1932

Abstract

Three species of have become invasive in Australia, Hawai‘i, New Zealand, and North and South America and continue to spread. These social wasp species can achieve high nest densities, and their behavioral plasticity has led to substantial impacts on recipient communities. Ecologically, they affect all trophic levels, restructuring communities and altering resource flows. Economically, their main negative effect is associated with pollination and the apicultural industry. Climate change is likely to exacerbate their impacts in many regions. Introduced spp. likely experience some degree of enemy release from predators or parasites, although they are exposed to a wide range of microbial pathogens in both their native and introduced range. Toxic baits have been significantly improved over the last decade, enabling effective landscape-level control. Although investigated extensively, no effective biological control agents have yet been found. Emerging technologies such as gene drives are under consideration.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011118-111812
2019-01-07
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ento/64/1/annurev-ento-011118-111812.html?itemId=/content/journals/10.1146/annurev-ento-011118-111812&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Akre RD, Ramsay C, Grable A, Baird C, Stanford A 1989. Additional range extension by the German yellowjacket, Paravespula germanica (Fabricius), in North America (Hymenoptera: Vespidae). Pan-Pac. Entomol. 65:179–88
    [Google Scholar]
  2. 2.  Akre RD, Reed HC 1981. Population cycles of yellowjackets (Hymenoptera: Vespinae) in the Pacific Northwest. Environ. Entomol. 10:3267–74
    [Google Scholar]
  3. 3.  Archer ME 1981. Successful and unsuccessful development of colonies of Vespula vulgaris (Linn.) (Hymenoptera: Vespidae). Ecol. Entomol. 6:11–10
    [Google Scholar]
  4. 4.  Archer ME 1985. Population dynamics of the social wasps Vespula vulgaris and Vespula germanica in England. J. Anim. Ecol. 54:2473–85
    [Google Scholar]
  5. 5.  Archer ME 1998. The world distribution of the Euro-Asian species of Paravespula (Hym., Vespinae). Entomol. Mon. Mag. 134:279–84
    [Google Scholar]
  6. 6.  Archer ME 2010. The queen colony phase of vespine wasps (Hymenoptera, Vespidae). Insectes Soc 57:2133–45
    [Google Scholar]
  7. 7.  Archer ME 2012. Vespine Wasps of the World: Behaviour, Ecology & Taxonomy of the Vespinae Manchester, UK: Siri Sci. Press
    [Google Scholar]
  8. 8.  Avarguès-Weber A, d'Amaro D, Metzler M, Garcia JE, Dyer AG 2017. Recognition of human face images by the free flying wasp Vespula vulgaris. Anim. Behav. Cogn 4:3314–23
    [Google Scholar]
  9. 9.  Bank S, Sann M, Mayer C, Meusemann K, Donath A et al. 2017. Transcriptome and target DNA enrichment sequence data provide new insights into the phylogeny of vespid wasps (Hymenoptera: Aculeata: Vespidae). Mol. Phylogenet. Evol. 116:213–26
    [Google Scholar]
  10. 10.  Barlow ND, Beggs JR, Barron MC 2002. Dynamics of common wasps in New Zealand beech forests: a model with density dependence and weather. J. Anim. Ecol. 71:4663–71
    [Google Scholar]
  11. 11.  Barlow ND, Moller H, Beggs JR 1996. A model for the effect of Sphecophaga vesparum as a biological control agent of the common wasp in New Zealand. J. Appl. Ecol. 33:131–44Mathematical modeling demonstrates the necessary impact needed for successful biological control of Vespula.
    [Google Scholar]
  12. 12.  Barr K, Moller H, Christmas E, Lyver P, Beggs J 1996. Impacts of introduced common wasps (Vespula vulgaris) on experimentally placed mealworms in a New Zealand beech forest. Oecologia 105:2266–70
    [Google Scholar]
  13. 13.  Beggs J 2001. The ecological consequences of social wasps (Vespula spp.) invading an ecosystem that has an abundant carbohydrate resource. Biol. Conserv. 99:117–28
    [Google Scholar]
  14. 14.  Beggs JR, Brockerhoff EG, Corley JC, Kenis M, Masciocchi M et al. 2011. Ecological effects and management of invasive alien Vespidae. BioControl 56:4505–26
    [Google Scholar]
  15. 15.  Beggs JR, Harris RJ, Read P 1996. Invasion success of the wasp parasitoid Sphecophaga vesparum (Curtis) in New Zealand. N. Z. J. Zool. 23:11–9
    [Google Scholar]
  16. 16.  Beggs JR, Rees JS 1999. Restructuring of Lepidoptera communities by introduced Vespula wasps in a New Zealand beech forest. Oecologia 119:4565–71
    [Google Scholar]
  17. 17.  Beggs JR, Rees JS, Harris RJ 2002. No evidence for establishment of the wasp parasitoid, Sphecophaga vesparum burra (Cresson) (Hymenoptera: Ichneumonidae) at two sites in New Zealand. N. Z. J. Zool. 29:3205–11
    [Google Scholar]
  18. 18.  Beggs JR, Rees JS, Toft RJ, Dennis TE, Barlow ND 2008. Evaluating the impact of a biological control parasitoid on invasive Vespula wasps in a natural forest ecosystem. Biol. Control 44:3399–407
    [Google Scholar]
  19. 19.  Beggs JR, Toft RJ, Malham JP, Rees JS, Tilley JAV et al. 1998. The difficulty of reducing introduced wasp (Vespula vulgaris) populations for conservation gains. N. Z. J. Ecol. 22:156–63
    [Google Scholar]
  20. 20.  Beggs JR, Wardle DA 2006. Keystone species: competition for honeydew among exotic and indigenous species. Biological Invasions in New Zealand RB Allen, WG Lee 281–94 Berlin, Ger: Springer
    [Google Scholar]
  21. 21.  Beggs JR, Wilson PR 1991. The kaka Nestor meridionalis, a New Zealand parrot endangered by introduced wasps and mammals. Biol. Conserv. 56:123–38
    [Google Scholar]
  22. 22.  Biló BM, Ruëff F, Mosbech H, Bonifazi F, Oude-Elberink JNGEAACI Interest Group Insect Venom Hypersensitivity. 2005. Diagnosis of Hymenoptera venom allergy. Allergy 60:111339–49
    [Google Scholar]
  23. 23.  Blackwood JC, Vargas R Jr, Fauvergue X 2017. A cascade of destabilizations: combining Wolbachia and Allee effects to eradicate insect pests. J. Anim. Ecol. 87:159–72
    [Google Scholar]
  24. 24.  Brenton-Rule EC, Dobelmann J, Baty JW, Brown RL, Dvorak L et al. 2018. The origins of global invasions of the German wasp (Vespula germanica) and its infection with four honey bee viruses. Biol. Invas. In press
    [Google Scholar]
  25. 25.  Brown RL, El-Sayed AM, Suckling DM, Stringer LD, Beggs JR 2013. Vespula vulgaris (Hymenoptera: Vespidae) gynes use a sex pheromone to attract males. Can. Entomol. 145:4389–97
    [Google Scholar]
  26. 26.  Brown RL, El-Sayed AM, Unelius CR, Suckling DM 2014. Attraction of the invasive social wasp, Vespula vulgaris, by volatiles from fermented brown sugar. Entomol. Exp. Appl. 151:2182–90
    [Google Scholar]
  27. 27.  Buckley YM, Csergő AM 2017. Predicting invasion winners and losers under climate change. PNAS 114:164040–41
    [Google Scholar]
  28. 28.  Burne AR, Haywood J, Lester PJ 2014. Density-dependent effects of an invasive wasp on the morphology of an endemic New Zealand ant. Biol. Invasions 17:1327–35
    [Google Scholar]
  29. 29.  Cameron SA, Lim HC, Lozier JD, Duennes MA, Thorp R 2016. Test of the invasive pathogen hypothesis of bumble bee decline in North America. PNAS 113:164386–91
    [Google Scholar]
  30. 30.  Carmean D 1991. Biology of the Trigonalyidae (Hymenoptera), with notes on the vespine parasitoid Bareogonalos canadensis.N. Z. J. Zool 18:2209–14
    [Google Scholar]
  31. 31.  Carpenter JM 2008. Review of Hawaiian Vespidae (Hymenoptera). Bishop Mus. Occas. Pap. 99:11–18
    [Google Scholar]
  32. 32.  Carpenter JM, Glare TR 2010. Misidentification of Vespula alascensis as V. vulgaris in North America (Hymenoptera: Vespidae; Vespinae). Am. Mus. Novit. 3690:1–7
    [Google Scholar]
  33. 33.  Charpin D, Birnbaum J, Vervloet D 1994. Epidemiology of hymenoptera allergy. Clin. Exp. Allergy 24:111010–15
    [Google Scholar]
  34. 34.  Clapperton BK, Alspach PA, Moller H, Matheson AG 1989. The impact of common and German wasps (Hymenoptera: Vespidae) on the New Zealand beekeeping industry. N. Z. J. Zool. 16:3325–32
    [Google Scholar]
  35. 35.  Clapperton BK, Tilley JAV, Beggs JR, Moller H 1994. Changes in the distribution and proportions of Vespula vulgaris (L.) and Vespula germanica (Fab.) (Hymenoptera: Vespidae) between 1987 and 1990 in New Zealand. N. Z. J. Zool. 21:3295–303
    [Google Scholar]
  36. 36.  Crosland MWJ 1991. The spread of the social wasp, Vespula germanica, in Australia. N. Z. J. Zool. 18:4375–87
    [Google Scholar]
  37. 37.  D'adamo P, Lozada M 2003. The importance of location and visual cues during foraging in the German wasp (Vespula germanica F.) (Hymenoptera: Vespidae). N. Z. J. Zool. 30:3171–74
    [Google Scholar]
  38. 38.  de Villiers M, Kriticos DJ, Veldtman R 2017. Including irrigation in niche modelling of the invasive wasp Vespula germanica (Fabricius) improves model fit to predict potential for further spread. PLOS ONE 12:7e0181397
    [Google Scholar]
  39. 39.  Dearden PK, Gemmell NJ, Mercier OR, Lester PJ, Scott MJ et al. 2018. The potential for the use of gene drives for pest control in New Zealand: a perspective. J. R. Soc. N. Z. 48:225–44Invasive Vespula are discussed as a potential target for control via gene drive technologies.
    [Google Scholar]
  40. 40.  Derstine NT, Ohler B, Jimenez SI, Landolt P, Gries G 2017. Evidence for sex pheromones and inbreeding avoidance in select North American yellowjacket species. Entomol. Exp. Appl. 164:135–44
    [Google Scholar]
  41. 41.  Dhami MK, Gardner-Gee R, Van Houtte J, Villas-Bôas SG, Beggs JR 2011. Species-specific chemical signatures in scale insect honeydew. J. Chem. Ecol. 37:111231–41
    [Google Scholar]
  42. 42.  Dimarco RD, Masciocchi M, Corley JC 2017. Managing nuisance social insects in urban environments: an overview. Int. J. Pest Manag. 63:3251–65
    [Google Scholar]
  43. 43.  Dobelmann J, Loope KJ, Wilson-Rankin E, Quinn O, Baty JW et al. 2017. Fitness in invasive social wasps: the role of variation in viral load, immune response and paternity in predicting nest size and reproductive output. Oikos 126:81208–18
    [Google Scholar]
  44. 44.  Donovan BJ 1984. Occurrence of the common wasp, Vespula vulgaris (L.) (Hymenoptera: Vespidae) in New Zealand. N. Z. J. Zool. 11:4417–27
    [Google Scholar]
  45. 45.  Donovan BJ 2002. Description of Sphecophaga orientalis sp. n. (Hymenoptera: Ichneumonidae: Cryptinae), a potential parasitoid of Vespula spp. (Hymenoptera: Vespidae: Vespinae) in New Zealand. N. Z. Entomol. 25:13–15
    [Google Scholar]
  46. 46.  Donovan BJ 2003. Potential manageable exploitation of social wasps, Vespula spp. (Hymenoptera: Vespidae), as generalist predators of insect pests. Int. J. Pest Manag. 49:4281–85
    [Google Scholar]
  47. 47.  Donovan BJ, Havron A, Leathwick DM 2002. Release of Sphecophaga orientalis Donovan (Hymenoptera: Ichneumonidae: Cryptinae) in New Zealand as a possible “new association” biocontrol agent for the adventive social wasps Vespula germanica (F.) and Vespula vulgaris (L.) (Hymenoptera: Vespidae: Vespinae). N. Z. J. Ecol. 25:117–25
    [Google Scholar]
  48. 48.  Donovan BJ, Read P 1987. Attempted biological control of social wasps, Vespula spp., (Hymenoptera: Vespidae) with Sphecophaga vesparum (Curtis) (Hymenoptera: Ichneumonidae) in New Zealand. N. Z. J. Zool. 14:3329–35
    [Google Scholar]
  49. 49.  Drury DW, Drury DW, Dapper AL, Siniard DJ, Zentner GE, Wade MJ 2017. CRISPR/Cas9 gene drives in genetically variable and nonrandomly mating wild populations. Sci. Adv. 3:5e1601910
    [Google Scholar]
  50. 50.  Dvorak L, Landolt PJ 2006. Social wasps trapped in the Czech Republic with syrup and fermented fruit and comparison with similar studies (Hymenoptera Vespidae). Bull. Insectol. 59:2115–20
    [Google Scholar]
  51. 51.  Edwards E, Toft R, Joice N, Westbrooke I 2017. The efficacy of Vespex® wasp bait to control Vespula species (Hymenoptera: Vespidae) in New Zealand. Int. J. Pest Manag. 63:3266–72A demonstration of widespread Vespula control (in 300–2,000-hectare plots) through the use of a toxic bait.
    [Google Scholar]
  52. 52.  Edwards R 1980. Social Wasps: Their Biology and Control East Grinstead, UK: Rentokil Ltd.
    [Google Scholar]
  53. 53.  El-Sayed AM, Manning L-A, Unelius CR, Park KC, Stringer LD et al. 2009. Attraction and antennal response of the common wasp, Vespula vulgaris (L.), to selected synthetic chemicals in New Zealand beech forests. Pest Manag. Sci. 65:9975–81
    [Google Scholar]
  54. 54.  El-Sayed AM, Suckling DM, Byers JA, Jang EB, Wearing CH 2009. Potential of “lure and kill” in long-term pest management and eradication of invasive species. J. Econ. Entomol. 102:3815–35
    [Google Scholar]
  55. 55.  Elliott GP, Wilson PR, Taylor RH, Beggs JR 2010. Declines in common, widespread native birds in a mature temperate forest. Biol. Conserv. 143:92119–26
    [Google Scholar]
  56. 56.  Essl F, Bacher S, Blackburn TM, Booy O, Brundu G et al. 2015. Crossing frontiers in tackling pathways of biological invasions. BioScience 65:8769–82
    [Google Scholar]
  57. 57.  Estay SA, Lima M 2009. Combined effect of ENSO and SAM on the population dynamics of the invasive yellowjacket wasp in central Chile. Popul. Ecol. 52:2289–94
    [Google Scholar]
  58. 58.  Esvelt KM, Smidler AL, Catteruccia F, Church GM 2014. Concerning RNA-guided gene drives for the alteration of wild populations. eLife 3:e03401
    [Google Scholar]
  59. 59.  Evison SEF, Roberts KE, Laurenson L, Pietravalle S, Hui J et al. 2012. Pervasiveness of parasites in pollinators. PLOS ONE 7:1e30641
    [Google Scholar]
  60. 60.  Fan Q-H, Zhang Z-Q, Brown R, France S, Bennett S 2016. New Zealand Pneumolaelaps Berlese (Acari: Laelapidae): description of a new species, key to species and notes on biology. Syst. Appl. Acarol. 21:1119–38
    [Google Scholar]
  61. 61.  Fox-Wilson G 1946. Factors affecting populations of social wasps, Vespula species, in England (Hymenoptera). Proc. R. Entomol. Soc. 21:4–617–27
    [Google Scholar]
  62. 62.  Fürst MA, McMahon DP, Osborne JL, Paxton RJ, Brown MJF 2014. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506:7488364–66
    [Google Scholar]
  63. 63.  Gambino P, Pierluisi GJ, Poinar GO 1992. Field test of the nematode Steinernema feltiae (Nematoda: Steinernematidae) against yellowjacket colonies (Hym.: Vespidae). Entomophaga 37:1107–14
    [Google Scholar]
  64. 64.  Gardner-Gee R, Beggs JR 2013. Invasive wasps, not birds, dominate in a temperate honeydew system. Austral. Ecol. 38:3346–54
    [Google Scholar]
  65. 65.  Gardner-Gee R, Dhami MK, Paulin KJ, Beggs JR 2014. Can alternative sugar sources buffer pollinators from nectar shortages?. Environ. Entomol. 43:61514–25
    [Google Scholar]
  66. 66.  Gemmell NJ, Jalilzadeh A, Didham RK, Soboleva T, Tompkins DM 2013. The Trojan female technique: a novel, effective and humane approach for pest population control. Proc. R. Soc. B 280:20132549
    [Google Scholar]
  67. 67.  Glare TR, Harris RJ, Donovan BJ 1996. Aspergillus flavusas a pathogen of wasps, Vespula spp., in New Zealand. N. Z. J. Zool 23:4339–44
    [Google Scholar]
  68. 68.  Golden DBK 2007. Insect sting anaphylaxis. Immunol. Allergy Clin. North Am. 27:2261–72
    [Google Scholar]
  69. 69.  Goszczyński J, Jedrzejewska B, Jedrzejewski W 2000. Diet composition of badgers (Meles meles) in a pristine forest and rural habitats of Poland compared to other European populations. J. Zool. 250:4495–505
    [Google Scholar]
  70. 70.  Gould WP, Jeanne RL 1984. Polistes wasps (Hymenoptera: Vespidae) as control agents for lepidopterous cabbage pests. Environ. Entomol. 13:1150–56
    [Google Scholar]
  71. 71.  Grangier J, Lester PJ 2011. A novel interference behaviour: invasive wasps remove ants from resources and drop them from a height. Biol. Lett. 7:5664–67
    [Google Scholar]
  72. 72.  Gruber M, Cooling M, Baty JW, K B, Friedlander A et al. 2017. Single-stranded RNA viruses infecting the invasive Argentine ant. Linepithema humile. Sci. Rep. 7:3304
    [Google Scholar]
  73. 73.  Hanna C, Foote D, Kremen C 2012. Short- and long-term control of Vespula pensylvanica in Hawaii by fipronil baiting. Pest Manag. Sci. 68:71026–33
    [Google Scholar]
  74. 74.  Hanna C, Foote D, Kremen C 2013. Invasive species management restores a plant-pollinator mutualism in Hawaii. J. Appl. Ecol. 50:1147–55Management of invasive wasps can increase native and introduced bee visitation, increasing pollination and fruiting.
    [Google Scholar]
  75. 75.  Hanna C, Foote D, Kremen C 2014. Competitive impacts of an invasive nectar thief on plant-pollinator mutualisms. Ecology 95:61622–32
    [Google Scholar]
  76. 76.  Harris RJ 1991. Diet of the wasps Vespula vulgaris and V. germanica in honeydew beech forest of the South Island, New Zealand. N. Z. J. Zool. 18:159–69
    [Google Scholar]
  77. 77.  Harris RJ 1996. Frequency of overwintered Vespula germanica (Hymenoptera: Vespidae) colonies in scrubland‐pasture habitat and their impact on prey. N. Z. J. Zool. 23:111–17
    [Google Scholar]
  78. 78.  Harris RJ, Beggs JR 1995. Variation in the quality of Vespula vulgaris (L.) queens (Hymenoptera: Vespidae) and its significance in wasp population dynamics. N. Z. J. Zool. 22:2131–42
    [Google Scholar]
  79. 79.  Harris RJ, Etheridge ND 2001. Comparison of baits containing fipronil and sulfluramid for the control of Vespula wasps. N. Z. J. Zool. 28:139–48
    [Google Scholar]
  80. 80.  Harris RJ, Harcourt SJ, Glare TR, Rose EAF, Nelson TJ 2000. Susceptibility of Vespula vulgaris (Hymenoptera: Vespidae) to generalist entomopathogenic fungi and their potential for wasp control. J. Invertebr. Pathol. 75:4251–58
    [Google Scholar]
  81. 81.  Harris RJ, Thomas CD, Moller H 1991. The influence of habitat use and foraging on the replacement of one introduced wasp species by another in New Zealand. Ecol. Entomol. 16:4441–48
    [Google Scholar]
  82. 82.  Harvey-Samuel T, Ant T, Alphey L 2017. Towards the genetic control of invasive species. Biol. Invasions 19:61683–703
    [Google Scholar]
  83. 83.  Haupt K 2015. Assessment of the invasive German wasp, Vespula germanica, in South Africa MS Thesis, Univ. Stellenbosch, Stellenbosch, S. Afr.
    [Google Scholar]
  84. 84.  Hendrichs J, Katsoyannos BI, Wornoayporn V 1994. Odour-mediated foraging by yellowjacket wasps (Hymenoptera: Vespidae): predation on leks of pheromone-calling Mediterranean fruit fly males (Diptera: Tephritidae). Oecologia 99:88–94
    [Google Scholar]
  85. 85.  Hoffmann BD, Luque GM, Bellard C, Holmes ND, Donlan CJ 2016. Improving invasive ant eradication as a conservation tool: a review. Biol. Conserv. 198:37–49
    [Google Scholar]
  86. 86.  Inoue M, Sakamoto Y, Takeuchi M, Nagai T, Nishimura Y, Yanagisawa N 2014. Seasonal change of prey brought to an Oriental Honey Buzzard Pernis ptilorhynchus nest during the breeding season in west Mikawa, Aichi Prefecture, Japan. Jpn. J. Ornithol. 63:2323–28
    [Google Scholar]
  87. 87.  Jacobs JH, Clark SJ, Denholm I, Goulson D, Stoate C, Osborne JL 2010. Pollinator effectiveness and fruit set in common ivy, Hedera helix (Araliaceae). Arthropod Plant Interact 4:119–28
    [Google Scholar]
  88. 88.  Kasper ML, Reeson AF, Cooper SJB, Perry KD, Austin AD 2004. Assessment of prey overlap between a native (Polistes humilis) and an introduced (Vespula germanica) social wasp using morphology and phylogenetic analyses of 16S rDNA. Mol. Ecol. 13:72037–48
    [Google Scholar]
  89. 89.  Kasper ML, Reeson AF, Mackay DA, Austin AD 2008. Environmental factors influencing daily foraging activity of Vespula germanica (Hymenoptera, Vespidae) in Mediterranean Australia. Insectes Soc 55:3288–95
    [Google Scholar]
  90. 90.  Keane RM, Crawley MJ 2002. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17:4164–70
    [Google Scholar]
  91. 91.  Landolt P, Zhang Q-H 2016. Discovery and development of chemical attractants used to trap pestiferous social wasps (Hymenoptera: Vespidae). J. Chem. Ecol 42:7655–65
    [Google Scholar]
  92. 92.  Landolt PJ, Smithhisler CS, Reed HC, McDonough LM 2000. Trapping social wasps (Hymenoptera: Vespidae) with acetic acid and saturated short chain alcohols. J. Econ. Entomol. 93:61613–18
    [Google Scholar]
  93. 93.  LaPierre L, Hespenheide H, Dejean A 2007. Wasps robbing food from ants: a frequent behavior?. Naturwissenschaften 94:12997–1001
    [Google Scholar]
  94. 94.  Lawison FR, Rabb RL, Guthrie FE 1961. Studies of an integrated control system for hornworms on tobacco. J. Econ. Entomol. 54:193–97
    [Google Scholar]
  95. 95.  Leathwick DM, Godfrey PL 1996. Overwintering colonies of the common wasp (Vespula vulgaris) in Palmerston North, New Zealand. N. Z. J. Zool. 23:4355–58
    [Google Scholar]
  96. 96.  Lester PJ 2018. The Vulgar Wasp: The Story of a Ruthless Invader and Ingenious Predator Wellington, NZ: Victoria Univ. Press
    [Google Scholar]
  97. 97.  Lester PJ, Bosch PJ, Gruber MAM, Kapp EA, Peng L et al. 2015. No evidence of enemy release in pathogen and microbial communities of common wasps (Vespula vulgaris) in their native and introduced range. PLOS ONE 10:3e0121358
    [Google Scholar]
  98. 98.  Lester PJ, Brown SDJ, Edwards ED, Holwell GI, Pawson SM et al. 2014. Critical issues facing New Zealand entomology. N. Z. Entomol. 37:11–13
    [Google Scholar]
  99. 99.  Lester PJ, Gruber MAM, Brenton-Rule EC, Archer ME, Corley JC et al. 2014. Determining the origin of invasions and demonstrating a lack of enemy release from microsporidian pathogens in common wasps (Vespula vulgaris). Divers. Distrib. 20:8964–74
    [Google Scholar]
  100. 100.  Lester PJ, Haywood J, Archer ME, Shortall CR 2017. The long-term population dynamics of common wasps in their native and invaded range. J. Anim. Ecol. 86:2337–47Most of the annual variation in wasp abundance is explained by density dependence and weather.
    [Google Scholar]
  101. 101.  Levitt AL, Singh R, Cox-Foster DL, Rajotte E, Hoover K et al. 2013. Cross-species transmission of honey bee viruses in associated arthropods. Virus Res 176:1–2232–40
    [Google Scholar]
  102. 102.  MacIntyre P, Hellstrom J 2015. An Evaluation of the Costs of Pest Wasps (Vespula Species) in New Zealand Wellington, NZ: Dep. Conserv. Minist. Prim. Ind.An in-depth economic analysis of the direct and indirect costs of invasive social wasps.
    [Google Scholar]
  103. 103.  Madden AA, Boyden SD, Soriano J-AN, Corey TB, Leff JW et al. 2017. The emerging contribution of social wasps to grape rot disease ecology. PeerJ 5:e3223
    [Google Scholar]
  104. 104.  Martin SJ 2004. A simulation model of biological control of social wasps (Vespinae) using mermithid nematodes. N. Z. J. Zool. 31:3241–48
    [Google Scholar]
  105. 105.  Masciocchi M, Beggs JR, Carpenter JM, Corley JC 2010. Primer registro de Vespula vulgaris (Hymenoptera: Vespidae) en la Argentina. Rev. Soc. Entomol. Argent. 69:3–4267–70
    [Google Scholar]
  106. 106.  Masciocchi M, Corley J 2013. Distribution, dispersal and spread of the invasive social wasp (Vespula germanica) in Argentina. Austral. Ecol. 38:2162–68
    [Google Scholar]
  107. 107.  Masciocchi M, Farji-Brener AG, Sackmann P 2009. Competition for food between the exotic wasp Vespula germanica and the native ant assemblage of NW Patagonia: evidence of biotic resistance?. Biol. Invasions 12:3625–31
    [Google Scholar]
  108. 108.  Masciocchi M, Pereira AJ, Corley JC 2016. Local dynamics of worker activity of the invasive Vespula germanica and V. vulgaris (Hymenoptera: Vespidae) wasps in Argentina. Ecol. Entomol. 41:105–11
    [Google Scholar]
  109. 109.  Matthews RW, Matthews JR 1979. War of the yellow jacket queens. Nat. Hist. 88:856–65
    [Google Scholar]
  110. 110.  Moller H 1990. Wasps kill nestling birds. Notornis 37:76–77
    [Google Scholar]
  111. 111.  Moller H 1996. Lessons for invasion theory from social insects. Biol. Conserv. 78:1–2125–42
    [Google Scholar]
  112. 112.  Moro D, Byrne M, Kennedy M, Campbell S, Tizard M 2018. Identifying knowledge gaps for gene drive research to control invasive animal species: the next CRISPR step. Glob. Ecol. Conserv. 13:e00363
    [Google Scholar]
  113. 113.  Notman PR, Beggs JR 1993. Are wasps more likely to sting men than women. N. Z. Entomol. 16:49–51
    [Google Scholar]
  114. 114.  Peña GSC, Pérezde Arce R, Cartagena CL 1975. La presencia de Vespula maculifrons (Buysson), (Hymenoptera: Vespidae) en Chile. Rev. Chil. Entomol. 9:1167–68
    [Google Scholar]
  115. 115.  Pickett KM, Osborne DM, Wahl D, Wenzel JW 2001. An enormous nest of Vespula squamosa from Florida, the largest social wasp nest reported from North America, with notes on colony cycle and reproduction. J. N. Y. Entomol. Soc. 109:3–4408–15
    [Google Scholar]
  116. 116.  Pusceddu M, Floris I, Buffa F, Salaris E, Satta A 2017. Agonistic interactions between the honeybee (Apis mellifera ligustica) and the European wasp (Vespula germanica) reveal context-dependent defense strategies. PLOS ONE 12:7e0180278
    [Google Scholar]
  117. 117.  Reed HC, Akre RD 1983. Usurpation behavior of the yellowjacket social parasite, Vespula austriaca (Panzer) (Hymenoptera: Vespidae). Am. Midl. Nat. 110:2419–32
    [Google Scholar]
  118. 118.  Reed HC, Landolt PJ 1990. Queens of the southern yellowjacket, Vespula squamosa, produce sex attractant (Hymenoptera: Vespidae). Fla. Entomol. 73:4687
    [Google Scholar]
  119. 119.  Renault D, Laparie M, McCauley SJ, Bonte D 2018. Environmental adaptations, ecological filtering, and dispersal central to insect invasions. Annu. Rev. Entomol. 63:345–68
    [Google Scholar]
  120. 120.  Ricciardi A, Blackburn TM, Carlton JT, Dick JTA, Hulme PE et al. 2017. Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol. Evol. 32:6464–74
    [Google Scholar]
  121. 121.  Richter MR 2000. Social wasp (Hymenoptera: Vespidae) foraging behavior. Annu. Rev. Entomol. 45:121–50
    [Google Scholar]
  122. 122.  Rose EAF, Harris RJ, Glare TR 1999. Possible pathogens of social wasps (Hymenoptera: Vespidae) and their potential as biological control agents. N. Z. J. Zool. 26:3179–90
    [Google Scholar]
  123. 123.  Russell JC 2014. A comparison of attitudes towards introduced wildlife in New Zealand in 1994 and 2012. J. R. Soc. N. Z. 44:4136–51
    [Google Scholar]
  124. 124.  Rust MK, Choe D-H, Wilson-Rankin E, Campbell K, Kabashima J, Dimson M 2017. Controlling yellow jackets with fipronil-based protein baits in urban recreational areas. Int. J. Pest Manag. 63:3234–41
    [Google Scholar]
  125. 125.  Sackmann P, Corley JC 2007. Control of Vespula germanica (Hym. Vespidae) populations using toxic baits: bait attractiveness and pesticide efficacy. J. Appl. Entomol. 131:9–10630–36
    [Google Scholar]
  126. 126.  Sackmann P, D'adamo P, Rabinovich M, Corley JC 2000. Arthropod prey foraged by the German wasp (Vespula germanica) in NW Patagonia, Argentina. N. Z. Entomol. 23:155–59
    [Google Scholar]
  127. 127.  Sackmann P, Rabinovich M, Corley JC 2001. Successful removal of German yellowjackets (Hymenoptera: Vespidae) by toxic baiting. J. Econ. Entomol. 94:4811–16
    [Google Scholar]
  128. 128.  Santoro D, Hartley S, Suckling DM, Lester PJ 2015. Nest-based information transfer and foraging activation in the common wasp (Vespula vulgaris). Insectes Soc 62:2207–17
    [Google Scholar]
  129. 129.  Sekiné K, Furusawa T, Hatakeyama M 2015. The boule gene is essential for spermatogenesis of haploid insect male. Dev. Biol. 399:1154–63
    [Google Scholar]
  130. 130.  Sola FJ, Valenzuela AEJ, Anderson CB, Martínez Pastur G, Lencinas MV 2015. Recent invasion of the Tierra del Fuego Archipelago by the wasp Vespula germanica (Hymenoptera: Vespidae). Rev. Soc. Entomol. Argent 74:3–4197–202
    [Google Scholar]
  131. 131.  Sopow SL, Jones T, McIvor I, McLean JA, Pawson SM 2017. Potential impacts of Tuberolachnus salignus (giant willow aphid) in New Zealand and options for control. Agric. For. Entomol. 19:3225–34
    [Google Scholar]
  132. 132.  Sorvari J 2013. Social wasp (Hymenoptera: Vespidae) beer trapping in Finland 2008–2012: a German surprise. Entomol. Fenn. 24:156–64
    [Google Scholar]
  133. 133.  Spradbery JP 1973. Wasps: An Account of the Biology and Natural History of Solitary and Social Wasps Seattle: Univ. Washington Press
    [Google Scholar]
  134. 134.  Spradbery JP, Maywald GF 1992. The distribution of the European or German wasp, Vespula germanica (F.) (Hymenoptera: Vespidae), in Australia: past, present and future. Aust. J. Zool. 40:5495–510
    [Google Scholar]
  135. 135.  Spurr EB 1995. Protein bait preferences of wasps (Vespula vulgaris and V. germanica) at Mt Thomas, Canterbury, New Zealand. N. Z. J. Zool. 22:3281–89
    [Google Scholar]
  136. 136.  Stamp NE, Stamp NE, Bowers MD, Bowers MD 1988. Direct and indirect effects of predatory wasps (Polistes sp.: Vespidae) on gregarious caterpillars (Hemileuca lucina: Saturniidae). Oecologia 75:4619–24
    [Google Scholar]
  137. 137.  Stavert JR, Pattemore DE, Bartomeus I, Gaskett AC, Beggs JR 2018. Exotic flies maintain pollination services as native pollinators decline with agricultural expansion. J. Appl. Ecol. 55:1737–46
    [Google Scholar]
  138. 138.  Thomas CD, Moller H, Plunkett GM, Harris RJ 1990. The prevalence of introduced Vespula vulgaris wasps in a New Zealand beech forest community. N. Z. J. Ecol 13:163–72Vespula biomass in beech forests can exceed that of all birds, rodents, and stoats.
    [Google Scholar]
  139. 139.  Thomas CR 1960. The European Wasp (Vespula germanica Fab.) in New Zealand N. Z. Dep. Sci. Ind. Res. Info. Ser. 27 Wellington, NZ: DSIR
    [Google Scholar]
  140. 140.  Thomson DM 2018. Effects of long-term variation in pollinator abundance and diversity on reproduction of a generalist plant. J. Ecol In press. https://doi.org/10.1111/1365-2745.13055
    [Crossref] [Google Scholar]
  141. 141.  Toft RJ, Malham JP, Beggs JR 1999. Mortality and emergence pattern of overwintering cocoons of the wasp parasitoid Sphecophaga vesparum vesparum (Hymenoptera: Ichneumonidae) in New Zealand. Environ. Entomol. 28:19–13
    [Google Scholar]
  142. 142.  Toft RJ, Rees JS 1998. Reducing predation of orb-web spiders by controlling common wasps (Vespula vulgaris) in a New Zealand beech forest. Ecol. Entomol. 23:190–95
    [Google Scholar]
  143. 143.  Tribe GD, Richardson DM 1994. The European wasp, Vespula germanica (Fabricius) (Hymenoptera: Vespidae), in southern Africa and its potential distribution as predicted by ecoclimatic matching. Afr. Entomol. 2:11–6
    [Google Scholar]
  144. 144.  Tryjanowski P, Pawlikowski T 2010. Does climate influence phenological trends in social wasps (Hymenoptera: Vespinae) in Poland?. Eur. J. Entomol. 107:203–8
    [Google Scholar]
  145. 145.  Unelius CR, El-Sayed AM, Twidle AM, Stringer LD, Manning LM et al. 2014. Volatiles from green-lipped mussel as a lead to vespid wasp attractants. J. Appl. Entomol. 138:1–287–95
    [Google Scholar]
  146. 146.  Unelius CR, Suckling DM, Brown RL, Jósvai JK, El-Sayed AM 2015. Combining odours isolated from phylogenetically diverse sources yields a better lure for yellow jackets. Pest Manag. Sci. 72:4760–69
    [Google Scholar]
  147. 147. Secr. Conv. Biol. Divers. 2010. Strategic Plan for Biodiversity 2011–2020 and the Aichi Targets Montreal, Can: Conv. Biol. Divers https://www.cbd.int/doc/strategic-plan/2011-2020/Aichi-Targets-EN.pdf
    [Google Scholar]
  148. 148.  Van Noort T 2016. Vespula foraging: Implications for pollination and monitoring. MS Thesis, Univ. Auckl., Auckl., N. Z.
  149. 149.  Vepsäläinen K, Savolainen R 2000. Are spring mass migrations of bumblebees and wasps driven by vole cyclicity?. Oikos 91:2401–4
    [Google Scholar]
  150. 150.  Wardle DA, Karl BJ, Beggs JR, Yeates GW, Williamson WM, Bonner KI 2010. Determining the impact of scale insect honeydew, and invasive wasps and rodents, on the decomposer subsystem in a New Zealand beech forest. Biol. Invasions 12:82619–38Wasps can change soil communities from fungal to bacterial based, increasing carbon sequestration.
    [Google Scholar]
  151. 151.  Wegner GS, Jordan KK 2005. Comparison of three liquid lures for trapping social wasps (Hymenoptera: Vespidae). J. Econ. Entomol. 98:3664–66
    [Google Scholar]
  152. 152.  Welton RE, Williams DJ, Liew D 2017. Injury trends from envenoming in Australia, 2000–2013. Intern. Med. J. 47:2170–76
    [Google Scholar]
  153. 153.  Whitehead VB, Prins AJ 1975. The European wasp, Vespula germanica (F.), in the Cape Peninsula. J. Entomol. Soc. S. Afr. 38:139–42
    [Google Scholar]
  154. 154.  Wilson EE, Holway DA 2010. Multiple mechanisms underlie displacement of solitary Hawaiian Hymenoptera by an invasive social wasp. Ecology 91:113294–302Vespula wasps restructure native assemblages by unexpected interactions with endemic taxa on multiple trophic levels.
    [Google Scholar]
  155. 155.  Wilson-Rankin EE 2015. Level of experience modulates individual foraging strategies of an invasive predatory wasp. Behav. Ecol. Sociobiol. 69:3491–99
    [Google Scholar]
  156. 156.  Wilson-Rankin EE, Mullen LM, Holway DA 2009. Life history plasticity magnifies the ecological effects of a social wasp invasion. PNAS 106:312809–13Shifting from small annual colonies to large perennial colonies in Vespula pensylvanica intensifies the colonies’ impact.
    [Google Scholar]
  157. 157.  Yeruham I, Schwimmer A, Brami Y 2002. Epidemiological and bacteriological aspects of mastitis associated with yellow-jacket wasps (Vespula germanica) in a dairy cattle herd. J. Vet. Med. B 49:10461–63
    [Google Scholar]
  158. 158.  Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R 2015. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 347:6225991–94
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011118-111812
Loading
/content/journals/10.1146/annurev-ento-011118-111812
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error