1932

Abstract

Nest site availability and quality are important for maintaining robust populations and communities of wild bees. However, for most species, nesting traits and nest site conditions are poorly known, limiting both our understanding of basic ecology for bee species and conservation efforts. Additionally, many of the threats commonly associated with reducing bee populations have effects that can extend into nests but are largely unstudied. In general, threats such as habitat disturbances and climate change likely affect nest site availability and nest site conditions, which in turn affect nest initiation, growth, development, and overwintering success of bees. To facilitate a better understanding of how these and other threats may affect nesting bees, in this review, I quantify key nesting traits and environmental conditions and then consider how these traits may intersect with observed and anticipated changes in nesting conditions experienced by wild bees. These data suggest that the effects of common threats to bees through nesting may strongly influence their survival and persistence but are vastly understudied. Increasing research into nesting biology and incorporating nesting information into conservation efforts may help improve conservation of this declining but critical group.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011019-024955
2020-01-07
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/ento/65/1/annurev-ento-011019-024955.html?itemId=/content/journals/10.1146/annurev-ento-011019-024955&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Almeida EAB. 2008. Colletidae nesting biology (Hymenoptera: Apoidea). Apidologie 39:16–29
    [Google Scholar]
  2. 2. 
    Anderson NL, Harmon-Threatt AN. 2016. The effects of seed mix diversity on soil conditions and nesting of bees in prairie restorations. N. Am. Prairie Conf. Proc. 17:104–11
    [Google Scholar]
  3. 3. 
    Anderson NL, Harmon-Threatt AN. 2019. Chronic contact with realistic soil concentrations of imidacloprid affects the mass, immature development speed, and adult longevity of solitary bees. Sci. Rep. 9:3724
    [Google Scholar]
  4. 4. 
    Ayasse A, Leys R, Pamilo P, Tengö J 1990. Kinship in communally nesting Andrena (Hymenoptera; Andrenidae) bees is indicated by composition of Dufour's gland secretions. Biochem. Syst. Ecol. 18:453–60
    [Google Scholar]
  5. 5. 
    Barthell JF, Bromberger DM, Daly HV, Thorp RW 1998. Nesting biology of the solitary digger bee Habropodadepressa (Hymenoptera: Anthophoridae) in urban and island environments. J. Kans. Entomol. Soc. 71:116–36
    [Google Scholar]
  6. 6. 
    Bartomeus I, Ascher JS, Wagner D, Danforth BN, Colla S et al. 2011. Climate-associated phenological advances in bee pollinators and bee-pollinated plants. PNAS 108:20645–49
    [Google Scholar]
  7. 7. 
    Batra LR, Batra SWT, Bohart GE 1973. The mycoflora of domesticated and wild bees (Apoidea). Mycopathol. Mycol. Appl. 49:13–44
    [Google Scholar]
  8. 8. 
    Becker T, Pequeno PACL, Carvalho-Zilse GA 2018. Impact of environmental temperatures on mortality, sex and caste ratios in Meliponainterrupta Latreille (Hymenoptera, Apidae). Naturwissenschaften 105:55
    [Google Scholar]
  9. 9. 
    Bennett AB, Lovell S. 2019. Landscape and local site variables differentially influence pollinators and pollination services in urban agricultural sites. PLOS ONE 14:e0212034
    [Google Scholar]
  10. 10. 
    Bohart GE, Cross EA. 1955. Time relationships in the nest construction and life cycle of the alkali bee. Ann. Entomol. Soc. Am. 48:403–6
    [Google Scholar]
  11. 11. 
    Bosch J, Kemp WP, Peterson SS 2000. Management of Osmialignaria (Hymenoptera: Megachilidae) populations for almond pollination: methods to advance bee emergence. Environ. Entomol. 29:874–83
    [Google Scholar]
  12. 12. 
    Brown MJF, Paxton RJ. 2009. The conservation of bees: a global perspective. Apidologie 40:410–16
    [Google Scholar]
  13. 13. 
    Burdine JD, McCluney KE. 2019. Differential sensitivity of bees to urbanization-driven changes in body temperature and water content. Sci. Rep. 9:1643
    [Google Scholar]
  14. 14. 
    Cane JH. 1983. Chemical evolution and chemosystematics of the Dufour's gland secretions of the lactone-producing bees (Hymenoptera: Colletidae, Halictidae, and Oxaeidae). Evolution 37:657–74
    [Google Scholar]
  15. 15. 
    Cane JH. 1986. Predator deterrence by mandibular gland secretions of bees (Hymenoptera: Apoidea). J. Chem. Ecol. 12:1295–309
    [Google Scholar]
  16. 16. 
    Cane JH. 1991. Soils of ground-nesting bees (Hymenoptera: Apoidea): texture, moisture, cell depth and climate. J. Kans. Entomol. Soc. 64:406–13
    [Google Scholar]
  17. 17. 
    Cane JH. 2003. Exotic non-social bees (Hymenoptera: Apiformes) in North America: ecological implications. For Nonnative Crops, Whence Pollinators of the Future? K Strickler, JH Cane 113–26 Lanham, MD: Entomol. Soc. Am.
    [Google Scholar]
  18. 18. 
    Cane JH. 2010. Violent weather and bees: Populations of the Barrier Island endemic, Hesperapisoraria (Hymenoptera: Melittidae) survive a category 3 hurricane. J. Kans. Entomol. Soc. 70:73–75
    [Google Scholar]
  19. 19. 
    Cane JH. 2015. Landscaping pebbles attract nesting by the native ground-nesting bee Halictusrubicundus (Hymenoptera: Halictidae). Apidologie 46:728–34
    [Google Scholar]
  20. 20. 
    Cane JH, Gerdin S, Wife G 1983. Mandibular gland secretions of solitary bees (Hymenoptera: Apoidea): potential for nest cell disinfection. J. Kans. Entomol. Soc. 56:199–204
    [Google Scholar]
  21. 21. 
    Cane JH, Griswold T, Parker FD 2007. Substrates and materials used for nesting by North American Osmia bees (Hymenoptera: Apiformes: Megachilidae). Ann. Entomol. Soc. Am. 100:350–58
    [Google Scholar]
  22. 22. 
    Cane JH, Minckley RL, Kervin LJ, Roulston TH, Neal M 2006. Complex responses within a desert bee guild (Hymenoptera: Apiformes) to urban habitat fragmentation. Ecol. Appl. 16:632–44
    [Google Scholar]
  23. 23. 
    Cane JH, Neff JL. 2011. Predicted fates of ground-nesting bees in soil heated by wildfire: thermal tolerances of life stages and a survey of nesting depths. Biol. Conserv. 144:2631–36
    [Google Scholar]
  24. 24. 
    CaraDonna PJ, Cunningham JL, Iler AM 2018. Experimental warming in the field delays phenology and reduces body mass, fat content and survival: implications for the persistence of a pollinator under climate change. Funct. Ecol. 32:2345–56
    [Google Scholar]
  25. 25. 
    Carrié R, Lopes M, Ouin A, Andrieu E 2018. Bee diversity in crop fields is influenced by remotely-sensed nesting resources in surrounding permanent grasslands. Ecol. Indic. 90:606–14
    [Google Scholar]
  26. 26. 
    Clausen CP. 1940. Entomophagous Insects London: McGraw Hill
    [Google Scholar]
  27. 27. 
    Deleted in proof
  28. 28. 
    Davison PJ, Field J. 2018. Environmental barriers to sociality in an obligate eusocial sweat bee. Insectes Soc 65:549–59
    [Google Scholar]
  29. 29. 
    De Palma A, Abrahamczyk S, Aizen MA, Albrecht M, Basset Y et al. 2016. Predicting bee community responses to land-use changes: effects of geographic and taxonomic biases. Sci. Rep. 6:31153
    [Google Scholar]
  30. 30. 
    Drescher N, Wallace HM, Katouli M, Massaro CF, Leonhardt SD 2014. Diversity matters: how bees benefit from different resin sources. Oecologia 176:943–53
    [Google Scholar]
  31. 31. 
    Eickwort GC. 1981. Aspects of the nesting biology of five Nearctic species of Agapostemon (Hymenoptera: Halictidae). J. Kans. Entomol. Soc. 54:337–51
    [Google Scholar]
  32. 32. 
    Eickwort GC, Matthews RW, Carpenter JM 1981. Observations on the nesting behavior of Megachilerubi and M.texana with a discussion of the significance of soil nesting in the evolution of megachilid bees (Hymenoptera: Megachilidae). J. Kans. Entomol. Soc. 54:557–70
    [Google Scholar]
  33. 33. 
    Engel P, Kwong W, McFrederick Q, Anderson K, Barribeau S et al. 2016. The bee microbiome: impact on bee health and model for evolution and ecology of host-microbe interactions. mBio 7:e02164–15
    [Google Scholar]
  34. 34. 
    Evans AN, Llanos JEM, Kunin WE, Evison SEF 2018. Indirect effects of agricultural pesticide use on parasite prevalence in wild pollinators. Agric. Ecosyst. Environ. 258:40–48
    [Google Scholar]
  35. 35. 
    Everaars J, Settele J, Dormann CF 2018. Fragmentation of nest and foraging habitat affects time budgets of solitary bees, their fitness and pollination services, depending on traits: results from an individual-based model. PLOS ONE 13:e0188269
    [Google Scholar]
  36. 36. 
    Everaars J, Strohbach MW, Gruber B, Dormann CF 2011. Microsite conditions dominate habitat selection of the red mason bee (Osmiabicornis, Hymenoptera: Megachilidae) in an urban environment: a case study from Leipzig, Germany. Landsc. Urban Plan. 103:15–23
    [Google Scholar]
  37. 37. 
    Forrest JRK. 2015. Plant–pollinator interactions and phenological change: What can we learn about climate impacts from experiments and observations?. Oikos 124:4–13
    [Google Scholar]
  38. 38. 
    Forrest JRK, Chisholm SPM. 2017. Direct benefits and indirect costs of warm temperatures for high-elevation populations of a solitary bee. Ecology 98:359–69
    [Google Scholar]
  39. 39. 
    Fortel L, Henry M, Guilbaud L, Mouret H, Vaissière BE 2016. Use of human-made nesting structures by wild bees in an urban environment. J. Insect Conserv. 20:239–53
    [Google Scholar]
  40. 40. 
    Genersch E. 2010. Honey bee pathology: current threats to honey bees and beekeeping. Appl. Microbiol. Biotechnol. 87:87–97
    [Google Scholar]
  41. 41. 
    Giblin RM, Kaya HK. 1983. Field observations on the association of Anthophorabomboidesstanfordiana (Hymenoptera: Anthophoridae) with the nematode Bursaphelenchusseani (Aphelenchida: Aphelenchoididae). Ann. Entomol. Soc. Am. 76:228–31
    [Google Scholar]
  42. 42. 
    Goulson D. 2013. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50:977–87
    [Google Scholar]
  43. 43. 
    Goulson D, Hughes WOH. 2015. Mitigating the anthropogenic spread of bee parasites to protect wild pollinators. Biol. Conserv. 191:10–19
    [Google Scholar]
  44. 44. 
    Hefetz A. 1987. The role of Dufour's gland secretions in bees. Physiol. Entomol. 12:243–53
    [Google Scholar]
  45. 45. 
    Hicks CH. 1926. Nesting habits and parasites of certain bees of Boulder County, Colorado. Univ. Colo. Stud. 26:217–52
    [Google Scholar]
  46. 46. 
    Hicks CH. 1929. On the nesting habits of Callanthidiumillustre. Can. Entomol 61:1–8
    [Google Scholar]
  47. 47. 
    Hladun KR, Di N, Liu TX, Trumble JT 2016. Metal contaminant accumulation in the hive: consequences for whole-colony health and brood production in the honey bee (Apismellifera L.). Environ. Toxicol. Chem. 35:322–29
    [Google Scholar]
  48. 48. 
    Hobbs GA, Nummi WO, Virostek JF 1961. Anthophoraoccidentalis Cress. (Hymenoptera: Apidae) and its associates at a nesting site in southern Alberta. Can. Entomol. 93:142–48
    [Google Scholar]
  49. 49. 
    Howell AD, Alarcón R, Minckley RL 2017. Effects of habitat fragmentation on the nesting dynamics of desert bees. Ann. Entomol. Soc. Am. 110:233–43
    [Google Scholar]
  50. 50. 
    Jha S, Kremen C. 2013. Urban land use limits regional bumble bee gene flow. Mol. Ecol. 22:2483–95
    [Google Scholar]
  51. 51. 
    Julier HE, Roulston TH. 2009. Wild bee abundance and pollination service in cultivated pumpkins: farm management, nesting behavior and landscape effects. J. Econ. Entomol. 102:563–73
    [Google Scholar]
  52. 52. 
    Kamm DR. 1974. Effects of temperature, day length, and number of adults on the sizes of cells and offspring in a primitively social bee (Hymenoptera: Halictidae). J. Kans. Entomol. Soc. 47:8–18
    [Google Scholar]
  53. 53. 
    Kearns CA, Oliveras DM. 2009. Boulder County bees revisited: a resampling of Boulder Colorado bees a century later. J. Insect Conserv. 13:603–13
    [Google Scholar]
  54. 54. 
    Kearns CA, Oliveras DM. 2009. Environmental factors affecting bee diversity in urban and remote grassland plots in Boulder, Colorado. J. Insect Conserv. 13:655–65
    [Google Scholar]
  55. 55. 
    Kemp WP, Bosch J. 2005. Effect of temperature on Osmialignaria (Hymenoptera: Megachilidae) prepupa–adult development, survival, and emergence. J. Econ. Entomol. 98:1917–23
    [Google Scholar]
  56. 56. 
    Koch H, Schmid-Hempel P. 2011. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. PNAS 108:19288–92
    [Google Scholar]
  57. 57. 
    Kopit AM, Pitts-Singer TL. 2018. Routes of pesticide exposure in solitary, cavity-nesting bees. Environ. Entomol. 47:499–510
    [Google Scholar]
  58. 58. 
    Kratschmer S, Pachinger B, Schwantzer M, Paredes D, Guernion M et al. 2018. Tillage intensity or landscape features: What matters most for wild bee diversity in vineyards. ? Agric. Ecosyst. Environ. 266:142–52
    [Google Scholar]
  59. 59. 
    Krombein KV. 1967. Trap-Nesting Wasps and Bees: Life Histories, Nests and Associates Washington, DC: Smithson. Inst. Press
    [Google Scholar]
  60. 60. 
    Leconte Y, Navajas M. 2008. Climate change: impact on honey bee populations and diseases. Rev. Sci. Tech. 27:485–510
    [Google Scholar]
  61. 61. 
    Linsley EG. 1958. The ecology of solitary bees. Hilgardia 27:543–99
    [Google Scholar]
  62. 62. 
    Linsley EG, MacSwain JW. 1952. Notes on some effects of parasitism upon a small population of Diadasiabituberculata (Cresson). Pan-Pac. Entomol. 28:131–35
    [Google Scholar]
  63. 63. 
    Linsley EG, MacSwain JW. 1957. The nesting habits, flower relationships, and parasites of some North American species of Diadasia (Hymenoptera: Anthophoridae). Wasmann J. Biol. 15:199–236
    [Google Scholar]
  64. 64. 
    Linsley EG, MacSwain JW, Smith RF 1952. Outline for ecological life histories of solitary and semi-social bees. Ecology 33:558–67
    [Google Scholar]
  65. 65. 
    Linsley EG, McSwain JW. 1942. The parasites, predators, and inquiline associates of Anthophora. Am. Midl. Nat 27:402–17
    [Google Scholar]
  66. 66. 
    Litman JR, Danforth BN, Eardley CD, Christophe J 2011. Why do leafcutter bees cut leaves? New insights into the early evolution of bees. Proc. R. Soc. B 278:3593–600
    [Google Scholar]
  67. 67. 
    López-Uribe MM, Morreale S, Santiago C, Danforth BN 2015. Nest suitability, fine-scale population structure and male-mediated dispersal of a solitary ground nesting bee in an urban landscape. PLOS ONE 10:e0125719
    [Google Scholar]
  68. 68. 
    Malyshev SI. 1935. The nesting habits of solitary bees: a comparative study. Eos 11:201–309
    [Google Scholar]
  69. 69. 
    May D. 1972. Water uptake during larval development of a sweat bee, Augochlorapura. J. Kans. Entomol. Soc. 45:439–49
    [Google Scholar]
  70. 70. 
    McFrederick QS, LeBuhn G. 2006. Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)?. Biol. Conserv. 129:372–82
    [Google Scholar]
  71. 71. 
    McFrederick QS, Roulston TH, Taylor DR 2013. Evolution of conflict and cooperation of nematodes associated with solitary and social sweat bees. Insectes Soc 60:309–17
    [Google Scholar]
  72. 72. 
    McMahon DP, Fürst MA, Caspar J, Theodorou P, Brown MJF, Paxton RJ 2015. A sting in the spit: widespread cross-infection of multiple RNA viruses across wild and managed bees. J. Anim. Ecol. 84:615–24
    [Google Scholar]
  73. 73. 
    Medler JT. 1966. Biology of Osmia in trap nests in Wisconsin (Hymenoptera: Megachilidae). Ann. Entomol. Soc. Am. 60:338–44
    [Google Scholar]
  74. 74. 
    Meindl GA, Ashman T-L. 2013. The effects of aluminum and nickel in nectar on the foraging behavior of bumblebees. Environ. Pollut. 177:78–81
    [Google Scholar]
  75. 75. 
    Michener CD. 1953. The biology of a leafcutter bee (Megachilebrevis) and its associates. Univ. Kans. Sci. Bull. 35:1659–748
    [Google Scholar]
  76. 76. 
    Michener CD. 1964. Evolution of the nests of bees. Am. Zool. 4:227–39
    [Google Scholar]
  77. 77. 
    Miliczky E. 2008. Observations on the nesting biology of Andrena (Plastandrena) prunorum Cockerell in Washington State (Hymenoptera: Andrenidae). J. Kans. Entomol. Soc. 81:110–21
    [Google Scholar]
  78. 78. 
    Minckley RL, Roulston TH, Williams NM 2013. Resource assurance predicts specialist and generalist bee activity in drought. Proc. R. Soc. B 280:20122703
    [Google Scholar]
  79. 79. 
    Norden B, Batra SWT, Fales HM, Hefetz A, Shaw GJ 1980. Anthophora bees: Unusual glycerides from maternal Dufour's glands serve as larval food and cell lining. Science 207:1095–97
    [Google Scholar]
  80. 80. 
    Nye WP. 1980. Notes on the biology ofHalictus (Halictus) farinosusSmith (Hymenoptera: Halictidae) Agric. res. results ARR-W-11, US Dep Agric., Sci. Educ. Adm Oakland, CA:
    [Google Scholar]
  81. 81. 
    Osgood EA. 1972. Soil characteristics of nesting sites of solitary bees associated with the low-bush blueberry in Maine Tech. bull. 59, Life Sci. Agric. Exp Stn., Univ Maine, Orono:
    [Google Scholar]
  82. 82. 
    Pane AM, Harmon-Threatt AN. 2017. An assessment of the efficacy and peak catch rates of emergence tents for measuring bee nesting. Appl. Plant Sci. 5:1700007
    [Google Scholar]
  83. 83. 
    Parker FD. 1988. Nesting biology of two North American species of Chelostoma. Pan-Pac. Entomol 64:1–7
    [Google Scholar]
  84. 84. 
    Pinilla-Gallego MS, Crum J, Schaetzl R, Isaacs R 2018. Soil textures of nest partitions made by the mason bees Osmialignaria and O.cornifrons (Hymenoptera: Megachilidae). Apidologie 49:464–72
    [Google Scholar]
  85. 85. 
    Plath OE. 1934. Bumble Bees and Their Ways New York: Macmillan
    [Google Scholar]
  86. 86. 
    Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE 2010. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25:345–53
    [Google Scholar]
  87. 87. 
    Potts SG, Vulliamy B, Roberts S, O'Toole C, Dafni A et al. 2005. Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. Ecol. Entomol. 30:78–85
    [Google Scholar]
  88. 88. 
    Potts SG, Willmer P. 1997. Abiotic and biotic factors influencing nest-site selection by Halictusrubicundus, a ground-nesting halictine bee. Ecol. Entomol. 22:319–28
    [Google Scholar]
  89. 89. 
    Radmacher S, Strohm E. 2010. Factors affecting offspring body size in the solitary bee Osmiabicornis (Hymenoptera, Megachilidae). Apidologie 41:169–77
    [Google Scholar]
  90. 90. 
    Richards KW. 1978. Nest site selection by bumble bees (Hymenoptera: Apidae) in southern Alberta. Can. Entomol. 110:301–18
    [Google Scholar]
  91. 91. 
    Riddick EW. 1993. Nomadaannulata Smith (Hymenoptera: Anthophoridae), a confirmed cleptoparasite of Andrenamacra Mitchell (Hymenoptera: Andrenidae). Proc. Entomol. Soc. Wash. 95:107–12
    [Google Scholar]
  92. 92. 
    Roubik DW. 2006. Stingless bee nesting biology. Apidologie 37:124–43
    [Google Scholar]
  93. 93. 
    Roulston TH, Goodell K. 2011. The role of resources and risks in regulating wild bee populations. Annu. Rev. Entomol. 56:293–312
    [Google Scholar]
  94. 94. 
    Rozen JG. 1958. Notes on the Biology of Nomadopsis, with Descriptions of Four New Species (Apoidea, Andrenidae) New York: Am. Mus. Nat. Hist.
    [Google Scholar]
  95. 95. 
    Rozen JG, Özbek H. 2008. Immatures of Rophitine Bees, with Notes on Their Nesting Biology (Hymenoptera: Apoidea: Halictidae) New York: Am. Mus. Nat. Hist.
    [Google Scholar]
  96. 96. 
    Rust RW. 1976. Notes on the biology of North American species of Panurginus. Pan-Pac. Entomol 52:159–66
    [Google Scholar]
  97. 97. 
    Sakagami SF, Michener CD. 1962. The Nest Architecture of the Sweat Bees (Halictinae) Lawrence: Univ. Kans. Press
    [Google Scholar]
  98. 98. 
    Sanchez-Bayo F, Goulson D, Pennachio F, Nazzi F, Goka K, Desneux N 2016. Are bee diseases linked to pesticides? A brief review. Environ. Int. 89–90:7–11
    [Google Scholar]
  99. 99. 
    Sardiñas HS, Kremen C. 2014. Evaluating nesting microhabitat for ground-nesting bees using emergence traps. Basic Appl. Ecol. 15:161–68
    [Google Scholar]
  100. 100. 
    Sardiñas HS, Tom K, Ponisio LC, Rominger A, Kremen C 2016. Sunflower (Helianthusannuus) pollination in California's Central Valley is limited by native bee nest site location. Ecol. Appl. 26:438–47
    [Google Scholar]
  101. 101. 
    Scott VL. 1994. Phenology and trap selection of three species of Hylaeus (Hymenoptera: Colletidae) in upper Michigan. Gt. Lakes Entomol. 27:39–47
    [Google Scholar]
  102. 102. 
    Sgolastra F, Kemp WP, Buckner JS, Pitts-Singer TL, Maini S, Bosch J 2011. The long summer: Pre-wintering temperatures affect metabolic expenditure and winter survival in a solitary bee. J. Insect Physiol. 57:1651–59
    [Google Scholar]
  103. 103. 
    Sgolastra F, Kemp WP, Maini S, Bosch J 2012. Duration of prepupal summer dormancy regulates synchronization of adult diapause with winter temperatures in bees of the genus Osmia. J. Insect Physiol 58:924–33
    [Google Scholar]
  104. 104. 
    Sivakoff FS, Gardiner MM. 2017. Soil lead contamination decreases bee visit duration at sunflowers. Urban Ecosyst 20:1221–28
    [Google Scholar]
  105. 105. 
    Sivik FP. 1954. Ecological notes on three species of solitary bees. Entomol. News 65:253–56
    [Google Scholar]
  106. 106. 
    Stephen WP. 1965. Effects of soil moisture on survival of prepupae of the alkali bee. J. Econ. Entomol. 58:472–74
    [Google Scholar]
  107. 107. 
    Stephen WP. 1966. Andrena (Cryptandrena) viburnella. I. Bionomics. J. Kans. Entomol. Soc. 39:42–51
    [Google Scholar]
  108. 108. 
    Stephen WP, Bohart GE, Torchio PF 1969. The Biology and External Morphology of Bees with a Synopsis of the Genera of Northwestern America Corvallis: Or. State Univ. Press
    [Google Scholar]
  109. 109. 
    Stow A, Briscoe D, Gillings M, Holley M, Smith S et al. 2007. Antimicrobial defences increase with sociality in bees. Biol. Lett. 3:422–24
    [Google Scholar]
  110. 110. 
    Straka J, Černá K, Macháčková L, Zemenová M, Keil P 2014. Life span in the wild: the role of activity and climate in natural populations of bees. Funct. Ecol. 28:1235–44
    [Google Scholar]
  111. 111. 
    Theodorou P, Radzevičiūtė R, Settele J, Schweiger O, Murray TE, Paxton RJ 2016. Pollination services enhanced with urbanization despite increasing pollinator parasitism. Proc. R. Soc. B 283:1–9
    [Google Scholar]
  112. 112. 
    Torchio PF. 1975. The biology of Perditanuda and descriptions of its immature forms and those of its Sphecodes parasite (Hymenoptera: Apoidea). J. Kans. Entomol. Soc. 48:257–79
    [Google Scholar]
  113. 113. 
    Torchio PF, Rozen JG, Bohart GE, Favreau MS 1967. Biology of Dufourea and of its cleptoparasite, Neopasites (Hymenoptera: Apoidea). J. N. Y. Entomol. Soc. 75:132–46
    [Google Scholar]
  114. 114. 
    Ullmann KS, Meisner MH, Williams NM 2016. Impact of tillage on the crop pollinating, ground-nesting bee, Peponapispruinosa in California. Agric. Ecosyst. Environ. 232:240–46
    [Google Scholar]
  115. 115. 
    Vickruck JL, Richards MH. 2017. Nesting habits influence population genetic structure of a bee living in anthropogenic disturbance. Mol. Ecol. 26:2674–86
    [Google Scholar]
  116. 116. 
    Vinchesi A, Cobos D, Lavine L, Walsh D 2013. Manipulation of soil temperatures to influence brood emergence in the alkali bee (Nomiamelanderi). Apidologie 44:286–94
    [Google Scholar]
  117. 117. 
    Visscher PK, Danforth BN. 1993. Biology of Calliopsispugionis (Hymenoptera: Andrenidae): nesting, foraging, and investment sex ratio. Ann. Entomol. Soc. Am. 86:822–32
    [Google Scholar]
  118. 118. 
    Visscher PK, Vetter RS, Orth R 1994. Benthic bees? Emergence phenology of Calliopsispugionis (Hymenoptera: Andrenidae) at a seasonally flooded site. Ann. Entomol. Soc. Am. 87:941–45
    [Google Scholar]
  119. 119. 
    Weissel N, Mitesser O, Liebig J, Poethke HJ, Strohm E 2006. The influence of soil temperature on the nesting cycle of the halictid bee Lasioglossummalachurum. Insectes Soc 53:390–98
    [Google Scholar]
  120. 120. 
    Williams NM, Crone EE, Roulston TH, Minckley RL, Packer L, Potts SG 2010. Ecological and life-history traits predict bee species responses to environmental disturbances. Biol. Conserv. 143:2280–91
    [Google Scholar]
  121. 121. 
    Winfree R. 2010. The conservation and restoration of wild bees. Ann. N. Y. Acad. Sci. 1195:169–97
    [Google Scholar]
  122. 122. 
    Winfree R, Aguilar R, Vazquez DP, LeBuhn G, Aizen MA 2008. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 89:2712–24
    [Google Scholar]
  123. 123. 
    Wintermantel D, Locke B, Andersson GKS, Semberg E, Forsgren E et al. 2018. Field-level clothianidin exposure affects bumblebees but generally not their pathogens. Nat. Commun. 9:5446
    [Google Scholar]
  124. 124. 
    Wuellner CT. 1999. Nest site preference and success in a gregarious, ground-nesting bee Dieunomiatriangulifera. Ecol. Entomol 24:471–79
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011019-024955
Loading
/content/journals/10.1146/annurev-ento-011019-024955
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error