, Lee J-S, Lee K-S, Namkung S et al. 2018. Evaluating dengue burden in Africa in passive fever surveillance and seroprevalence studies: protocol of field studies of the Dengue Vaccine Initiative. BMJ Open 8:1e017673
    [Google Scholar]
  76. 76. 
    Little E, Barrera R, Seto KC, Diuk-Wasser M 2011. Co-occurrence patterns of the dengue vector Aedes aegypti and Aedes mediovitattus, a dengue competent mosquito in Puerto Rico. Ecohealth 8:3365–75
    [Google Scholar]
  77. 77. 
    Lounibos LP. 2002. Invasions by insect vectors of human disease. Annu. Rev. Entomol. 47:233–66
    [Google Scholar]
  78. 78. 
    Lounibos LP, Kramer LD. 2016. Invasiveness of Aedes aegypti and Aedes albopictus and vectorial capacity for chikungunya virus. J. Infect. Dis. 214:Suppl. 5S453–58
    [Google Scholar]
  79. 79. 
    Luo L, Jiang L-Y, Xiao X-C, Di B, Jing Q-L et al. 2017. The dengue preface to endemic in mainland China: the historical largest outbreak by Aedes albopictus in Guangzhou, 2014. Infect. Dis. Poverty. 6:1148
    [Google Scholar]
  80. 80. 
    Mackerras IM. 1946. Transmission of dengue fever by Aedes (Stegomyia) scutellaris Walk. in New Guinea. Trans. R. Soc. Trop. Med. Hyg. 40:3295–312
    [Google Scholar]
  81. 81. 
    Marchand E, Prat C, Jeannin C, Lafont E, Bergmann T et al. 2013. Autochthonous case of dengue in France, October 2013. Eurosurveillance 18:5020661
    [Google Scholar]
  82. 82. 
    Marklewitz M, Junglen S. 2019. Evolutionary and ecological insights into the emergence of arthropod-borne viruses. Acta Trop 190:52–58
    [Google Scholar]
  83. 83. 
    McBride CS, Baier F, Omondi AB, Spitzer SA, Lutomiah J et al. 2014. Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515:7526222–27
    [Google Scholar]
  84. 84. 
    McBride CS. 2017. Genes and odors underlying the recent evolution of mosquito preference for humans. Curr. Biol. 26:1R41–46
    [Google Scholar]
  85. 85. 
    McNeill W. 1976. Plagues and People New York: Doubleday
  86. 86. 
    Messina JP, Brady O, Golding N, Kraemer MUG, Wint GRW et al. 2019. The current and future global distribution and population at risk of dengue. Nat. Microbiol 4:1508–15
    [Google Scholar]
  87. 87. 
    Messina JP, Brady OJ, Pigott DM, Brownstein JS, Hoen AG, Hay SI 2014. A global compendium of human dengue virus occurrence. Sci. Data. 1:140004
    [Google Scholar]
  88. 88. 
    Messina JP, Brady OJ, Pigott DM, Golding N, Kraemer MUG et al. 2015. The many projected futures of dengue. Nat. Rev. Microbiol. 13:4230–39
    [Google Scholar]
  89. 89. 
    Messina JP, Brady OJ, Scott TW, Zou C, Pigott DM et al. 2014. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol 22:3138–46
    [Google Scholar]
  90. 90. 
    Monteiro FA, Shama R, Martins AJ, Gloria-Soria A, Brown JE, Powell JR 2014. Genetic diversity of Brazilian Aedes aegypti: patterns following an eradication program. PLOS Negl. Trop. Dis. 8:9e3167
    [Google Scholar]
  91. 91. 
    Moore PR, Johnson PH, Smith GA, Ritchie SA, Van Den Hurk AF 2007. Infection and dissemination of dengue virus type 2 in Aedes aegypti, Aedes albopictus, and Aedes scutellaris from the Torres Strait, Australia. J. Am. Mosq. Control Assoc. 23:4383–88
    [Google Scholar]
  92. 92. 
    Morales MA, Fabbri CM, Zunino GE, Kowalewski MM, Luppo VC et al. 2017. Detection of the mosquito-borne flaviviruses, West Nile, Dengue, Saint Louis Encephalitis, Ilheus, Bussuquara, and Yellow Fever in free-ranging black howlers (Alouatta caraya) of Northeastern Argentina. PLOS Negl. Trop. Dis. 11:2e0005351
    [Google Scholar]
  93. 93. 
    Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY et al. 2017. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLOS Negl. Trop. Dis. 11:7e0005625
    [Google Scholar]
  94. 94. 
    Neira M, Lacroix R, Cáceres L, Kaiser PE, Young J et al. 2014. Estimation of Aedes aegypti (Diptera: Culicidae) population size and adult male survival in an urban area in Panama. Mem. Inst. Oswaldo Cruz 109:7879–86
    [Google Scholar]
  95. 95. 
    O'Neill SL, Ryan PA, Turley AP, Wilson G, Retzki K et al. 2018. Scaled deployment of Wolbachia to protect the community from Aedes transmitted arboviruses. Gates Open Res 2:36
    [Google Scholar]
  96. 96. 
    Ooi E-E, Goh K-T, Gubler DJ 2006. Dengue prevention and 35 years of vector control in Singapore. Emerg. Infect. Dis. 12:6887–93
    [Google Scholar]
  97. 97. 
    Pang T, Mak TK, Gubler DJ 2017. Prevention and control of dengue: the light at the end of the tunnel. Lancet Infect. Dis. 17:3e79–87
    [Google Scholar]
  98. 98. 
    Ponlawat A, Harrington LC. 2005. Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand. J. Med. Entomol. 42:5844–49
    [Google Scholar]
  99. 99. 
    Powell JR, Gloria-Soria A, Kotsakiozi P 2018. Recent history of Aedes aegypti: vector genomics and epidemiology records. Bioscience 68:11854–60
    [Google Scholar]
  100. 100. 
    Powell JR, Tabachnick WJ. 2013. History of domestication and spread of Aedes aegypti: a review. Mem. Inst. Oswaldo Cruz 108:Suppl. 111–17
    [Google Scholar]
  101. 101. 
    Radke EG, Gregory CJ, Kintziger KW, Sauber-Schatz EK, Hunsperger EA et al. 2012. Dengue outbreak in Key West, Florida, USA, 2009. Emerg. Infect. Dis. 18:1135–37
    [Google Scholar]
  102. 102. 
    Reiner RC, Perkins TA, Barker CM, Niu T, Chaves LF et al. 2013. A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. J. R. Soc. Interface 10:8120120921
    [Google Scholar]
  103. 103. 
    Reiter P. 2007. Oviposition, dispersal, and survival in Aedes aegypti: implications for the efficacy of control strategies. Vector-Borne Zoonotic Dis 7:2261–73
    [Google Scholar]
  104. 104. 
    Reiter P, Lathrop S, Bunning M, Biggerstaff B, Singer D et al. 2003. Texas lifestyle limits transmission of dengue virus. Emerg. Infect. Dis. 9:186–89
    [Google Scholar]
  105. 105. 
    Ridde V, Agier I, Bonnet E, Carabali M, Dabiré KR et al. 2016. Presence of three dengue serotypes in Ouagadougou (Burkina Faso): research and public health implications. Infect. Dis. Poverty 5:123
    [Google Scholar]
  106. 106. 
    Ritchie SA. 2014. 24 dengue vector bionomics: why Aedes aegypti is such a good vector. Dengue and Dengue Hemorrhagic Fever DJ Gubler, EE Ooi, G Kuno, S Vasudevan, J Farrar 455–80 Oxford, UK: CABI Int. , 2nd ed..
    [Google Scholar]
  107. 107. 
    Ritchie SA, van den Hurk AF, Smout MJ, Staunton KM, Hoffmann AA 2018. Mission accomplished? We need a guide to the ‘post release’ world of Wolbachia for Aedes-borne disease control. Trends Parasitol 34:3217–26
    [Google Scholar]
  108. 108. 
    Rosen L, Rozeboom LE, Sweet BH, Sabin AB 1954. The transmission of dengue by Aedes polynesiensis Marks. Am. J. Trop. Med. Hyg. 3:5878–82
    [Google Scholar]
  109. 109. 
    Russell BM, Kay BH, Shipton W 2001. Survival of Aedes aegypti (Diptera: Culicidae) eggs in surface and subterranean breeding sites during the Northern Queensland dry season. J. Med. Entomol. 38:3441–45
    [Google Scholar]
  110. 110. 
    Salje H, Cummings DAT, Rodriguez-Barraquer I, Katzelnick LC, Lessler J et al. 2018. Reconstruction of antibody dynamics and infection histories to evaluate dengue risk. Nature 557:7707719–23
    [Google Scholar]
  111. 111. 
    Salje H, Lessler J, Maljkovic Berry I, Melendrez MC, Endy T et al. 2017. Dengue diversity across spatial and temporal scales: local structure and the effect of host population size. Science 355:63311302–6
    [Google Scholar]
  112. 112. 
    Schliessmann DJ. 1967. Aedes aegypti eradication program of the United States: progress report 1965. Am. J. Public Health Nations Health 57:3460–65
    [Google Scholar]
  113. 113. 
    Schmidt TL, Barton NH, Rašić G, Turley AP, Montgomery BL et al. 2017. Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti. PLOS Biol 15:5e2001894
    [Google Scholar]
  114. 114. 
    Schoof HF. 1967. Mating, resting habits and dispersal of Aedes aegypti. Bull. World Health Organ 36:4600–1
    [Google Scholar]
  115. 115. 
    Scott TW, Chow E, Strickman D, Kittayapong P, Wirtz RA et al. 1993. Blood-feeding patterns of Aedes aegypti (Diptera: Culicidae) collected in a rural Thai village. J. Med. Entomol. 30:5922–27
    [Google Scholar]
  116. 116. 
    Scott TW, Takken W. 2012. Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission. Trends Parasitol 28:3114–21
    [Google Scholar]
  117. 117. 
    Siriyasatien P, Pengsakul T, Kittichai V, Phumee A, Kaewsaitiam S et al. 2010. Identification of blood meal of field caught Aedes aegypti (L.) by multiplex PCR. Southeast Asian J. Trop. Med. Public Health 41:143–47
    [Google Scholar]
  118. 118. 
    Shepard DS, Undurraga EA, Halasa YA, Stanaway JD 2016. The global economic burden of dengue: a systematic analysis. Lancet Infect. Dis. 16:8935–41
    [Google Scholar]
  119. 119. 
    Sherpa S, Rioux D, Goindin D, Fouque F, François O, Després L 2018. At the origin of a worldwide invasion: unraveling the genetic makeup of the Caribbean bridgehead populations of the dengue vector Aedes aegypti. Genome Biol. Evol 10:156–71
    [Google Scholar]
  120. 120. 
    Simmons CP, Farrar JJ, van Vinh Chau N, Wills B 2012. Dengue. N. Engl. J. Med. 366:151423–32
    [Google Scholar]
  121. 121. 
    Siqueira JB, Martelli CMT, Coelho GE, da Rocha Simplicio AC, Hatch DL 2005. Dengue and dengue hemorrhagic fever, Brazil, 1981–2002. Emerg. Infect. Dis. 11:148–53
    [Google Scholar]
  122. 122. 
    Sirisena PDNN, Noordeen F. 2014. Evolution of dengue in Sri Lanka—changes in the virus, vector, and climate. Int. J. Infect. Dis. 19:6–12
    [Google Scholar]
  123. 123. 
    Sousa CA, Clairouin M, Seixas G, Viveiros B, Novo MT et al. 2012. Ongoing outbreak of dengue type 1 in the Autonomous Region of Madeira, Portugal: preliminary report. Eurosurveillance 17:4920333
    [Google Scholar]
  124. 124. 
    Sridhar S, Luedtke A, Langevin E, Zhu M, Bonaparte M et al. 2018. Effect of dengue serostatus on dengue vaccine safety and efficacy. N. Engl. J. Med. 379:4327–40
    [Google Scholar]
  125. 125. 
    Stoddard ST, Forshey BM, Morrison AC, Paz-Soldan VA, Vazquez-Prokopec GM et al. 2013. House-to-house human movement drives dengue virus transmission. PNAS 110:3994–99
    [Google Scholar]
  126. 126. 
    Tabachnick WJ. 2016. Climate change and the arboviruses: lessons from the evolution of the dengue and Yellow Fever viruses. Annu. Rev. Virol. 3:125–45
    [Google Scholar]
  127. 127. 
    Tatem AJ, Hay SI, Rogers DJ 2006. Global traffic and disease vector dispersal. PNAS 103:166242–47
    [Google Scholar]
  128. 128. 
    ten Bosch QA, Clapham HE, Lambrechts L, Duong V, Buchy P et al. 2018. Contributions from the silent majority dominate dengue virus transmission. PLOS Pathog 14:5e1006965
    [Google Scholar]
  129. 129. 
    Tiga DC, Undurraga EA, Ramos-Castañeda J, Martínez-Vega RA, Tschampl CA, Shepard DS 2016. Persistent symptoms of dengue: estimates of the incremental disease and economic burden in Mexico. Am. J. Trop. Med. Hyg. 94:51085–89
    [Google Scholar]
  130. 130. 
    Tomasello D, Schlagenhauf P. 2013. Chikungunya and dengue autochthonous cases in Europe, 2007–2012. Travel Med. Infect. Dis. 11:5274–84
    [Google Scholar]
  131. 131. 
    Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S 2007. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLOS Pathog 3:12e201
    [Google Scholar]
  132. 132. 
    Valerio L, Marini F, Bongiorno G, Facchinelli L, Pombi M et al. 2010. Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in urban and rural contexts within Rome Province, Italy. Vector-Borne Zoonotic Dis 10:3291–94
    [Google Scholar]
  133. 133. 
    Vasilakis N, Cardosa J, Hanley KA, Holmes EC, Weaver SC 2011. Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health. Nat. Rev. Microbiol. 9:7532–41
    [Google Scholar]
  134. 134. 
    Wang E, Ni H, Xu R, Barrett AD, Watowich SJ et al. 2000. Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses. J. Virol. 74:73227–34
    [Google Scholar]
  135. 135. 
    Wilk-da-Silva R, de Souza Leal Diniz MMC, Marrelli MT, Wilke ABB 2018. Wing morphometric variability in Aedes aegypti (Diptera: Culicidae) from different urban built environments. Parasites Vectors 11:1561
    [Google Scholar]
  136. 136. 
    Wong W-Y, Tan L-K, Ng L-C, Lam S, Low S-L, Teo D 2015. Dengue seroprevalence of healthy adults in Singapore: serosurvey among blood donors, 2009. Am. J. Trop. Med. Hyg. 93:140–45
    [Google Scholar]
  137. 137. 
    World Health Organ 1997. Dengue Haemorrhagic Fever: Diagnosis, Treatment, Prevention and Control Geneva: World Health Organ. , 2nd ed..
  138. 138. 
    World Health Organ 2009. Dengue Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition Geneva: World Health Organ.
  139. 139. 
    World Health Organ 2012. Global strategy for dengue prevention and control, 2012–2020 Rep., World Health Organ Geneva:
  140. 140. 
    Wu HH, Wang CY, Teng HJ, Lin C, Lu LC et al. 2013. A dengue vector surveillance by human population-stratified ovitrap survey for Aedes (Diptera: Culicidae) adult and egg collections in high dengue-risk areas of Taiwan. J. Med. Entomol. 50:2261–69
    [Google Scholar]
  141. 141. 
    Wu JT, Peak CM, Leung GM, Lipsitch M 2016. Fractional dosing of yellow fever vaccine to extend supply: a modelling study. Lancet 388:100622904–11
    [Google Scholar]
  142. 142. 
    XXXIX Dir. Counc. Pan Am. Health Organ 1997. Report on Aedes aegypti control Rep., Pan Am. Health Organ., World Health Organ Washington, DC:
    [Google Scholar]
  143. 143. 
    Young KI, Mundis S, Widen SG, Wood TG, Tesh RB et al. 2017. Abundance and distribution of sylvatic dengue virus vectors in three different land cover types in Sarawak, Malaysian Borneo. Parasites Vectors 10:1406
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011019-024918
Loading
/content/journals/10.1146/annurev-ento-011019-024918
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error