1932

Abstract

Although the insect circulatory system is involved in a multitude of vital physiological processes, it has gone grossly understudied. This review highlights this critical physiological system by detailing the structure and function of the circulatory organs, including the dorsal heart and the accessory pulsatile organs that supply hemolymph to the appendages. It also emphasizes how the circulatory system develops and ages and how, by means of reflex bleeding and functional integration with the immune system, it supports mechanisms for defense against predators and microbial invaders, respectively. Beyond that, this review details evolutionary trends and novelties associated with this system, as well as the ways in which this system also plays critical roles in thermoregulation and tracheal ventilation in high-performance fliers. Finally, this review highlights how novel discoveries could be harnessed for the control of vector-borne diseases and for translational medicine, and it details principal knowledge gaps that necessitate further investigation.

Associated Article

There are media items related to this article:
The Insect Circulatory System: Structure, Function, and Evolution: Video 2

Associated Article

There are media items related to this article:
The Insect Circulatory System: Structure, Function, and Evolution: Video 1
Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011019-025003
2020-01-07
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/ento/65/1/annurev-ento-011019-025003.html?itemId=/content/journals/10.1146/annurev-ento-011019-025003&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Andereck JW, King JG, Hillyer JF 2010. Contraction of the ventral abdomen potentiates extracardiac retrograde hemolymph propulsion in the mosquito hemocoel. PLOS ONE 5:e12943
    [Google Scholar]
  2. 2. 
    Andersen JL, MacMillan HA, Overgaard J 2015. Temperate Drosophila preserve cardiac function at low temperature. J. Insect Physiol. 77:26–32
    [Google Scholar]
  3. 3. 
    Antemann V, Pass G, Pflüger HJ 2018. Octopaminergic innervation and a neurohaemal release site in the antennal heart of the locust Schistocerca gregaria. J. Comp. Physiol. A 204:131–43
    [Google Scholar]
  4. 4. 
    Aprelev P, Bruce TF, Beard CE, Adler PH, Kornev K 2019. Nucleation and formation of a primary clot in insect blood. Sci. Rep. 9:3451
    [Google Scholar]
  5. 5. 
    Babcock DT, Brock AR, Fish GS, Wang Y, Perrin L et al. 2008. Circulating blood cells function as a surveillance system for damaged tissue in Drosophila larvae. PNAS 105:10017–22
    [Google Scholar]
  6. 6. 
    Banerjee U, Girard JR, Goins LM, Spratford CM 2019. Drosophila as a genetic model for hematopoiesis. Genetics 211:367–417
    [Google Scholar]
  7. 7. 
    Bazzell B, Ginzberg S, Healy L, Wessells RJ 2013. Dietary composition regulates Drosophila mobility and cardiac physiology. J. Exp. Biol. 216:859–68
    [Google Scholar]
  8. 8. 
    Birse RT, Choi J, Reardon K, Rodriguez J, Graham S et al. 2010. High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab 12:533–44
    [Google Scholar]
  9. 9. 
    Blice-Baum AC, Guida MC, Hartley PS, Adams PD, Bodmer R, Cammarato A 2018. As time flies by: investigating cardiac aging in the short-lived Drosophila model. Biochim. Biophys. Acta Mol. Basis Dis. 1865:1831–44
    [Google Scholar]
  10. 10. 
    Blum MS, Sannasi A. 1974. Reflex bleeding in lampyrid Photinus pyralis: defensive function. J. Insect Physiol. 20:451–60
    [Google Scholar]
  11. 11. 
    Bodmer R, Wessells RJ, Sujkowski A, Johnson E, Beasley V, Dowse H 2017. Drosophila heart development and function. Reference Module in Life Sciences1–28 Amsterdam: Elsevier
    [Google Scholar]
  12. 12. 
    Boppana S, Hillyer JF. 2014. Hemolymph circulation in insect sensory appendages: functional mechanics of antennal accessory pulsatile organs (auxiliary hearts) in the mosquito Anopheles gambiae. J. Exp. Biol 217:3006–14
    [Google Scholar]
  13. 13. 
    Brandt T, Mourier A, Tain LS, Partridge L, Larsson NG, Kuhlbrandt W 2017. Changes of mitochondrial ultrastructure and function during ageing in mice and Drosophila. eLife 6:e24662
    [Google Scholar]
  14. 14. 
    Bretscher AJ, Honti V, Binggeli O, Burri O, Poidevin M et al. 2015. The Nimrod transmembrane receptor Eater is required for hemocyte attachment to the sessile compartment in Drosophila melanogaster. Biol. Open 4:355–63
    [Google Scholar]
  15. 15. 
    Bullerjahn A, Mentel T, Pflüger HJ, Stevenson PA 2006. Nitric oxide: a co-modulator of efferent peptidergic neurosecretory cells including a unique octopaminergic neurone innervating locust heart. Cell Tissue Res 325:345–60
    [Google Scholar]
  16. 16. 
    Burmester T. 2015. Evolution of respiratory proteins across the Pancrustacea. Integr. Comp. Biol. 55:792–801
    [Google Scholar]
  17. 17. 
    Cevik D, Acker M, Michalski C, Jacobs JR 2019. Pericardin, a Drosophila collagen, facilitates accumulation of hemocytes at the heart. Dev. Biol 454:52–65
    [Google Scholar]
  18. 18. 
    Chapman RF, Douglas AE, Siva-Jothy MT 2013. Circulatory system, blood and the immune system. The Insects: Structure and Function SJ Simpson, AE Douglas 107–31 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  19. 19. 
    Chintapalli RT, Hillyer JF. 2016. Hemolymph circulation in insect flight appendages: physiology of the wing heart and circulatory flow in the wings of the mosquito Anopheles gambiae. J. Exp. Biol 219:3945–51
    [Google Scholar]
  20. 20. 
    Choma MA, Suter MJ, Vakoc BJ, Bouma BE, Tearney GJ 2010. Heart wall velocimetry and exogenous contrast-based cardiac flow imaging in Drosophila melanogaster using Doppler optical coherence tomography. J. Biomed. Opt. 15:056020
    [Google Scholar]
  21. 21. 
    Chowanski S, Lubawy J, Urbanski A, Rosinski G 2016. Cardioregulatory functions of neuropeptides and peptide hormones in insects. Protein Pept. Lett. 23:913–31
    [Google Scholar]
  22. 22. 
    Collins C, Miller T. 1977. Studies on the action of biogenic amines on cockroach heart. J. Exp. Biol. 67:1–15
    [Google Scholar]
  23. 23. 
    Curtis NJ, Ringo JM, Dowse HB 1999. Morphology of the pupal heart, adult heart, and associated tissues in the fruit fly, Drosophila melanogaster. J. Morphol. 240:225–35
    [Google Scholar]
  24. 24. 
    da Silva R, da Silva SR, Lange AB 2012. The regulation of cardiac activity by nitric oxide (NO) in the Vietnamese stick insect. Baculum extradentatum. Cell Signal. 24:1344–50
    [Google Scholar]
  25. 25. 
    Doran CR, Estevez-Lao TY, Hillyer JF 2017. Mosquito aging modulates the heart rate and the proportional directionality of heart contractions. J. Insect Physiol. 101:47–56
    [Google Scholar]
  26. 26. 
    Dulcis D, Davis NT, Hildebrand JG 2001. Neuronal control of heart reversal in the hawkmoth Manduca sexta. J. Comp. Physiol. A 187:837–49
    [Google Scholar]
  27. 27. 
    Dulcis D, Levine RB. 2005. Glutamatergic innervation of the heart initiates retrograde contractions in adult Drosophila melanogaster. J. Neurosci 25:271–80
    [Google Scholar]
  28. 28. 
    Dulcis D, Levine RB, Ewer J 2005. Role of the neuropeptide CCAP in Drosophila cardiac function. J. Neurobiol. 64:259–74
    [Google Scholar]
  29. 29. 
    Duve H, Elia AJ, Orchard I, Johnsen AH, Thorpe A 1993. The effects of calliFMRFamides and other FMRFamide-related neuropeptides on the activity of the heart of the blowfly Calliphora vomitoria. J. Insect Physiol 39:31–40
    [Google Scholar]
  30. 30. 
    Edwards GA, Nutting WL. 1950. The influence of temperature upon the respiration and heart activity of Thermobia and Grylloblatta. Psyche 57:33–44
    [Google Scholar]
  31. 31. 
    Ejaz A, Lange AB. 2008. Peptidergic control of the heart of the stick insect, Baculum extradentatum. Peptides 29:214–25
    [Google Scholar]
  32. 32. 
    Elliott CJH. 1981. The expansion of Schistocerca gregaria at the imaginal ecdysis: the mechanical properties of the cuticle and the internal pressure. J. Insect Physiol. 27:695–704
    [Google Scholar]
  33. 33. 
    Ellison HE, Estevez-Lao TY, Murphree CS, Hillyer JF 2015. Deprivation of both sucrose and water reduces the mosquito heart contraction rate while increasing the expression of nitric oxide synthase. J. Insect Physiol. 74:1–9
    [Google Scholar]
  34. 34. 
    Estevez-Lao TY, Boyce DS, Honegger HW, Hillyer JF 2013. Cardioacceleratory function of the neurohormone CCAP in the mosquito Anopheles gambiae. J. Exp. Biol 216:601–13
    [Google Scholar]
  35. 35. 
    Flachsbarth S, Kruse M, Burmester T 2017. Distribution and hypoxia-regulation of haemocyanin in springtails (Collembola). Insect Mol. Biol. 26:633–41
    [Google Scholar]
  36. 36. 
    Gereben-Krenn B, Pass G. 1999. Circulatory organs of Diplura (Hexapoda): the basic design in Hexapoda?. Int. J. Insect Morphol. Embryol. 28:71–79
    [Google Scholar]
  37. 37. 
    Gereben-Krenn B, Pass G. 2001. Circulatory organs of abdominal appendages in primitive insects (Hexapoda: Archaeognatha, Zygentoma and Ephemeroptera). Acta Zool 81:285–92
    [Google Scholar]
  38. 38. 
    Gerould JH. 1933. Orders of insects with heart-beat reversals. Biol. Bull. 64:424–31
    [Google Scholar]
  39. 39. 
    Ghosh S, Singh A, Mandal S, Mandal L 2015. Active hematopoietic hubs in Drosophila adults generate hemocytes and contribute to immune response. Dev. Cell 33:478–88
    [Google Scholar]
  40. 40. 
    Gill S, Le HD, Melkani GC, Panda S 2015. Time-restricted feeding attenuates age-related cardiac decline in Drosophila. Science 347:1265–69
    [Google Scholar]
  41. 41. 
    Glenn JD, King JG, Hillyer JF 2010. Structural mechanics of the mosquito heart and its function in bidirectional hemolymph transport. J. Exp. Biol. 213:541–50
    [Google Scholar]
  42. 42. 
    Göpel T, Wirkner CS. 2018. Morphological description, character conceptualization and the reconstruction of ancestral states exemplified by the evolution of arthropod hearts. PLOS ONE 13:e0201702
    [Google Scholar]
  43. 43. 
    Grigorian M, Hartenstein V. 2013. Hematopoiesis and hematopoietic organs in arthropods. Dev. Genes Evol. 223:103–15
    [Google Scholar]
  44. 44. 
    Grimaldi DA. 2010. 400 million years on six legs: on the origin and early evolution of Hexapoda. Arthropod Struct. Dev. 39:191–203
    [Google Scholar]
  45. 45. 
    Gu GG, Singh S. 1995. Pharmacological analysis of heartbeat in Drosophila. J. Neurobiol 28:269–80
    [Google Scholar]
  46. 46. 
    Guida MC, Birse RT, Dall'Agnese A, Toto PC, Diop SB et al. 2019. Intergenerational inheritance of high fat diet-induced cardiac lipotoxicity in Drosophila. Nat. Commun 10:193
    [Google Scholar]
  47. 47. 
    Hantschk AM. 1991. Functional morphology of accessory circulatory organs in the legs of Hemiptera. Int. J. Insect Morphol. Embryol. 20:259–73
    [Google Scholar]
  48. 48. 
    Hardy CM, Birse RT, Wolf MJ, Yu L, Bodmer R, Gibbs AG 2015. Obesity-associated cardiac dysfunction in starvation-selected Drosophila melanogaster. Am. J. Physiol. Regul. Integr. Comp. Physiol 309:R658–67
    [Google Scholar]
  49. 49. 
    Harrison JF. 2015. Handling and use of oxygen by pancrustaceans: conserved patterns and the evolution of respiratory structures. Integr. Comp. Biol. 55:802–15
    [Google Scholar]
  50. 50. 
    Harrison JF, Waters JS, Cease AJ, Vandenbrooks JM, Callier V et al. 2013. How locusts breathe. Physiology 28:18–27
    [Google Scholar]
  51. 51. 
    Harrison JF, Woods HA, Roberts SP 2012. Ecological and Environmental Physiology of Insects Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  52. 52. 
    Heinrich B. 1971. Temperature regulation of the sphinx moth, Manduca sexta. I. Flight energetics and body temperature during free and tethered flight. J. Exp. Biol. 54:141–52
    [Google Scholar]
  53. 53. 
    Heinrich B. 1976. Heat exchange in relation to blood flow between thorax and abdomen in bumblebees. J. Exp. Biol. 64:561–85
    [Google Scholar]
  54. 54. 
    Heinrich B. 1993. The Hot-Blooded Insects: Mechanisms and Evolution of Thermoregulation Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  55. 55. 
    Hernandez-Martinez S, Sanchez-Zavaleta M, Brito K, Herrera-Ortiz A, Ons S, Noriega FG 2017. Allatotropin: a pleiotropic neuropeptide that elicits mosquito immune responses. PLOS ONE 12:e0175759
    [Google Scholar]
  56. 56. 
    Hertel W, Neupert S, Eckert M 2012. Proctolin in the antennal circulatory system of lower Neoptera: a comparative pharmacological and immunohistochemical study. Physiol. Entomol. 37:160–70
    [Google Scholar]
  57. 57. 
    Hillyer JF. 2015. Integrated immune and cardiovascular function in Pancrustacea: lessons from the insects. Integr. Comp. Biol. 55:843–55
    [Google Scholar]
  58. 58. 
    Hillyer JF. 2016. Insect immunology and hematopoiesis. Dev. Comp. Immunol. 58:102–18
    [Google Scholar]
  59. 59. 
    Hillyer JF. 2018. Insect heart rhythmicity is modulated by evolutionarily conserved neuropeptides and neurotransmitters. Curr. Opin. Insect Sci. 29:41–48
    [Google Scholar]
  60. 60. 
    Hillyer JF, Estevez-Lao TY, de la Parte LE 2014. Myotropic effects of FMRFamide containing peptides on the heart of the mosquito Anopheles gambiae. Gen. Comp. Endocrinol 202:15–25
    [Google Scholar]
  61. 61. 
    Hillyer JF, Estevez-Lao TY, Mirzai HE 2015. The neurotransmitters serotonin and glutamate accelerate the heart rate of the mosquito Anopheles gambiae. Comp. Biochem. Physiol. A 188:49–57
    [Google Scholar]
  62. 62. 
    Horn L, Leips J, Starz-Gaiano M 2014. Phagocytic ability declines with age in adult Drosophila hemocytes. Aging Cell 13:719–28
    [Google Scholar]
  63. 63. 
    Hustert R. 1999. Accessory hemolymph pump in the mesothoracic legs of locusts, (Schistocerca gregaria forskal) (Orthoptera, Acrididae). Int. J. Insect Morphol. Embryol. 28:91–96
    [Google Scholar]
  64. 64. 
    Hustert R, Frisch M, Böhm A, Pass G 2014. A new kind of auxiliary heart in insects: functional morphology and neuronal control of the accessory pulsatile organs of the cricket ovipositor. Front. Zool. 11:43
    [Google Scholar]
  65. 65. 
    Ichikawa T. 2009. Mechanism of hemolymph circulation in the pupal leg of tenebrionid beetle Zophobas atratus. Comp. Biochem. Physiol. A 153:174–80
    [Google Scholar]
  66. 66. 
    Johnson E, Ringo J, Dowse H 1997. Modulation of Drosophila heartbeat by neurotransmitters. J. Comp. Physiol. B 167:89–97
    [Google Scholar]
  67. 67. 
    Jones JC. 1956. A study of normal heart rates in intact Anopheles quadrimaculatus say larvae. J. Exp. Zool. 131:223–33
    [Google Scholar]
  68. 68. 
    Jones JC. 1977. Circulatory System of Insects Springfield, IL: Charles C. Thomas
    [Google Scholar]
  69. 69. 
    Kellner RL, Dettner K. 1996. Differential efficacy of toxic pederin in deterring potential arthropod predators of Paederus (Coleoptera: Staphylinidae) offspring. Oecologia 107:293–300
    [Google Scholar]
  70. 70. 
    Kezos JN, Cabral LG, Wong BD, Khou BK, Oh A et al. 2017. Starvation but not locomotion enhances heart robustness in Drosophila. J. Insect Physiol 99:8–14
    [Google Scholar]
  71. 71. 
    Kiger JA Jr., Natzle JE, Green MM. 2001. Hemocytes are essential for wing maturation in Drosophila melanogaster. PNAS 98:10190–95
    [Google Scholar]
  72. 72. 
    King JG, Hillyer JF. 2012. Infection-induced interaction between the mosquito circulatory and immune systems. PLOS Pathog 8:e1003058
    [Google Scholar]
  73. 73. 
    King JG, Hillyer JF. 2013. Spatial and temporal in vivo analysis of circulating and sessile immune cells in mosquitoes: hemocyte mitosis following infection. BMC Biol 11:55
    [Google Scholar]
  74. 74. 
    Klowden MJ. 2013. Circulatory systems. Physiological Systems in Insects365–413 Amsterdam: Elsevier
    [Google Scholar]
  75. 75. 
    Knapp M, Dobes P, Rericha M, Hyrsl P 2018. Puncture vs. reflex bleeding: Haemolymph composition reveals significant differences among ladybird species (Coleoptera: Coccinellidae), but not between sampling methods. Eur. J. Entomol. 115:1–6
    [Google Scholar]
  76. 76. 
    Kocks C, Cho JH, Nehme N, Ulvila J, Pearson AM et al. 2005. Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123:335–46
    [Google Scholar]
  77. 77. 
    Krenn HW. 2010. Feeding mechanisms of adult Lepidoptera: structure, function, and evolution of the mouthparts. Annu. Rev. Entomol. 55:307–27
    [Google Scholar]
  78. 78. 
    Krenn HW, Pass G. 1993. Wing-hearts in Mecoptera (Insecta). Int. J. Insect Morphol. Embryol. 22:63–76
    [Google Scholar]
  79. 79. 
    Krenn HW, Pass G. 1994. Morphological diversity and phylogenetic analysis of wing circulatory organs in insects, part I: non-Holometabola. Zoology 98:7–22
    [Google Scholar]
  80. 80. 
    Krenn HW, Pass G. 1995. Morphological diversity and phylogenetic analysis of wing circulatory organs in insects, part II: Holometabola. Zoology 98:147–64
    [Google Scholar]
  81. 81. 
    Kronert WA, Bell KM, Viswanathan MC, Melkani GC, Trujillo AS et al. 2018. Prolonged cross-bridge binding triggers muscle dysfunction in a Drosophila model of myosin-based hypertrophic cardiomyopathy. eLife 7:e38064
    [Google Scholar]
  82. 82. 
    Lagerspetz K, Perttunen V. 1962. Effect of temperature on the periodic heart beat reversal and heart rate in Corethra plumicornis. J. Insect Physiol 8:621–25
    [Google Scholar]
  83. 83. 
    Lahondere C, Insausti TC, Paim RM, Luan X, Belev G et al. 2017. Countercurrent heat exchange and thermoregulation during blood-feeding in kissing bugs. eLife 6:e26107
    [Google Scholar]
  84. 84. 
    Lammers K, Abeln B, Husken M, Lehmacher C, Psathaki OE et al. 2017. Formation and function of intracardiac valve cells in the Drosophila heart. J. Exp. Biol. 220:1852–63
    [Google Scholar]
  85. 85. 
    Lange AB, Chan KK, Stay B 1993. Effect of allatostatin and proctolin on antennal pulsatile organ and hindgut muscle in the cockroach, Diploptera punctata. Arch. Insect. Biochem. Physiol. 24:79–92
    [Google Scholar]
  86. 86. 
    League GP, Hillyer JF. 2016. Functional integration of the circulatory, immune, and respiratory systems in mosquito larvae: pathogen killing in the hemocyte-rich tracheal tufts. BMC Biol 14:78
    [Google Scholar]
  87. 87. 
    League GP, Onuh OC, Hillyer JF 2015. Comparative structural and functional analysis of the larval and adult dorsal vessel and its role in hemolymph circulation in the mosquito Anopheles gambiae. J. Exp. Biol 218:370–80
    [Google Scholar]
  88. 88. 
    Lee D, Taufique H, da Silva R, Lange AB 2012. An unusual myosuppressin from the blood-feeding bug Rhodnius prolixus. J. Exp. Biol 215:2088–95
    [Google Scholar]
  89. 89. 
    Lee D, Vanden Broeck J, Lange AB 2013. Identification and expression of the CCAP receptor in the Chagas’ disease vector, Rhodnius prolixus, and its involvement in cardiac control. PLOS ONE 8:e68897
    [Google Scholar]
  90. 90. 
    Lee WK, Socha JJ. 2009. Direct visualization of hemolymph flow in the heart of a grasshopper (Schistocerca americana). BMC Physiol 9:2
    [Google Scholar]
  91. 91. 
    Lehmacher C, Abeln B, Paululat A 2012. The ultrastructure of Drosophila heart cells. Arthropod Struct. Dev. 41:459–74
    [Google Scholar]
  92. 92. 
    Lehmacher C, Tögel M, Pass G, Paululat A 2009. The Drosophila wing hearts consist of syncytial muscle cells that resemble adult somatic muscles. Arthropod Struct. Dev. 38:111–23
    [Google Scholar]
  93. 93. 
    Leodido ACM, Ramalho-Ortigao M, Martins GF 2013. The ultrastructure of the Aedes aegypti heart. Arthropod Struct. Dev. 42:539–50
    [Google Scholar]
  94. 94. 
    Locke M. 1997. Caterpillars have evolved lungs for hemocyte gas exchange. J. Insect Physiol. 44:1–20
    [Google Scholar]
  95. 95. 
    Marco HG, Katali OKH, Gade G 2018. Influence of aminergic and peptidergic substances on heart beat frequency in the stick insect Carausius morosus (Insecta, Phasmatodea). Arch. Insect Biochem. Physiol. 98:e21469
    [Google Scholar]
  96. 96. 
    Markus R, Laurinyecz B, Kurucz E, Honti V, Bajusz I et al. 2009. Sessile hemocytes as a hematopoietic compartment in Drosophila melanogaster. PNAS 106:4805–9
    [Google Scholar]
  97. 97. 
    Marples NM, Vanveelen W, Brakefield PM 1994. The relative importance of color, taste and smell in the protection of an aposematic insect Coccinella septempunctata. Anim. Behav 48:967–74
    [Google Scholar]
  98. 98. 
    Matsushita T, Kuwasawa K, Uchimura K, Ai H, Kurokawa M 2002. Biogenic amines evoke heartbeat reversal in larvae of the sweet potato hornworm, Agrius convolvuli. Comp. Biochem. Physiol. A 133:625–36
    [Google Scholar]
  99. 99. 
    McCann FV. 1970. Physiology of insect hearts. Annu. Rev. Entomol. 15:173–98
    [Google Scholar]
  100. 100. 
    McFarlane JE. 1967. Aging in an adult insect heart. Can. J. Zool. 45:1073–81
    [Google Scholar]
  101. 101. 
    Medioni C, Astier M, Zmojdzian M, Jagla K, Semeriva M 2008. Genetic control of cell morphogenesis during Drosophila melanogaster cardiac tube formation. J. Cell Biol. 182:249–61
    [Google Scholar]
  102. 102. 
    Meyer E. 1931. Über den Blutkreislauf der Ephemeriden. Z. Morphol. Ökol. Tiere 22:1–52
    [Google Scholar]
  103. 103. 
    Miller TA. 1985. Structure and physiology of the circulatory system. In Comprehensive Insect Physiology. , Biochemistry and Pharmacology, Vol. 3 GA Kerkut, LI Gilbert 289–353 Oxford, UK: Pergamon Press
    [Google Scholar]
  104. 104. 
    Miller TA. 1997. Control of circulation in insects. Gen. Pharmacol. 29:23–38
    [Google Scholar]
  105. 105. 
    Molina MR, Cripps RM. 2001. Ostia, the inflow tracts of the Drosophila heart, develop from a genetically distinct subset of cardial cells. Mech. Dev. 109:51–59
    [Google Scholar]
  106. 106. 
    Moreau R, Lavenseau L. 1975. Rôle des organes pulsatiles thoraciques et du cœur pendant l'émergence et l'expansion des ailes des lépidoptères. J. Insect Physiol. 21:1531–34
    [Google Scholar]
  107. 107. 
    Na J, Musselman LP, Pendse J, Baranski TJ, Bodmer R et al. 2013. A Drosophila model of high sugar diet-induced cardiomyopathy. PLOS Genet 9:e1003175
    [Google Scholar]
  108. 108. 
    Nichols R. 2006. FMRFamide-related peptides and serotonin regulate Drosophila melanogaster heart rate: mechanisms and structure requirements. Peptides 27:1130–37
    [Google Scholar]
  109. 109. 
    Nicolson SW. 1976. Diuresis in cabbage white butterfly, Pieris brassicae: water and ion regulation and role of hindgut. J. Insect Physiol. 22:1623–30
    [Google Scholar]
  110. 110. 
    Nutting WL. 1951. A comparative anatomical study of the heart and accessory structures of the orthopteroid insects. J. Morphol. 89:501–97
    [Google Scholar]
  111. 111. 
    Ocorr K, Akasaka T, Bodmer R 2007. Age-related cardiac disease model of Drosophila. Mech. Ageing Dev 128:112–16
    [Google Scholar]
  112. 112. 
    Pacholska-Bogalska J, Szymczak M, Marciniak P, Walkowiak-Nowicka K, Rosinski G 2018. Heart mechanical and hemodynamic parameters of a beetle, Tenebrio molitor, at selected ages. Arch. Insect Biochem. Physiol. 99:e21474
    [Google Scholar]
  113. 113. 
    Paladini A, Takiya DM, Urban JM, Cryan JR 2018. New World spittlebugs (Hemiptera: Cercopidae: Ischnorhininae): dated molecular phylogeny, classification, and evolution of aposematic coloration. Mol. Phylogenet. Evol. 120:321–34
    [Google Scholar]
  114. 114. 
    Pass G. 1985. Gross and fine structure of the antennal circulatory organ in cockroaches (Blattodea, Insecta). J. Morphol. 185:255–68
    [Google Scholar]
  115. 115. 
    Pass G. 1987. The “cercus heart” in stoneflies—a new type of accessory circulatory organ in insects. Naturwissenschaften 74:440–41
    [Google Scholar]
  116. 116. 
    Pass G. 1991. Antennal circulatory organs in Onychophora, Myriapoda and Hexapoda: functional morphology and evolutionary implications. Zoomorphology 110:145–64
    [Google Scholar]
  117. 117. 
    Pass G. 1998. Accessory pulsatile organs. Microscopic Anatomy of Invertebrates F Harrison, M Locke 621–40 New York: Wiley
    [Google Scholar]
  118. 118. 
    Pass G. 2000. Accessory pulsatile organs: evolutionary innovations in insects. Annu. Rev. Entomol. 45:495–518
    [Google Scholar]
  119. 119. 
    Pass G. 2018. Beyond aerodynamics: the critical roles of the circulatory and tracheal systems in maintaining insect wing functionality. Arthropod Struct. Dev. 47:391–407
    [Google Scholar]
  120. 120. 
    Pass G, Agricola H, Birkenbeil H, Penzlin H 1988. Morphology of neurones associated with the antennal heart of Periplaneta americana (Blattodea, Insecta). Cell Tissue Res 253:319–26
    [Google Scholar]
  121. 121. 
    Pass G, Gereben-Krenn B, Merl M, Plant J, Szucsich NU, Tögel M 2006. Phylogenetic relationships of the orders in Hexapoda: contributions from the circulatory organs for a morphological data matrix. Arthropod Syst. Phylog. 64:165–203
    [Google Scholar]
  122. 122. 
    Pass G, Sperk G, Agricola H, Baumann E, Penzlin H 1988. Octopamine in a neurohemal area within the antennal heart of the American cockroach. J. Exp. Biol. 135:495–98
    [Google Scholar]
  123. 123. 
    Pass G, Tögel M, Krenn H, Paululat A 2015. The circulatory organs of insect wings: prime examples for the origin of evolutionary novelties. Zool. Anz. 256:82–95
    [Google Scholar]
  124. 124. 
    Peck DC. 2000. Reflex bleeding in froghoppers (Homoptera: Cercopidae): variation in behavior and taxonomic distribution. Ann. Entomol. Soc. Am. 93:1186–94
    [Google Scholar]
  125. 125. 
    Pendar H, Aviles J, Adjerid K, Schoenewald C, Socha JJ 2019. Functional compartmentalization in the hemocoel of insects. Sci. Rep. 9:6075
    [Google Scholar]
  126. 126. 
    Petschenka G, Agrawal AA. 2016. How herbivores coopt plant defenses: natural selection, specialization, and sequestration. Curr. Opin. Insect Sci. 14:17–24
    [Google Scholar]
  127. 127. 
    Ponzielli R, Astier M, Chartier A, Gallet A, Therond P, Semeriva M 2002. Heart tube patterning in Drosophila requires integration of axial and segmental information provided by the Bithorax Complex genes and hedgehog signaling. Development 129:4509–21
    [Google Scholar]
  128. 128. 
    Predel R. 2001. Peptidergic neurohemal system of an insect: mass spectrometric morphology. J. Comp. Neurol. 436:363–75
    [Google Scholar]
  129. 129. 
    Richards AG. 1963. The effect of temperature on heart-beat frequency in the cockroach, Periplaneta americana. J. Insect Physiol. 9:597–606
    [Google Scholar]
  130. 130. 
    Richards AG. 1963. The ventral diaphragm of insects. J. Morphol. 113:17–47
    [Google Scholar]
  131. 131. 
    Roux O, Vantaux A, Petitclerc F, Orivel J, Dejean A, Billen J 2017. Structural adaptations and mechanism of reflex bleeding in the larvae of the myrmecophilous ladybird Diomus thoracicus. Arthropod Struct. Dev 46:529–36
    [Google Scholar]
  132. 132. 
    Sanger JW, McCann FV. 1968. Ultrastructure of moth alary muscles and their attachment to the heart wall. J. Insect Physiol. 14:1539–40
    [Google Scholar]
  133. 133. 
    Schaub C, Marz J, Reim I, Frasch M 2015. Org-1-dependent lineage reprogramming generates the ventral longitudinal musculature of the Drosophila heart. Curr. Biol. 25:488–94
    [Google Scholar]
  134. 134. 
    Setzu M, Biolchini M, Lilliu A, Manca M, Muroni P et al. 2012. Neuropeptide F peptides act through unique signaling pathways to affect cardiac activity. Peptides 33:230–39
    [Google Scholar]
  135. 135. 
    Shah AP, Nongthomba U, Kelly Tanaka KK, Denton ML, Meadows SM et al. 2011. Cardiac remodeling in Drosophila arises from changes in actin gene expression and from a contribution of lymph gland-like cells to the heart musculature. Mech. Dev. 128:222–33
    [Google Scholar]
  136. 136. 
    Sigle LT, Hillyer JF. 2016. Mosquito hemocytes preferentially aggregate and phagocytose pathogens in the periostial regions of the heart that experience the most hemolymph flow. Dev. Comp. Immunol. 55:90–101
    [Google Scholar]
  137. 137. 
    Sigle LT, Hillyer JF. 2018. Eater and draper are involved in the periostial haemocyte immune response in the mosquito Anopheles gambiae. Insect Mol. Biol 27:429–38
    [Google Scholar]
  138. 138. 
    Sigle LT, Hillyer JF. 2018. Mosquito hemocytes associate with circulatory structures that support intracardiac retrograde hemolymph flow. Front. Physiol. 9:1187
    [Google Scholar]
  139. 139. 
    Sigle LT, Hillyer JF. 2018. Structural and functional characterization of the contractile aorta and associated hemocytes of the mosquito Anopheles gambiae. J. Exp. Biol 221: jeb181107
    [Google Scholar]
  140. 140. 
    Sinclair BJ, Sjursen H. 2001. Cold tolerance of the Antarctic springtail Gomphiocephalus hodgsoni (Collembola, Hypogastruridae). Antarct. Sci. 13:271–79
    [Google Scholar]
  141. 141. 
    Slama K. 2008. Extracardiac haemocoelic pulsations and the autonomic neuroendocrine system (coelopulse) of terrestrial insects. Terr. Arthropod Rev. 1:39–80
    [Google Scholar]
  142. 142. 
    Slama K. 2010. Physiology of heartbeat reversal in adult Drosophila melanogaster (Diptera: Drosophilidae). Eur. J. Entomol. 107:13–31
    [Google Scholar]
  143. 143. 
    Slama K, Lukas J. 2011. Myogenic nature of insect heartbeat and intestinal peristalsis, revealed by neuromuscular paralysis caused by the sting of a braconid wasp. J. Insect Physiol. 57:251–59
    [Google Scholar]
  144. 144. 
    Socha JJ, Forster TD, Greenlee KJ 2010. Issues of convection in insect respiration: insights from synchrotron X-ray imaging and beyond. Respir. Physiol. Neurobiol. 173:Suppl.S65–73
    [Google Scholar]
  145. 145. 
    Socha JJ, Lee WK, Harrison JF, Waters JS, Fezzaa K, Westneat MW 2008. Correlated patterns of tracheal compression and convective gas exchange in a carabid beetle. J. Exp. Biol. 211:3409–20
    [Google Scholar]
  146. 146. 
    Stocks I. 2008. Reflex bleeding (autohemorrhage). Encyclopedia of Entomology JL Capinera 34–41 Berlin: Springer
    [Google Scholar]
  147. 147. 
    Strand MR. 2008. The insect cellular immune response. Insect Sci 15:1–14
    [Google Scholar]
  148. 148. 
    Suggs JM, Jones TH, Murphree SC, Hillyer JF 2016. CCAP and FMRFamide-like peptides accelerate the contraction rate of the antennal accessory pulsatile organs (auxiliary hearts) of mosquitoes. J. Exp. Biol. 219:2388–95
    [Google Scholar]
  149. 149. 
    Sujkowski A, Bazzell B, Carpenter K, Arking R, Wessells RJ 2015. Endurance exercise and selective breeding for longevity extend Drosophila healthspan by overlapping mechanisms. Aging 7:535–52
    [Google Scholar]
  150. 150. 
    Tartes U, Vanatoa A, Kuusik A 2002. The insect abdomen—a heartbeat manager in insects?. Comp. Biochem. Physiol. A 133:611–23
    [Google Scholar]
  151. 151. 
    Tögel M, Pass G, Paululat A 2008. The Drosophila wing hearts originate from pericardial cells and are essential for wing maturation. Dev. Biol. 318:29–37
    [Google Scholar]
  152. 152. 
    Verlinden H, Gijbels M, Lismont E, Lenaerts C, Vanden Broeck J, Marchal E 2015. The pleiotropic allatoregulatory neuropeptides and their receptors: a mini-review. J. Insect Physiol. 80:2–14
    [Google Scholar]
  153. 153. 
    Villalobos-Sambucaro MJ, Diambra LA, Noriega FG, Ronderos JR 2016. Allatostatin-C antagonizes the synergistic myostimulatory effect of allatotropin and serotonin in Rhodnius prolixus (Stal). Gen. Comp. Endocrinol. 233:1–7
    [Google Scholar]
  154. 154. 
    Villalobos-Sambucaro MJ, Lorenzo-Figueiras AN, Riccillo FL, Diambra LA, Noriega FG, Ronderos JR 2015. Allatotropin modulates myostimulatory and cardioacceleratory activities in Rhodnius prolixus (Stal). PLOS ONE 10:e0124131
    [Google Scholar]
  155. 155. 
    Vogler G, Bodmer R. 2015. Cellular mechanisms of Drosophila heart morphogenesis. J. Cardiovasc. Dev. Dis. 2:2–16
    [Google Scholar]
  156. 156. 
    Wagner GP. 2015. Evolutionary innovations and novelties: Let us get down to business!. Zool. Anz. 256:75–81
    [Google Scholar]
  157. 157. 
    Wagner GP, Lynch VJ. 2010. Evolutionary novelties. Curr. Biol. 20:R48–52
    [Google Scholar]
  158. 158. 
    Wasielewski O, Skonieczna M. 2008. Pleiotropic effects of the neuropeptides CCAP and myosuppressin in the beetle, Tenebrio molitor L. J. Comp. Physiol. B 178:877–85
    [Google Scholar]
  159. 159. 
    Wasserthal LT. 1975. The role of butterfly wings in regulation of body temperature. J. Insect Physiol. 21:1921–30
    [Google Scholar]
  160. 160. 
    Wasserthal LT. 1980. Oscillating hemolymph circulation in the butterfly Papilio machaon L revealed by contact thermography and photocell measurements. J. Comp. Physiol. 139:145–63
    [Google Scholar]
  161. 161. 
    Wasserthal LT. 1981. Oscillating haemolymph ‘circulation' and discontinuous tracheal ventilation in the giant silk moth Attacus atlas L. J. Comp. Physiol. 145:1–15
    [Google Scholar]
  162. 162. 
    Wasserthal LT. 1996. Interaction of circulation and tracheal ventilation in holometabolous insects. Adv. Insect Physiol. 26:297–351
    [Google Scholar]
  163. 163. 
    Wasserthal LT. 2007. Drosophila flies combine periodic heartbeat reversal with a circulation in the anterior body mediated by a newly discovered anterior pair of ostial valves and ‘venous’ channels. J. Exp. Biol. 210:3707–19
    [Google Scholar]
  164. 164. 
    Wasserthal LT. 1999. Functional morphology of the heart and of a new cephalic pulsatile organ in the blowfly Calliphora vicina (Diptera: Calliphoridae) and their roles in hemolymph transport and tracheal ventilation. Int. J. Insect Morphol. 28:111–29
    [Google Scholar]
  165. 165. 
    Wasserthal LT. 2012. Influence of periodic heartbeat reversal and abdominal movements on hemocoelic and tracheal pressure in resting blowflies Calliphora vicina. J. Exp. Biol 215:362–73
    [Google Scholar]
  166. 166. 
    Wasserthal LT. 2014. Periodic heartbeat reversals cause cardiogenic inspiration and expiration with coupled spiracle leakage in resting blowflies, Calliphora vicina. J. Exp. Biol. 217:1543–54
    [Google Scholar]
  167. 167. 
    Wasserthal LT. 2015. Flight-motor-driven respiratory airflow increases tracheal oxygen to nearly atmospheric level in blowflies (Calliphora vicina). J. Exp. Biol. 218:2201–10
    [Google Scholar]
  168. 168. 
    Wasserthal LT, Cloetens P, Fink RH, Wasserthal LK 2018. X-ray computed tomography study of the flight-adapted tracheal system in the blowfly Calliphora vicina analysing the ventilation mechanism and flow-directing valves. J. Exp. Biol. 221: jeb176024
    [Google Scholar]
  169. 169. 
    Waters JS, Lee WK, Westneat MW, Socha JJ 2013. Dynamics of tracheal compression in the horned passalus beetle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304:R621–27
    [Google Scholar]
  170. 170. 
    Weavers H, Prieto-Sanchez S, Grawe F, Garcia-Lopez A, Artero R et al. 2009. The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm. Nature 457:322–26
    [Google Scholar]
  171. 171. 
    Wen DT, Zheng L, Yang F, Li HZ, Hou WQ 2018. Endurance exercise prevents high-fat-diet induced heart and mobility premature aging and dsir2 expression decline in aging Drosophila. Oncotarget 9:7298–311
    [Google Scholar]
  172. 172. 
    Whitten MMA, Coates CJ. 2017. Re-evaluation of insect melanogenesis research: views from the dark side. Pigment Cell Melanoma Res 30:386–401
    [Google Scholar]
  173. 173. 
    Wirkner CS, Tögel M, Pass G 2013. The arthropod circulatory system. Arthropod Biology and Evolution: Molecules, Development, Morphology A Minelli, G Boxshall, G Fusco 343–91 Berlin: Springer
    [Google Scholar]
  174. 174. 
    Wolf MJ. 2012. Modeling dilated cardiomyopathies in Drosophila. Trends Cardiovasc. Med 22:55–61
    [Google Scholar]
  175. 175. 
    Yan Y, Hillyer JF. 2019. Complement-like proteins TEP1, TEP3 and TEP4 are positive regulators of periostial hemocyte aggregation in the mosquito Anopheles gambiae. Insect Biochem. Mol. Biol 107:1–9
    [Google Scholar]
  176. 176. 
    Zarndt R, Walls SM, Ocorr K, Bodmer R 2017. Reduced cardiac calcineurin expression mimics long-term hypoxia-induced heart defects in Drosophila. Circ. Cardiovasc. Genet 10:e001706
    [Google Scholar]
  177. 177. 
    Zhu S, Han Z, Luo Y, Chen Y, Zeng Q et al. 2017. Molecular mechanisms of heart failure: insights from Drosophila. Heart Fail. Rev 22:91–98
    [Google Scholar]
  178. 178. 
    Zornik E, Paisley K, Nichols R 1999. Neural transmitters and a peptide modulate Drosophila heart rate. Peptides 20:45–51
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011019-025003
Loading
/content/journals/10.1146/annurev-ento-011019-025003
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error