1932

Abstract

Chikungunya virus (CHIKV), a re-emerging mosquito-borne arbovirus, has caused millions of cases of severe, often chronic arthralgia during recent outbreaks. In Africa, circulation in sylvatic, enzootic cycles involves several species of arboreal mosquito vectors that transmit among diverse nonhuman primates and possibly other amplifying hosts. Most disease occurs when CHIKV emerges into a human-amplified cycle involving and sometimes transmission and extensive spread via travelers. Epidemiologic studies suggest that the transition from enzootic to epidemic cycles begins when people are infected via spillover in forests. However, efficient human amplification likely only ensues far from enzootic habitats where peridomestic vector and human densities are adequate. Recent outbreaks have been enhanced by mutations that adapt CHIKV for more efficient infection of , allowing for geographic expansion. However, epistatic interactions, sometimes resulting from founder effects following point-source human introductions, have profound effects on transmission efficiency, making CHIKV emergence somewhat unpredictable.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011019-025207
2020-01-07
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/ento/65/1/annurev-ento-011019-025207.html?itemId=/content/journals/10.1146/annurev-ento-011019-025207&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Agarwal A, Dash PK, Singh AK, Sharma S, Gopalan N et al. 2014. Evidence of experimental vertical transmission of emerging novel ECSA genotype of chikungunya virus in Aedes aegypti. PLOS Negl. Trop. Dis 8:e2990
    [Google Scholar]
  2. 2. 
    Agarwal A, Sharma AK, Sukumaran D, Parida M, Dash PK 2016. Two novel epistatic mutations (E1:K211E and E2:V264A) in structural proteins of chikungunya virus enhance fitness in Aedes aegypti. Virology 497:59–68
    [Google Scholar]
  3. 3. 
    Akinola MT, El-Yuguda AD, Bukbuk DN, Baba SS 2017. Prevalence of IgG and IgM antibodies to chikungunya virus among outpatients with febrile illness attending University of Maiduguri Teaching Hospital, Maiduguri, Borno State, Nigeria. Afr. J. Mirobiol. Res. 11:306–11
    [Google Scholar]
  4. 4. 
    Althouse BM, Guerbois M, Cummings DAT, Diop OM, Faye O et al. 2018. Role of monkeys in the sylvatic cycle of chikungunya virus in Senegal. Nat. Commun. 9:1046
    [Google Scholar]
  5. 5. 
    Apandi Y, Lau SK, Izmawati N, Amal NM, Faudzi Y et al. 2010. Identification of chikungunya virus strains circulating in Kelantan, Malaysia in 2009. Southeast Asian J. Trop. Med. Public Health 41:1374–80
    [Google Scholar]
  6. 6. 
    Attoh-Touré HEK, Coulibaly A, Bénié BVJ, Aka LN, Tiembre I, Douba AJT-S 2008. Aspects cliniques et épidémiologiques des infections ávirus chikungunya dans l'ouest forestier de la Cote d'Ivoire. Cah Santé Publique 7:1
    [Google Scholar]
  7. 7. 
    Azar SR, Roundy CM, Rossi SL, Huang JH, Leal G et al. 2017. Differential vector competency of Aedes albopictus populations from the Americas for zika virus. Am. J. Trop. Med. Hyg. 97:330–39
    [Google Scholar]
  8. 8. 
    Baba M, Logue CH, Oderinde B, Abdulmaleek H, Williams J et al. 2013. Evidence of arbovirus co-infection in suspected febrile malaria and typhoid patients in Nigeria. J. Infect. Dev. Ctries 7:51–59
    [Google Scholar]
  9. 9. 
    Bagny L, Delatte H, Quilici S, Fontenille D 2009. Progressive decrease in Aedes aegypti distribution in Reunion Island since the 1900s. J. Med. Entomol. 46:1541–45
    [Google Scholar]
  10. 10. 
    Banerjee K, Mourja DT, Malunjkar AS 1988. Susceptibility & transmissibility of different geographical strains of Aedes aegypti mosquitoes to chikungunya virus. Ind. J. Med. Res. 87:134–38
    [Google Scholar]
  11. 11. 
    Bosco-Lauth AM, Han S, Hartwig A, Bowen RA 2015. Development of a hamster model for chikungunya virus infection and pathogenesis. PLOS ONE 10:e0130150
    [Google Scholar]
  12. 12. 
    Bosco-Lauth AM, Nemeth NM, Kohler DJ, Bowen RA 2016. Viremia in North American mammals and birds after experimental infection with chikungunya viruses. Am. J. Trop. Med. Hyg. 94:504–6
    [Google Scholar]
  13. 13. 
    Bres P, Camicas JL, Cornet M, Robin Y, Taufflieb R 1969. Epidemiology of arbovirus diseases in Senegal. Bull. Soc. Pathol. Exot. 62:253–59
    [Google Scholar]
  14. 14. 
    Bres P, Chambon L, Pape Y, Michel R 1963. Les arbovirus au Sénégal. 2: isolement de plusieurs souches. Bull. Soc. Méd. Afr. Noire Lang. Fr. 8:710–12
    [Google Scholar]
  15. 15. 
    Brown JE, Evans BR, Zheng W, Obas V, Barrera-Martinez L et al. 2014. Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito. Evolution 68:514–25
    [Google Scholar]
  16. 16. 
    Brown JE, McBride CS, Johnson P, Ritchie S, Paupy C et al. 2011. Worldwide patterns of genetic differentiation imply multiple “domestications” of Aedes aegypti, a major vector of human diseases. Proc. Biol. Sci. 278:2446–54
    [Google Scholar]
  17. 17. 
    Calba C, Guerbois-Galla M, Franke F, Jeannin C, Auzet-Caillaud M et al. 2017. Preliminary report of an autochthonous chikungunya outbreak in France, July to September 2017. Euro Surveill 22:00647
    [Google Scholar]
  18. 18. 
    Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T 2006. Bats: important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 19:531–45
    [Google Scholar]
  19. 19. 
    Carey DE. 1971. Chikungunya and dengue: a case of mistaken identity?. J. Hist. Med. Allied Sci. 26:243–62
    [Google Scholar]
  20. 20. 
    Cassadou S, Boucau S, Petit-Sinturel M, Huc P, Leparc-Goffart I, Ledrans M 2014. Emergence of chikungunya fever on the French side of Saint Martin Island, October to December 2013. Euro Surveill 19:20752
    [Google Scholar]
  21. 21. 
    Chen R, Puri V, Fedorova N, Lin D, Hari KL et al. 2016. Comprehensive genome scale phylogenetic study provides new insights on the global expansion of chikungunya virus. J. Virol. 90:10600–11
    [Google Scholar]
  22. 22. 
    Chen R, Wang E, Tsetsarkin KA, Weaver SC 2013. Chikungunya virus 3′ untranslated region: adaptation to mosquitoes and a population bottleneck as major evolutionary forces. PLOS Pathog 9:e1003591
    [Google Scholar]
  23. 23. 
    Chompoosri J, Thavara U, Tawatsin A, Boonserm R, Phumee A et al. 2016. Vertical transmission of Indian Ocean Lineage of chikungunya virus in Aedes aegypti and Aedes albopictus mosquitoes. Parasites Vectors 9:227
    [Google Scholar]
  24. 24. 
    Chretien JP, Anyamba A, Bedno SA, Breiman RF, Sang R et al. 2007. Drought-associated chikungunya emergence along coastal East Africa. Am. J. Trop. Med. Hyg. 76:405–7
    [Google Scholar]
  25. 25. 
    Coffey LL, Failloux AB, Weaver SC 2014. Chikungunya virus-vector interactions. Viruses 6:4628–63
    [Google Scholar]
  26. 26. 
    CRORA 2013. Virus d'Afrique (Base de Données) Rep., WHO Collab. Cent. Arbovirus Haemorr. Fever Ref., World Health Organ Geneva:
    [Google Scholar]
  27. 27. 
    de Lamballerie X, Leroy E, Charrel RN, Ttsetsarkin K, Higgs S, Gould EA 2008. Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come. ? Virol. J. 5:33
    [Google Scholar]
  28. 28. 
    Delatte H, Dehecq JS, Thiria J, Domerg C, Paupy C, Fontenille D 2008. Geographic distribution and developmental sites of Aedes albopictus (Diptera: Culicidae) during a chikungunya epidemic event. Vector-Borne Zoonotic Dis 8:25–34
    [Google Scholar]
  29. 29. 
    Delisle E, Rousseau C, Broche B, Leparc-Goffart I, L'Ambert G et al. 2015. Chikungunya outbreak in Montpellier, France, September to October 2014. Euro Surveill 20:21108
    [Google Scholar]
  30. 30. 
    Demanou M, Antonio-Nkondjio C, Ngapana E, Rousset D, Paupy C et al. 2010. Chikungunya outbreak in a rural area of Western Cameroon in 2006: a retrospective serological and entomological survey. BMC Res. Notes 3:128
    [Google Scholar]
  31. 31. 
    Diagne CT, Faye O, Guerbois M, Knight R, Diallo D et al. 2014. Vector competence of Aedes aegypti and Aedes vittatus (Diptera: Culicidae) from Senegal and Cape Verde archipelago for West African lineages of chikungunya virus. Am. J. Trop. Med. Hyg. 91:635–41
    [Google Scholar]
  32. 32. 
    Diallo D, Dia I, Diagne CT, Gaye A, Diallo M 2018. Chikungunya and zika viruses in Africa. Chikungunya and Zika Viruses: Global Emerging Health Threats ST Higgs, DL Vanlandingham, AM Powers 87–133 London: Academic
    [Google Scholar]
  33. 33. 
    Diallo D, Diagne CT, Hanley KA, Sall AA, Buenemann M et al. 2012. Larval ecology of mosquitoes in sylvatic arbovirus foci in southeastern Senegal. Parasites Vectors 5:286
    [Google Scholar]
  34. 34. 
    Diallo D, Sall AA, Buenemann M, Chen R, Faye O et al. 2012. Landscape ecology of sylvatic chikungunya virus and mosquito vectors in southeastern Senegal. PLOS Negl. Trop. Dis. 6:e1649
    [Google Scholar]
  35. 35. 
    Diallo D, Sall AA, Diagne CT, Faye O, Faye O et al. 2014. Zika virus emergence in mosquitoes in southeastern Senegal, 2011. PLOS ONE 9:e109442
    [Google Scholar]
  36. 36. 
    Diallo M, Thonnon J, Traore-Lamizana M, Fontenille D 1999. Vectors of chikungunya virus in Senegal: current data and transmission cycles. Am. J. Trop. Med. Hyg. 60:281–86
    [Google Scholar]
  37. 37. 
    Diaz-Gonzalez EE, Kautz TF, Dorantes-Delgado A, Malo-Garcia IR, Laguna-Aguilar M et al. 2015. First report of Aedes aegypti transmission of chikungunya virus in the Americas. Am. J. Trop. Med. Hyg. 93:1325–29
    [Google Scholar]
  38. 38. 
    Dong S, Balaraman V, Kantor AM, Lin J, Grant DG et al. 2017. Chikungunya virus dissemination from the midgut of Aedes aegypti is associated with temporal basal lamina degradation during bloodmeal digestion. PLOS Negl. Trop. Dis. 11:e0005976
    [Google Scholar]
  39. 39. 
    Dzul-Manzanilla F, Martinez NE, Cruz-Nolasco M, Gutierrez-Castro C, Lopez-Damian L et al. 2016. Evidence of vertical transmission and co-circulation of chikungunya and dengue viruses in field populations of Aedes aegypti (L.) from Guerrero, Mexico. Trans. R. Soc. Trop. Med. Hyg. 110:141–44
    [Google Scholar]
  40. 40. 
    Failloux AB, Vazeille M, Rodhain F 2002. Geographic genetic variation in populations of the dengue virus vector Aedes aegypti. J. Mol. Evol 55:653–63
    [Google Scholar]
  41. 41. 
    Gerardin P, Samperiz S, Ramful D, Boumahni B, Bintner M et al. 2014. Neurocognitive outcome of children exposed to perinatal mother-to-child chikungunya virus infection: the CHIMERE cohort study on Reunion Island. PLOS Negl. Trop. Dis. 8:e2996
    [Google Scholar]
  42. 42. 
    Gilotra SK, Bhattacharya NC. 1968. Mosquito vectors of dengue–chikungunya viruses in a rural area near Calcutta. Bull. Calcutta School Trop. Med. 16:41–42
    [Google Scholar]
  43. 43. 
    Grandadam M, Caro V, Plumet S, Thiberge JM, Souares Y et al. 2011. Chikungunya virus, southeastern France. Emerg. Infect. Dis. 17:910–13
    [Google Scholar]
  44. 44. 
    Grard G, Caron M, Mombo IM, Nkoghe D, Mboui Ondo S et al. 2014. Zika virus in Gabon (Central Africa)—2007: a new threat from Aedes albopictus?. PLOS Negl. Trop. Dis. 8:e2681
    [Google Scholar]
  45. 45. 
    Gubler DJ. 2011. Dengue, urbanization and globalization: the unholy trinity of the 21(st) century. Trop. Med. Health 39:3–11
    [Google Scholar]
  46. 46. 
    Guerbois M, Fernandez-Salas I, Azar SR, Danis-Lozano R, Alpuche-Aranda CM et al. 2016. Outbreak of zika virus infection, Chiapas State, Mexico, 2015, and first confirmed transmission by Aedes aegypti mosquitoes in the Americas. J. Infect. Dis. 214:1349–56
    [Google Scholar]
  47. 47. 
    Halstead SB. 2015. Reappearance of chikungunya, formerly called dengue, in the Americas. Emerg Infect. Dis. 21:557–61
    [Google Scholar]
  48. 48. 
    Halstead SB, Udomsakdi S. 1966. Vertebrate hosts of chikungunya virus. Bull. World Health Organ. 35:89
    [Google Scholar]
  49. 49. 
    Halstead SB, Udomsakdi S, Scanlon JE, Rohitayodhin S 1969. Dengue and chikungunya virus infection in man in Thailand, 1962–1964. V. Epidemiologic observations outside Bangkok. Am. J. Trop. Med. Hyg. 18:1022–33
    [Google Scholar]
  50. 50. 
    Hawley WA. 1988. The biology of Aedes albopictus. J. Am. Mosq. Control Assoc. Suppl 1:1–39
    [Google Scholar]
  51. 51. 
    Inoue S, Morita K, Matias RR, Tuplano JV, Resuello RR et al. 2003. Distribution of three arbovirus antibodies among monkeys (Macaca fascicularis) in the Philippines. J. Med. Primatol. 32:89–94
    [Google Scholar]
  52. 52. 
    Jain J, Kushwah RBS, Singh SS, Sharma A, Adak T et al. 2016. Evidence for natural vertical transmission of chikungunya viruses in field populations of Aedes aegypti in Delhi and Haryana states in India: a preliminary report. Acta Trop 162:46–55
    [Google Scholar]
  53. 53. 
    Jentes ES, Robinson J, Johnson BW, Conde I, Sakouvougui Y et al. 2010. Acute arboviral infections in Guinea, West Africa, 2006. Am. J. Trop. Med. Hyg. 83:388–94
    [Google Scholar]
  54. 54. 
    Jupp PG. 2005. Mosquitoes as vectors of human disease in South Africa. South Afr. Fam. Pract. 47:68–72
    [Google Scholar]
  55. 55. 
    Jupp PG, McIntosh BM. 1988. Chikungunya virus disease. The Arbovirus: Epidemiology and Ecology TP Monath 137–57 Boca Raton, FL: CRC Press
    [Google Scholar]
  56. 56. 
    Kading RC, Borland EM, Cranfield M, Powers AM 2013. Prevalence of antibodies to alphaviruses and flaviviruses in free-ranging game animals and nonhuman primates in the greater Congo basin. J. Wildl. Dis. 49:587–99
    [Google Scholar]
  57. 57. 
    Kalunda M, Lwanga-Ssozi C, Lule M, Mukuye A 1985. Isolation of chikungunya and pongola viruses from patients in Uganda. Trans. R. Soc. Trop. Med. Hyg. 79:567
    [Google Scholar]
  58. 58. 
    Kamal M, Kenawy MA, Rady MH, Khaled AS, Samy AM 2018. Mapping the global potential distributions of two arboviral vectors Aedes aegypti and Ae. albopictus under changing climate. PLOS ONE 13:e0210122
    [Google Scholar]
  59. 59. 
    Karabatsos N. 1985. International Catalog of Arboviruses Including Certain Other Viruses of Vertebrates San Antonio, TX: Am. Soc. Trop. Med. Hyg.
    [Google Scholar]
  60. 60. 
    Kramer LD, Ciota AT. 2015. Dissecting vectorial capacity for mosquito-borne viruses. Curr. Opin. Virol. 15:112–18
    [Google Scholar]
  61. 61. 
    Lambrechts L, Scott TW, Gubler DJ 2010. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLOS Negl. Trop. Dis. 4:e646
    [Google Scholar]
  62. 62. 
    Leroy EM, Nkoghe D, Ollomo B, Nze-Nkogue C, Becquart P et al. 2009. Concurrent chikungunya and dengue virus infections during simultaneous outbreaks, Gabon, 2007. Emerg Infect. Dis. 15:591–93
    [Google Scholar]
  63. 63. 
    Liew C, Curtis CF. 2004. Horizontal and vertical dispersal of dengue vector mosquitoes, Aedes aegypti and Aedes albopictus, in Singapore. Med. Vet. Entomol. 18:351–60
    [Google Scholar]
  64. 64. 
    Lounibos LP. 2002. Invasions by insect vectors of human disease. Annu. Rev. Entomol. 47:233–66
    [Google Scholar]
  65. 65. 
    MacDonald G. 1957. The Epidemiology and Control of Malaria Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  66. 66. 
    Mangiafico JA. 1971. Chikungunya virus infection and transmission in five species of mosquito. Am. J. Trop. Med. Hyg. 20:642–45
    [Google Scholar]
  67. 67. 
    Marchette NJ, Rudnick A, Garcia R, MacVean DW 1978. Alphaviruses in Peninusular Malaysia: I. Virus isolations and animal serology. Southeast Asian J. Trop. Med. Public Health 9:317–29
    [Google Scholar]
  68. 68. 
    Mascarenhas M, Garasia S, Berthiaume P, Corrin T, Greig J et al. 2018. A scoping review of published literature on chikungunya virus. PLOS ONE 13:e0207554
    [Google Scholar]
  69. 69. 
    Mathiot CC, Gonzalez JP, Georges AJ 1988. Current problems of arboviruses in central Africa. Bull. Soc. Pathol. Exot. 81:396–401
    [Google Scholar]
  70. 70. 
    Mavale M, Parashar D, Sudeep A, Gokhale M, Ghodke Y et al. 2010. Venereal transmission of chikungunya virus by Aedes aegypti mosquitoes (Diptera: Culicidae). Am. J. Trop. Med. Hyg. 83:1242–44
    [Google Scholar]
  71. 71. 
    McClelland GA. 1974. A worldwide survey of variation in scale pattern of the abdominal tergum of Aedes aegypti (L.) (Diptera: Culicidae). Trans. R. Entomol. Soc. Lond. 126:239–59
    [Google Scholar]
  72. 72. 
    McCrae AW, Henderson BE, Kirya BG, Sempala SD 1971. Chikungunya virus in the Entebbe area of Uganda: isolations and epidemiology. Trans. R. Soc. Trop. Med. Hyg. 65:152–68
    [Google Scholar]
  73. 73. 
    McIntosh BM, Paterson HE, Donaldson JM, De Sousa J 1963. Chikungunya virus: viral susceptibility and transmission studies with some vertebrates and mosquitoes. S. Afr. J. Med. Sci. 28:45–52
    [Google Scholar]
  74. 74. 
    McIntosh BM, Paterson HE, McGillivray G, Desousa J 1964. Further studies on the chikungunya outbreak in Southern Rhodesia in 1962. I. Mosquitoes, wild primates and birds in relation to the epidemic. Ann. Trop. Med. Parasitol. 58:45–51
    [Google Scholar]
  75. 75. 
    Mier-Y-Teran-Romero L, Tatem AJ, Johansson MA 2017. Mosquitoes on a plane: Disinsection will not stop the spread of vector-borne pathogens, a simulation study. PLOS Negl. Trop. Dis. 11:e0005683
    [Google Scholar]
  76. 76. 
    Monath TP, Vasconcelos PF. 2015. Yellow fever. J. Clin. Virol. 64:160–73
    [Google Scholar]
  77. 77. 
    Monlun E, Zeller H, Le Guenno B, Traore-Lamizana M, Hervy JP et al. 1993. Surveillance of the circulation of arbovirus of medical interest in the region of eastern Senegal. Bull. Soc. Pathol. Exot. 86:21–28
    [Google Scholar]
  78. 78. 
    Moore DL, Reddy S, Akinkugbe FM, Lee VH, David-West TS et al. 1974. An epidemic of chikungunya fever at Ibadan, Nigeria, 1969. Ann. Trop. Med. Parasitol. 68:59–68
    [Google Scholar]
  79. 79. 
    Mourya DT, Malunjkar AS, Banerjee K 1987. Susceptibility & transmissibility of Aedes aegypti to four strains of chikungunya virus. Ind. J. Med. Res. 86:185–90
    [Google Scholar]
  80. 80. 
    Mourya DT, Yadav P. 2006. Vector biology of dengue & chikungunya viruses. Ind. J. Med. Res. 124:475–80
    [Google Scholar]
  81. 81. 
    Niyas KP, Abraham R, Unnikrishnan RN, Mathew T, Nair S et al. 2010. Molecular characterization of chikungunya virus isolates from clinical samples and adult Aedes albopictus mosquitoes emerged from larvae from Kerala, South India. Virol. J. 7:189
    [Google Scholar]
  82. 82. 
    Pastorino B, Muyembe-Tamfum JJ, Bessaud M, Tock F, Tolou H et al. 2004. Epidemic resurgence of chikungunya virus in Democratic Republic of the Congo: identification of a new central African strain. J. Med. Virol. 74:277–82
    [Google Scholar]
  83. 83. 
    Paul SD, Singh KR. 1968. Experimental infection of Macaca radiata with chikungunya virus and transmission of virus by mosquitoes. Ind. J. Med. Res. 56:802–11
    [Google Scholar]
  84. 84. 
    Peiris JS, Dittus WP, Ratnayake CB 1993. Seroepidemiology of dengue and other arboviruses in a natural population of toque macaques (Macaca sinica) at Polonnaruwa, Sri Lanka. J. Med. Primatol. 22:240–45
    [Google Scholar]
  85. 85. 
    Peyrefitte CN, Rousset D, Pastorino BA, Pouillot R, Bessaud M et al. 2007. Chikungunya virus, Cameroon, 2006. Emerg. Infect. Dis. 13:768–71
    [Google Scholar]
  86. 86. 
    Pialoux G, Gauzere BA, Jaureguiberry S, Strobel M 2007. Chikungunya, an epidemic arbovirosis. Lancet Infect. Dis. 7:319–27
    [Google Scholar]
  87. 87. 
    Pile JC, Henchal EA, Christopher GW, Steele KE, Pavlin JA 1999. Chikungunya in a North American traveler. J. Travel Med. 6:137–39
    [Google Scholar]
  88. 88. 
    Pistone T, Ezzedine K, Boisvert M, Receveur MC, Schuffenecker I et al. 2009. Cluster of chikungunya virus infection in travelers returning from Senegal, 2006. J. Travel Med. 16:286–88
    [Google Scholar]
  89. 89. 
    Platt KB, Linthicum KJ, Myint KS, Innis BL, Lerdthusnee K, Vaughn DW 1997. Impact of dengue virus infection on feeding behavior of Aedes aegypti. Am. J. Trop. Med. Hyg 57:119–25
    [Google Scholar]
  90. 90. 
    Powell JR, Tabachnick WJ, Arnold J 1980. Genetics and the origin of a vector population: Aedes aegypti, a case study. Science 208:1385–87
    [Google Scholar]
  91. 91. 
    Powers AM, Brault AC, Tesh RB, Weaver SC 2000. Re-emergence of chikungunya and o'nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J. Gen. Virol. 81:471–79
    [Google Scholar]
  92. 92. 
    Powers AM, Logue CH. 2007. Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J. Gen. Virol. 88:2363–77
    [Google Scholar]
  93. 93. 
    Queyriaux B, Simon F, Grandadam M, Michel R, Tolou H, Boutin JP 2008. Clinical burden of chikungunya virus infection. Lancet Infect. Dis. 8:2–3
    [Google Scholar]
  94. 94. 
    Rao TR. 1966. Recent epidemics caused by chikungunya virus in India, 1963–1965. Sci. Cult. 32:215–-20
    [Google Scholar]
  95. 95. 
    Ratsitorahina M, Harisoa J, Ratovonjato J, Biacabe S, Reynes JM et al. 2008. Outbreak of dengue and chikungunya fevers, Toamasina, Madagascar, 2006. Emerg Infect. Dis. 14:1135–37
    [Google Scholar]
  96. 96. 
    Reiter P, Amador MA, Anderson RA, Clark GG 1995. Short report: dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs. Am. J. Trop. Med. Hyg. 52:177–79
    [Google Scholar]
  97. 97. 
    Reiter P, Lathrop S, Bunning M, Biggerstaff B, Singer D et al. 2003. Texas lifestyle limits transmission of dengue virus. Emerg. Infect. Dis. 9:86–89
    [Google Scholar]
  98. 98. 
    Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC et al. 2007. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370:1840–46
    [Google Scholar]
  99. 99. 
    Rezza G, Weaver SC. 2019. Chikungunya as a paradigm for emerging viral diseases: Evaluating disease impact and hurdles to vaccine development. PLOS Negl. Trop. Dis. 13:e0006919
    [Google Scholar]
  100. 100. 
    Robert V, Lhuillier M, Meunier D, Sarthou JL, Monteny N et al. 1993. Yellow fever virus, dengue 2 and other arboviruses isolated from mosquitos, in Burkina Faso, from 1983 to 1986: Entomological and epidemiological considerations. Bull. Soc. Pathol. Exot. 86:90–100
    [Google Scholar]
  101. 101. 
    Robin Y, Bres P. 1969. Arboviruses in Senegal: current status. Bull. Soc. Med. Afr. Noire Lang. Fr. 14:722–28
    [Google Scholar]
  102. 102. 
    Rodhain F, Gonzalez JP, Mercier E, Helynck B, Larouze B, Hannoun C 1989. Arbovirus infections and viral haemorrhagic fevers in Uganda: a serological survey in Karamoja district, 1984. Trans. R. Soc. Trop. Med. Hyg. 83:851–54
    [Google Scholar]
  103. 103. 
    Ross RW. 1956. The Newala epidemic. III. The virus: isolation, pathogenic properties and relationship to the epidemic. J. Hyg. 54:177–91
    [Google Scholar]
  104. 104. 
    Saluzzo JF, Cornet M, Digoutte JP 1983. Outbreak of a Chikungunya virus epidemic in western Senegal in 1982. Dakar Med 28:497–500
    [Google Scholar]
  105. 105. 
    Saluzzo JF, Gonzalez JP, Herve JP, Georges AJ 1980. Epidemiological study of arboviruses in the Central African Republic: demonstration of Chikungunya virus during 1978 and 1979. Bull. Soc. Pathol. Exot. 73:390–99
    [Google Scholar]
  106. 106. 
    Sam IC, Chua CL, Rovie-Ryan JJ, Fu JY, Tong C et al. 2015. Chikungunya virus in Macaques, Malaysia. Emerg. Infect. Dis. 21:1683–85
    [Google Scholar]
  107. 107. 
    Schmidt WP, Suzuki M, Thiem VD, White RG, Tsuzuki A et al. 2011. Population density, water supply, and the risk of dengue fever in Vietnam: cohort study and spatial analysis. PLOS Med 8:e1001082
    [Google Scholar]
  108. 108. 
    Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L et al. 2006. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLOS Med 3:e263
    [Google Scholar]
  109. 109. 
    Simard F, Nchoutpouen E, Toto JC, Fontenille D 2005. Geographic distribution and breeding site preference of Aedes albopictus and Aedes aegypti (Diptera: culicidae) in Cameroon, Central Africa. J. Med. Entomol. 42:726–31
    [Google Scholar]
  110. 110. 
    Smith CE. 1956. The history of dengue in tropical Asia and its probable relationship to the mosquito Aedes aegypti. J. Trop. Med. Hyg 59:243–51
    [Google Scholar]
  111. 111. 
    Soumahoro MK, Boelle PY, Gauzere BA, Atsou K, Pelat C et al. 2011. The chikungunya epidemic on La Reunion Island in 2005–2006: a cost-of-illness study. PLOS Negl. Trop. Dis. 5:e1197
    [Google Scholar]
  112. 112. 
    Souza TML, Vieira YR, Delatorre E, Barbosa-Lima G, Luiz RLF et al. 2019. Emergence of the East-Central-South-African genotype of chikungunya virus in Brazil and the city of Rio de Janeiro may have occurred years before surveillance detection. Sci. Rep. 9:2760
    [Google Scholar]
  113. 113. 
    Sow A, Faye O, Diallo M, Diallo D, Chen R et al. 2018. Chikungunya outbreak in Kedougou, Southeastern Senegal in 2009–2010. Open Forum Infect. Dis. 5: ofx259
    [Google Scholar]
  114. 114. 
    Stapleford KA, Moratorio G, Henningsson R, Chen R, Matheus S et al. 2016. Whole-genome sequencing analysis from the chikungunya virus Caribbean outbreak reveals novel evolutionary genomic elements. PLOS Negl. Trop. Dis. 10:e0004402
    [Google Scholar]
  115. 115. 
    Staples JE, Breiman RF, Powers AM 2009. Chikungunya fever: an epidemiological review of a re-emerging infectious disease. Clin. Infect. Dis. 49:942–48
    [Google Scholar]
  116. 116. 
    Sylla M, Bosio C, Urdaneta-Marquez L, Ndiaye M, Black WC 2009. Gene flow, subspecies composition, and dengue virus-2 susceptibility among Aedes aegypti collections in Senegal. PLOS Negl. Trop. Dis. 3:e408
    [Google Scholar]
  117. 117. 
    Tabachnick WJ, Powell JR. 1979. A world-wide survey of genetic variation in the yellow fever mosquito, Aedes aegypti. Genet. Res. 34:215–29
    [Google Scholar]
  118. 118. 
    Taufflieb R, Robin Y, Cornet M 1971. Le virus amaril et la faune sauvage en Afrique. Cah. ORSTOM Sér. Entomol. Méd. Parasitol. 9:351–71
    [Google Scholar]
  119. 119. 
    Tesh RB, Gubler DJ, Rosen L 1976. Variation among geographic strains of Aedes albopictus in susceptibility to infection with chikungunya virus. Am. J. Trop. Med. Hyg. 25:326–35
    [Google Scholar]
  120. 120. 
    Thavara U, Tawatsin A, Pengsakul T, Bhakdeenuan P, Chanama S et al. 2009. Outbreak of chikungunya fever in Thailand and virus detection in field population of vector mosquitoes, Aedes aegypti (L.) and Aedes albopictus Skuse (Diptera: Culicidae). Southeast Asian J. Trop. Med. Public Health 40:951–62
    [Google Scholar]
  121. 121. 
    Thonnon J, Spiegel A, Diallo M, Diallo A, Fontenille D 1999. Chikungunya virus outbreak in Senegal in 1996 and 1997. Bull. Soc. Pathol. Exot. 92:79–82
    [Google Scholar]
  122. 122. 
    Tomori O, Fagbami A, Fabiyi A 1975. The 1974 epidemic of chikungunya fever in children in Ibadan. Trop. Geogr. Med. 27:413–17
    [Google Scholar]
  123. 123. 
    Torres JR, Falleiros-Arlant LH, Duenas L, Pleitez-Navarrete J, Salgado DM, Castillo JB 2016. Congenital and perinatal complications of chikungunya fever: a Latin American experience. Int. J. Infect. Dis. 51:85–88
    [Google Scholar]
  124. 124. 
    Tsetsarkin KA, Chen R, Leal G, Forrester N, Higgs S et al. 2011. Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive landscapes. PNAS 108:7872–77
    [Google Scholar]
  125. 125. 
    Tsetsarkin KA, Chen R, Weaver SC 2016. Interspecies transmission and chikungunya virus emergence. Curr. Opin. Virol. 16:143–50
    [Google Scholar]
  126. 126. 
    Tsetsarkin KA, Chen R, Yun R, Rossi SL, Plante KS et al. 2014. Multi-peaked adaptive landscape for chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes. Nat. Commun. 5:4084
    [Google Scholar]
  127. 127. 
    Tsetsarkin KA, McGee CE, Volk SM, Vanlandingham DL, Weaver SC, Higgs S 2009. Epistatic roles of E2 glycoprotein mutations in adaption of chikungunya virus to Aedes albopictus and Ae. aegypti mosquitoes. PLOS ONE 4:e6835
    [Google Scholar]
  128. 128. 
    Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S 2007. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLOS Pathog 3:e201
    [Google Scholar]
  129. 129. 
    Tsetsarkin KA, Weaver SC. 2011. Sequential adaptive mutations enhance efficient vector switching by chikungunya virus and its epidemic emergence. PLOS Pathog 7:e1002412
    [Google Scholar]
  130. 130. 
    Turell MJ, Beaman JR, Tammariello RF 1992. Susceptibility of selected strains of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) to chikungunya virus. J. Med. Entomol. 29:49–53
    [Google Scholar]
  131. 131. 
    Vairo F, Mammone A, Lanini S, Nicastri E, Castilletti C et al. 2018. Local transmission of chikungunya in Rome and the Lazio region, Italy. PLOS ONE 13:e0208896
    [Google Scholar]
  132. 132. 
    Vazeille M, Moutailler S, Coudrier D, Rousseaux C, Khun H et al. 2007. Two chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLOS ONE 2:e1168
    [Google Scholar]
  133. 133. 
    Vazeille M, Zouache K, Vega-Rua A, Thiberge JM, Caro V et al. 2016. Importance of mosquito “quasispecies” in selecting an epidemic arthropod-borne virus. Sci. Rep. 6:29564
    [Google Scholar]
  134. 134. 
    Venturi G, Di Luca M, Fortuna C, Remoli ME, Riccardo F et al. 2017. Detection of a chikungunya outbreak in Central Italy, August to September 2017. Euro Surveill 22:00646
    [Google Scholar]
  135. 135. 
    Volk SM, Chen R, Tsetsarkin KA, Adams AP, Garcia TI et al. 2010. Genome-scale phylogenetic analyses of chikungunya virus reveal independent emergences of recent epidemics and various evolutionary rates. J. Virol. 84:6497–504
    [Google Scholar]
  136. 136. 
    Vourc'h G, Halos L, Desvars A, Boue F, Pascal M et al. 2014. Chikungunya antibodies detected in non-human primates and rats in three Indian Ocean islands after the 2006 ChikV outbreak. Vet. Res. 45:52
    [Google Scholar]
  137. 137. 
    Weaver SC. 2014. Arrival of chikungunya virus in the new world: prospects for spread and impact on public health. PLOS Negl. Trop. Dis. 8:e2921
    [Google Scholar]
  138. 138. 
    Weaver SC, Charlier C, Vasilakis N, Lecuit M 2018. Zika, chikungunya, and other emerging vector-borne viral diseases. Annu. Rev. Med. 69:395–408
    [Google Scholar]
  139. 139. 
    Weaver SC, Lecuit M. 2015. Chikungunya virus and the global spread of a mosquito-borne disease. N. Engl. J. Med. 372:1231–39
    [Google Scholar]
  140. 140. 
    Weaver SC, Reisen WK. 2010. Present and future arboviral threats. Antivir. Res. 85:328–45
    [Google Scholar]
  141. 141. 
    Weinbren MP, Haddow AJ, Williams MC 1958. The occurrence of chikungunya virus in Uganda. I. Isolation from mosquitoes. Trans. R. Soc. Trop. Med. Hyg. 52:253–57
    [Google Scholar]
  142. 142. 
    Wong HV, Vythilingam I, Sulaiman WY, Lulla A, Merits A et al. 2016. Detection of persistent chikungunya virus RNA but not infectious virus in experimental vertical transmission in Aedes aegypti from Malaysia. Am. J. Trop. Med. Hyg. 94:182–86
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011019-025207
Loading
/content/journals/10.1146/annurev-ento-011019-025207
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error