1932

Abstract

Beetles have colonized water many times during their history, with some of these events involving extensive evolutionary radiations and multiple transitions between land and water. With over 13,000 described species, they are one of the most diverse macroinvertebrate groups in most nonmarine aquatic habitats and occur on all continents except Antarctica. A combination of wide geographical and ecological range and relatively accessible taxonomy makes these insects an excellent model system for addressing a variety of questions in ecology and evolution. Work on water beetles has recently made important contributions to fields as diverse as DNA taxonomy, macroecology, historical biogeography, sexual selection, and conservation biology, as well as predicting organismal responses to global change. Aquatic beetles have some of the best resolved phylogenies of any comparably diverse insect group, and this, coupled with recent advances in taxonomic and ecological knowledge, is likely to drive an expansion of studies in the future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011118-111829
2019-01-07
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/ento/64/1/annurev-ento-011118-111829.html?itemId=/content/journals/10.1146/annurev-ento-011118-111829&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Abellán P, Benetti CJ, Angus RB, Ribera I 2011. A review of Quaternary range shifts in European aquatic Coleoptera. Glob. Ecol. Biogeogr. 20:87–100
    [Google Scholar]
  2. 2.  Abellán P, Millán A, Ribera I 2009. Parallel habitat-driven differences in the phylogeographical structure of two independent lineages of Mediterranean saline water beetles. Mol. Ecol. 18:3885–902
    [Google Scholar]
  3. 3.  Abellán P, Ribera I 2017. Using phylogenies to trace the geographic signal of speciation. J. Biogeogr. 44:2236–46Development of a novel approach to infer speciation modes based on the phylogeny and current distributions of the species of a lineage.
    [Google Scholar]
  4. 4.  Abellán P, Sánchez-Fernández D, Picazo F, Millán A, Lobo JM, Ribera I 2013. Preserving the evolutionary history of freshwater biota in Iberian National Parks. Biol. Conserv. 162:116–26
    [Google Scholar]
  5. 5.  Abellán P, Sánchez-Fernández D, Velasco J, Millán A 2005. Assessing conservation priorities for insects: status of water beetles in southeast Spain. Biol. Conserv. 121:79–90
    [Google Scholar]
  6. 6.  Abellán P, Sánchez-Fernández D, Velasco J, Millán A 2007. Effectiveness of protected area networks in representing freshwater biodiversity: the case of a Mediterranean river basin (SE Spain). Aquat. Conserv. 17:361–74
    [Google Scholar]
  7. 7.  Aiken RB, Khan A 1992. The adhesive strength of the palettes of males of a boreal water beetle, Dytiscus alaskanus J. Balfour Browne (Coleoptera: Dytiscidae). Can. J. Zool. 70:1321–24
    [Google Scholar]
  8. 8.  Arribas P, Abellán P, Velasco J, Bilton DT, Millán A, Sánchez-Fernández D 2012. Evaluating drivers of vulnerability to climate change: a guide for insect conservation strategies. Glob. Change Biol. 18:2135–46Rationale for deriving conservation strategies from empirical biological/ecological data.
    [Google Scholar]
  9. 9.  Arribas P, Abellán P, Velasco J, Millán A, Sánchez-Fernández D 2017. Conservation of insects in the face of global climate change. Global Climate Change and Terrestrial Invertebrates SN Johnson, TH Jones 349–67 Chichester, UK: Wiley
    [Google Scholar]
  10. 10.  Arribas P, Andujar C, Abellán P, Velasco J, Millán A, Ribera I 2014. Tempo and mode of the multiple origins of salinity tolerance in a water beetle lineage. Mol. Ecol. 23:360–73
    [Google Scholar]
  11. 11.  Arribas P, Velasco J, Abellán P, Sánchez-Fernández D, Andújar C et al. 2012. Dispersal ability rather than ecological tolerance drives differences in range size between lentic and lotic water beetles (Coleoptera: Hydrophilidae). J. Biogeogr. 39:984–94
    [Google Scholar]
  12. 12.  Balke M, Pons J, Ribera I, Sagata K, Vogler AP 2007. Infrequent and unidirectional colonization of hyperdiverse Papuadytes diving beetles in New Caledonia and New Guinea. Mol. Phylogenet. Evol. 42:505–16
    [Google Scholar]
  13. 13.  Balke M, Ribera I 2004. Jumping across Wallace's line: Allodessus and Limbodessus revisited (Coleoptera: Dytiscidae). Aust. J. Entomol. 43:114–28
    [Google Scholar]
  14. 14.  Balke M, Ribera I, Hendrich L, Miller MA, Sagata K et al. 2009. New Guinea highland origin of a widespread arthropod supertramp. Proc. R. Soc. B 276:2359–67
    [Google Scholar]
  15. 15.  Bergsten J, Bilton DT, Fujisawa T, Elliott M, Monaghan MT et al. 2012. The effect of geographical scale of sampling on DNA barcoding. Syst. Biol. 61:851–69Extensive evaluation of how DNA barcoding performs at different spatial and evolutionary scales.
    [Google Scholar]
  16. 16.  Bilton DT 2014. Dispersal in Dytiscidae. See Ref. 160 387–407
  17. 17.  Bilton DT, Foster GN 2016. Observed shifts in the contact zone between two forms of the diving beetle Hydroporus memnonius are consistent with predictions from sexual conflict. PeerJ 4:e2089
    [Google Scholar]
  18. 18.  Bilton DT, Freeland JR, Okamura B 2001. Dispersal in freshwater invertebrates. Annu. Rev. Ecol. Syst. 32:159–81
    [Google Scholar]
  19. 19.  Bilton DT, Hayward JWG, Roch J, Foster GN 2016. Sexual dimorphism and sexual conflict in the diving beetle Agabus uliginosus (L.) (Coleoptera: Dytiscidae). Biol. J. Linn. Soc. 119:1089–95
    [Google Scholar]
  20. 20.  Bilton DT, McAbendroth L, Bedford A, Ramsay PM 2006. How wide to cast the net? Cross-taxon congruence of species richness, community similarity and indicator taxa in ponds. Freshwater Biol 51:578–90
    [Google Scholar]
  21. 21.  Bilton DT, Thompson A, Foster GN 2008. Inter- and intra-sexual dimorphism in the diving beetle Hydroporus memnonius Nicolai (Coleoptera: Dytiscidae). Biol. J. Linn. Soc. 94:685–97
    [Google Scholar]
  22. 22.  Bilton DT, Turner C, Toussaint E, Balke M 2015. Capelatus prykei gen. n., sp. n. (Coleoptera: Dytiscidae: Copelatinae)—a phylogenetically isolated diving beetle from the Western Cape of South Africa. Syst. Entomol. 40:520–31
    [Google Scholar]
  23. 23.  Birkhead TR, Møller AP, Sutherland WJ 1993. Why do females make it so difficult to fertilize their eggs?. J. Theor. Biol. 161:51–60
    [Google Scholar]
  24. 24.  Bloom DD, Fikáček M, Short AEZ 2014. Clade age and diversification rate variation determine species richness patterns in aquatic beetle lineages. PLOS ONE 9:e98430
    [Google Scholar]
  25. 25.  Botella-Cruz M, Carbonell JA, Pallarés S, Millán A, Velasco J 2016. Plasticity of thermal limits in the aquatic saline beetle Enochrus politus (Küster 1849) (Coleoptera: Hydrophilidae) under changing environmental conditions. Limnetica 35:131–42
    [Google Scholar]
  26. 26.  Bradford TM, Humphreys WF, Austin AD, Cooper SJ 2014. Identification of trophic niches of subterranean diving beetles in a calcrete aquifer by DNA and stable isotope analyses. Mar. Freshwater Res 65:95–104
    [Google Scholar]
  27. 27.  Brown JH 1984. On the relationship between abundance and distribution of species. Am. Nat. 124:255–79
    [Google Scholar]
  28. 28.  Bukontaite R, Miller KB, Bergsten J 2014. The utility of CAD in recovering Gondwanan vicariance events and the evolutionary history of Aciliini (Coleoptera: Dytiscidae). BMC Evol. Biol. 14:5
    [Google Scholar]
  29. 29.  Bukontaite R, Ranarilalatiana T, Randriamihaja JH, Bergsten J 2015. In or out-of-Madagascar?—Colonization patterns for large-bodied diving beetles (Coleoptera: Dytiscidae). PLOS ONE 10:e0120777
    [Google Scholar]
  30. 30.  Calosi P, Bilton DT, Spicer JI 2007. The diving response of the diving beetle Ilybius montanus (Coleoptera: Dytiscidae): the effects of temperature and acidification. J. Zool. 273:289–97
    [Google Scholar]
  31. 31.  Calosi P, Bilton DT, Spicer JI 2008. Thermal tolerance, acclimatory capacity and vulnerability to global climate change. Biol. Lett. 4:99–102
    [Google Scholar]
  32. 32.  Calosi P, Bilton DT, Spicer JI, Atfield A 2008. Thermal tolerance and geographic range size in the Agabus brunneus group of European diving beetles (Coleoptera: Dytiscidae). J. Biogeogr. 35:295–305
    [Google Scholar]
  33. 33.  Calosi P, Bilton DT, Spicer JI, Verberk WCEP, Atfield A, Garland T Jr 2012. The comparative biology of diving in two genera of European Dytiscidae (Coleoptera). J. Evol. Biol. 25:329–41
    [Google Scholar]
  34. 34.  Calosi P, Bilton DT, Spicer JI, Votier S, Atfield A 2010. What determines a species' geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae). J. Anim. Ecol. 79:194–204First study to compare the relative importance of different drivers of range size in a phylogenetically controlled framework.
    [Google Scholar]
  35. 35.  Cioffi R, Moody JA, Millán A, Billington R, Bilton DT 2016. Physiological niche and geographical range in European diving beetles (Coleoptera: Dytiscidae). Biol. Lett. 12:20160130
    [Google Scholar]
  36. 36.  Cooper SJB, Hinze S, Leys R, Watts CHS, Humphreys WF 2002. Islands under the desert: molecular systematics and evolutionary origins of stygobitic water beetles (Coleoptera: Dytiscidae) from central Western Australia. Invertebr. Syst 16:589–98
    [Google Scholar]
  37. 37.  Dehling M, Hof C, Brändle M, Brandl R 2010. Habitat availability does not explain the species richness patterns of European lentic and lotic freshwater animals. J. Biogeogr. 37:1919–26
    [Google Scholar]
  38. 38.  Deler-Hernández A, Sýkora V, Seidel M, Cala-Riquelme F, Fikáček M 2018. Multiple origins of the Phaenonotum beetles in the Greater Antilles (Coleoptera: Hydrophilidae): phylogeny, biogeography and systematics. Zool. J. Linn. Soc. 183:97–120
    [Google Scholar]
  39. 39.  Désamoré A, Laenen B, Miller KB, Bergsten J 2018. Early burst in body size evolution is uncoupled from species diversification in diving beetles (Dytiscidae). Mol. Ecol. 27:979–93
    [Google Scholar]
  40. 40.  Dijkstra K-DB, Monaghan MT, Pauls SU 2014. Freshwater biodiversity and aquatic insect diversification. Annu. Rev. Entomol. 59:143–63
    [Google Scholar]
  41. 41.  Eyre MD, Foster GN, Luff M, Staley JR 2003. An investigation into the relationship between water beetle (Coleoptera) distribution and land cover in Scotland and northeast England. J. Biogeogr. 30:1835–49
    [Google Scholar]
  42. 42.  Fikáček M, Minoshima YN, Newton AF 2014. A review of Andotypus and Austrotypus gen. nov., rygmodine genera with an austral disjunction (Hydrophilidae: Rygmodinae). Ann. Zool. 64:557–96
    [Google Scholar]
  43. 43.  Fikáček M, Prokin AA, Angus RB, Ponomarenko AG, Yue Y et al. 2012. Phylogeny and the fossil record of the Helophoridae reveal Jurassic origin of modern hydrophiloid lineages (Coleoptera: Polyphaga). Syst. Entomol. 37:420–47
    [Google Scholar]
  44. 44.  Foster GN 1993. Pingo fens, water beetles and site evaluation. Antenna 17:184–95
    [Google Scholar]
  45. 45.  Foster GN, Bilton DT 2014. The conservation of predaceous diving beetles: knowns, unknowns and anecdotes. See Ref. 160 437–62
  46. 46.  Foster GN, Foster AP, Eyre MD, Bilton DT 1989. Classification of water beetle assemblages in arable fenland and ranking of sites in relation to conservation value. Freshwater Biol 22:343–54
    [Google Scholar]
  47. 47.  García-Criado F, Fernández-Aláez M, Fernández-Aláez C 2001. Hydraenidae and Elmidae assemblages (Coleoptera) from a Spanish river basin: good indicators of coal mining pollution?. Arch. Hydrobiol. 150:641–60
    [Google Scholar]
  48. 48.  García-Vázquez D, Bilton DT, Alonso R, Benetti CJ, Garrido J et al. 2016. Reconstructing ancient Mediterranean crossroads in Deronectes diving beetles. J. Biogeogr. 43:1533–45
    [Google Scholar]
  49. 49.  García-Vázquez D, Bilton DT, Foster GN, Ribera I 2017. Pleistocene range shifts, refugia and the origin of widespread species in Western Palaearctic water beetles. Mol. Phylogenet. Evol. 114:122–36
    [Google Scholar]
  50. 50.  García-Vázquez D, Ribera I 2016. The origin of widespread species in a poor dispersing lineage (diving beetle genus Deronectes). PeerJ 4:e2514
    [Google Scholar]
  51. 51.  Gaston KJ 2003. The Structure and Dynamics of Geographic Ranges Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  52. 52.  Gaston KJ, Chown SL, Calosi P, Bernardo J, Bilton DT et al. 2009. Macrophysiology: a conceptual reunification. Am. Nat. 174:595–612
    [Google Scholar]
  53. 53.  Gleeson T, Wada Y, Bierkens MFP, van Beek LPH 2012. Water balance of global aquifers revealed by groundwater footprint. Nature 488:197–200
    [Google Scholar]
  54. 54.  Guareschi S, Bilton DT, Velasco J, Millán A, Abellán P 2015. How well do protected area networks support taxonomic and functional diversity in non-target taxa? The case of Iberian freshwaters. Biol. Conserv. 187:134–44
    [Google Scholar]
  55. 55.  Guareschi S, Gutiérrez-Cánovas C, Picazo F, Sánchez-Fernández D, Abellán P et al. 2012. Aquatic macroinvertebrate biodiversity: patterns and surrogates in mountainous Spanish national parks. Aquat. Conserv. 22:598–615
    [Google Scholar]
  56. 56.  Gustafson G, Prokin AA, Bukontaite R, Bergsten J, Miller KB 2017. Tip-dated phylogeny of whirligig beetles reveals ancient lineage surviving on Madagascar. Sci. Rep. 7:1–9Oldest known Malagasay animal lineage.
    [Google Scholar]
  57. 57.  Guzik MT, Austin AD, Cooper SJB, Havey MS, Humphreys WF et al. 2010. Is the Australian subterranean fauna uniquely diverse?. Invertebr. Syst. 24:407–18
    [Google Scholar]
  58. 58.  Guzik MT, Cooper SJB, Humphreys WF, Ong S, Kawakami T, Austin AD 2011. Evidence for population fragmentation within a subterranean aquatic habitat in the Western Australian desert. Heredity 107:215–30
    [Google Scholar]
  59. 59.  Härdling R, Bergsten J 2006. Nonrandom mating preserves intrasexual polymorphism and stops population differentiation in sexual conflict. Am. Nat. 167:401–9
    [Google Scholar]
  60. 60.  Härdling R, Karlsson K 2009. The dynamics of sexually antagonistic coevolution and the complex influences of mating system and genetic correlation. J. Theor. Biol. 260:276–82
    [Google Scholar]
  61. 61.  Hernando C, Aguilera P, Ribera I 2001. Limnius stygius sp.nov., the first stygobiontic riffle beetle from the Palearctic Region (Coleoptera: Elmidae). Entomol. Probl. 32:69–72
    [Google Scholar]
  62. 62.  Hewitt G 2000. The genetic legacy of the Quaternary ice ages. Nature 405:907–13
    [Google Scholar]
  63. 63.  Hidalgo-Galiana A, Monge M, Biron DG, Canals F, Ribera I, Cieslak A 2014. Reproducibility and consistency of proteomic experiments on natural populations of a non-model aquatic insect species. PLOS ONE 9:e104734
    [Google Scholar]
  64. 64.  Hidalgo-Galiana A, Monge M, Biron DG, Canals F, Ribera I, Cieslak A 2016. Protein expression parallels thermal tolerance and ecologic changes in the diversification of a diving beetle species complex. Heredity 116:114–23
    [Google Scholar]
  65. 65.  Hidalgo-Galiana A, Ribera I 2011. Late Miocene diversification of the genus Hydrochus (Coleoptera, Hydrochidae) in the west Mediterranean area. Mol. Phylogenet. Evol. 59:377–85
    [Google Scholar]
  66. 66.  Hidalgo-Galiana A, Sánchez-Fernández D, Bilton DT, Cieslak A, Ribera I 2014. Thermal niche evolution and geographic range expansion in a species complex of western Mediterranean diving beetles. BMC Evol. Biol. 14:187
    [Google Scholar]
  67. 67.  Higginson DM, Miller KB, Segraves KA, Pitnick S 2012. Convergence, recurrence and diversification of complex sperm traits in diving beetles (Dytiscidae). Evolution 66:1650–61
    [Google Scholar]
  68. 68.  Higginson DM, Miller KB, Segraves KA, Pitnick S 2012. Female reproductive tract form drives the evolution of complex sperm morphology. PNAS 109:4538–43
    [Google Scholar]
  69. 69.  Hjalmarsson AE, Bergsten J, Monaghan MT 2015. Dispersal is linked to habitat use in 59 species of water beetles (Coleoptera: Adephaga) on Madagascar. Ecography 38:732–39
    [Google Scholar]
  70. 70.  Hof C, Brändle M, Brandl R 2006. Lentic odonates have larger and more northern ranges than lotic species. J. Biogeogr. 33:63–70
    [Google Scholar]
  71. 71.  Hosken DJ, Stockley P 2004. Sexual selection and genital evolution. Trends Ecol. Evol. 19:87–93
    [Google Scholar]
  72. 72.  Humphreys WF, Watts CHS, Cooper SJB, Leijs R 2009. Groundwater estuaries of salt lakes: buried pools of endemic biodiversity on the western plateau, Australia. Hydrobiologia 626:79–95
    [Google Scholar]
  73. 73.  Iversen LL, Jacobsen D, Sand-Jensen K 2016. Are latitudinal richness gradients in European freshwater species only structured according to dispersal and time?. Ecography 39:1247–49
    [Google Scholar]
  74. 74.  Jäch MA, Balke M 2008. Global diversity of water beetles (Coleoptera) in freshwater. Hydrobiologia 595:419–42Overview of beetle diversity and biology, with discussion on what constitutes a water beetle.
    [Google Scholar]
  75. 75.  Karlsson Green K, Kovalev A, Svensson EI, Gorb SN 2013. Male clasping ability, female polymorphism and sexual conflict: fine-scale elytral morphology as a sexually antagonistic adaptation in female diving beetles. J. R. Soc. Interface 10:20130409
    [Google Scholar]
  76. 76.  Karlsson Green K, Svensson EI, Bergsten J, Härdling R, Hansson B 2014. The interplay between local ecology, divergent selection, and genetic drift in population divergence of a sexually antagonistic female trait. Evolution 68:1934–46
    [Google Scholar]
  77. 77.  Kehl S, Dettner K 2009. Surviving submerged—setal tracheal gills for gas exchange in adult rheophilic diving beetles. J. Morphol. 270:1348–55
    [Google Scholar]
  78. 78.  Leijs R, van Nes EH, Watts CH, Cooper SJB, Humphreys WF, Hogendoorn K 2012. Evolution of blind beetles in isolated aquifers: a test of alternative modes of speciation. PLOS ONE 7:e34260
    [Google Scholar]
  79. 79.  Leys R, Cooper SJB, Strecker U, Wilkens H 2005. Regressive evolution of an eye pigment gene in independently evolved eyeless subterranean diving beetles. Biol. Lett. 1:496–99
    [Google Scholar]
  80. 80.  Leys R, Watts CHS 2008. Systematics and evolution of the Australian subterranean hydroporine diving beetles (Dytiscidae), with notes on Carabhydrus. Invertebr. Syst 22:217–25
    [Google Scholar]
  81. 81.  Leys R, Watts CHS, Cooper SJB, Humphreys WF 2003. Evolution of subterranean diving beetles (Coleoptera: Dytiscidae: Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57:2819–34
    [Google Scholar]
  82. 82.  Lytle DA, Peckarsky BL 2001. Spatial and temporal impacts of a diesel fuel spill on stream invertebrates. Freshwater Biol 46:693–704
    [Google Scholar]
  83. 83.  Marten A, Brändle M, Brandl R 2006. Habitat type predicts genetic population differentiation in freshwater invertebrates. Mol. Ecol. 15:2643–51
    [Google Scholar]
  84. 84.  McKenna DD, Wild AL, Kanda K, Bellamy CL, Beutel RG et al. 2015. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst. Entomol. 40:835–80
    [Google Scholar]
  85. 85.  Miguelez D, Maze RA, Ansola G, Valladares LF 2013. Aquatic Coleoptera and Hemiptera assemblages of a Cantabrian coastal stream (North Spain): composition, seasonal variation and environmental factors. Limnetica 32:47–60
    [Google Scholar]
  86. 86.  Millán A, Velasco J, Gutiérrez-Cánovas C, Arribas P, Picazo F et al. 2011. Mediterranean saline streams in southeast Spain: What do we know?. J. Arid Environ. 75:1352–59
    [Google Scholar]
  87. 87.  Miller GT, Pitnick S 2002. Sperm-female coevolution in Drosophila. Science 298:1230–33
    [Google Scholar]
  88. 88.  Miller KB 2001. On the phylogeny of the family Dytiscidae Linnaeus (Insecta: Coleoptera) with an emphasis on the morphology of the female reproductive tract. Insect Syst. Evol. 32:45–92
    [Google Scholar]
  89. 89.  Miller KB 2003. The phylogeny of diving beetles (Coleoptera: Dytiscidae) and the evolution of sexual conflict. Biol. J. Linn. Soc. 79:359–88
    [Google Scholar]
  90. 90.  Miller KB, Bergsten J 2014. Predaceous diving beetle sexual systems. See Ref. 160 199–234
  91. 91.  Miller KB, Bergsten J 2016. Diving Beetles of the World Baltimore, MD: Johns Hopkins Univ. PressKey review of generic diversity of major aquatic family.
    [Google Scholar]
  92. 92.  Miller KB, Jean A, Alarie Y, Hardy N, Gibson R 2013. Phylogenetic placement of North American subterranean diving beetles (Coleoptera: Dytiscidae). Arthropod Syst. Phylo. 71:75–90
    [Google Scholar]
  93. 93.  Monaghan MT, Wild R, Elliot M, Fujisawa T, Balke M et al. 2009. Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Syst. Biol. 58:298–311
    [Google Scholar]
  94. 94.  Moritz C, Patton JL, Schneider CJ, Smith TB 2000. Diversification of rainforest faunas: an integrated molecular approach. Annu. Rev. Ecol. Syst. 31:533–63
    [Google Scholar]
  95. 95.  Pallares S, Arribas P, Bilton DT, Millán A, Velasco J 2015. The comparative osmoregulatory ability of two water beetle genera whose species span the fresh-hypersaline gradient in inland waters (Coleoptera: Dytiscidae, Hydrophilidae). PLOS ONE 10:e0124299
    [Google Scholar]
  96. 96.  Pallares S, Arribas P, Bilton DT, Millán A, Velasco J, Ribera I 2017. The chicken or the egg? Adaptation to desiccation and salinity tolerance in a lineage of water beetles. Mol. Ecol. 26:5614–28One of the few insect studies on the origin of a trait (tolerance to salinity) combining both phylogenetic and experimental physiological data.
    [Google Scholar]
  97. 97.  Pallares S, Arribas P, Cespedes V, Millán A, Velasco J 2012. Lethal and sublethal behavioural responses of saline water beetles to acute heat and osmotic stress. Ecol. Entomol. 37:508–20
    [Google Scholar]
  98. 98.  Pallarés S, Botella-Cruz M, Arribas P, Millán A, Velasco J 2017. Aquatic insects in a multistress environment: cross-tolerance to salinity and desiccation. J. Exp. Biol. 220:1277–86
    [Google Scholar]
  99. 99.  Pallarés S, Velasco J, Millán A, Bilton DT, Arribas P 2017. Aquatic insects dealing with dehydration: Do desiccation resistance traits differ in species with contrasting habitat preferences?. PeerJ 4:e2382
    [Google Scholar]
  100. 100.  Parker GA 2006. Sexual conflict over mating and fertilization: an overview. Philos. Trans. R. Soc. B. 361:235–59
    [Google Scholar]
  101. 101.  Perkins PD 2017. Hydraenidae of Madagascar (Insecta: Coleoptera). Zootaxa 4342:1–264
    [Google Scholar]
  102. 102.  Perkins PD, Balfour-Browne J 1994. A contribution to the taxonomy of aquatic and humicolous beetles of the family Hydraenidae in Southern Africa. Fieldiana Zool 77:1–159
    [Google Scholar]
  103. 103.  Picazo F, Bilton DT, Moreno JL, Sánchez-Fernández D, Millán A 2012. Water beetle biodiversity in Mediterranean standing waters: assemblage composition, environmental drivers and nestedness patterns. Insect Divers Conserv 5:146–58
    [Google Scholar]
  104. 104.  Ponomarenko AG, Prokin AA 2015. Review of paleontological data on the evolution of aquatic beetles (Coleoptera). Paleontol. J. 49:1383–412
    [Google Scholar]
  105. 105.  Popov SV, Rogl F, Rozanov AY, Steininger FF, Shcherba IG, Kovac M 2004. Lithological-Paleogeographic maps of Paratethys: 10 maps Late Eocene to Pliocene. Cour. Forsch. Sencken. 250:1–46
    [Google Scholar]
  106. 106.  Potts K 2016. Secondary sexual characters in crawling water beetles (Coleoptera: Haliplidae): evidence for sexual conflict?. Plymouth Stud. Sci. 9:162–213
    [Google Scholar]
  107. 107.  Ribera I 2000. Biogeography and conservation of Iberian water beetles. Biol. Conserv. 92:131–50
    [Google Scholar]
  108. 108.  Ribera I 2008. Habitat constraints and the generation of diversity in freshwater macroinvertebrates. Aquatic Insects: Challenges to Populations J Lancaster, RA Briers 289–311 Wallingford, UK: CAB Int.A review on the habitat stability hypothesis applied to differences in lotic–lentic habitats.
    [Google Scholar]
  109. 109.  Ribera I, Balke M 2007. Recognition of a species-poor, geographically restricted but morphologically diverse Cape lineage of diving beetles (Coleoptera: Dytiscidae: Hyphydrini). J. Biogeogr. 34:1220–32
    [Google Scholar]
  110. 110.  Ribera I, Barraclough TG, Vogler AP 2001. The effect of habitat type on speciation rates and range movements in aquatic beetles: inferences from species-level phylogenies. Mol. Ecol. 10:721–35
    [Google Scholar]
  111. 111.  Ribera I, Beutel RG, Balke M, Vogler AP 2002. Discovery of Aspidytidae, a new family of aquatic beetles. Proc. R. Soc. B 269:2351–56
    [Google Scholar]
  112. 112.  Ribera I, Castro A, Diaz JA, Garrido J, Izquierdo A et al. 2011. The geography of speciation in narrow-range endemics of the ‘Haenydra’ lineage (Coleoptera, Hydraenidae, Hydraena). J. Biogeogr. 38:502–16
    [Google Scholar]
  113. 113.  Ribera I, Castro A, Hernando C 2010. Ochthebius (Enicocerus) aguilerai sp.n. from central Spain, with a molecular phylogeny of the Western Palaearctic species of Enicocerus (Coleoptera, Hydraenidae). Zootaxa 2351:1–13
    [Google Scholar]
  114. 114.  Ribera I, Foster GN, Vogler AP 2003. Does habitat use explain large scale species richness patterns of aquatic beetles in Europe?. Ecography 26:145–52
    [Google Scholar]
  115. 115.  Ribera I, Vogler AP 2000. Habitat type as a determinant of species range sizes: the example of lotic–lentic differences in aquatic Coleoptera. Biol. J. Linn. Soc. 71:33–52
    [Google Scholar]
  116. 116.  Ribera I, Vogler AP 2004. Speciation of Iberian diving beetles in Pleistocene refugia (Coleoptera, Dytiscidae). Mol. Ecol. 13:179–93
    [Google Scholar]
  117. 117.  Rudoy A, Beutel RG, Ribera I 2016. Evolution of the male genitalia in the genus Limnebius (Coleoptera, Hydraenidae). Zool. J. Linn. Soc. 178:97–127
    [Google Scholar]
  118. 118.  Rudoy A, Ribera I 2016. The macroevolution of size and complexity in insect male genitalia. PeerJ 4:e1882
    [Google Scholar]
  119. 119.  Rudoy A, Ribera I 2017. Evolution of sexual dimorphism and Rensch's rule in the beetle genus Limnebius (Hydraenidae): Is sexual selection opportunistic?. PeerJ 5:e3060
    [Google Scholar]
  120. 120.  Sabatelli S, Audisio P, Antonini G, Solano E, Martinoli A, Trizzino M 2016. Molecular ecology and phylogenetics of the water beetle genus Ochthebius revealed multiple independent shifts to marine rockpools lifestyle. Zool. Scr. 45:175–86
    [Google Scholar]
  121. 121.  Sánchez-Fernández D, Abellán P, Mellado A, Velasco J, Millán A 2006. Are water beetles good indicators of biodiversity in Mediterranean aquatic ecosystems? The case of the Segura river basin (SE Spain). Biodivers. Conserv. 15:4507–20
    [Google Scholar]
  122. 122.  Sánchez-Fernández D, Abellán P, Velasco J, Millán A 2004. Selecting areas to protect the biodiversity of aquatic ecosystems in a semiarid Mediterranean region using water beetles. Aquat. Conserv. 14:465–79
    [Google Scholar]
  123. 123.  Sánchez-Fernández D, Aragón P, Bilton DT, Lobo JM 2012. Assessing the congruence of thermal niche estimations derived from distribution and physiological data. A test using diving beetles. PLOS ONE 7:e48163
    [Google Scholar]
  124. 124.  Sánchez-Fernández D, Lobo JM, Abellán P, Millán A 2011. How to identify future sampling areas when information is biased and scarce: an example using predictive models for species richness of Iberian water beetles. J. Nat. Conserv. 19:54–59
    [Google Scholar]
  125. 125.  Sánchez-Fernández D, Lobo JM, Abellán P, Ribera I, Millán A 2008. Bias in freshwater biodiversity sampling: the case of Iberian water beetles. Divers. Distrib. 14:754–62
    [Google Scholar]
  126. 126.  Sánchez-Fernández D, Lobo JM, Hernández-Manrique OL 2011. Species distribution models that do not incorporate global data misrepresent potential distributions: a case study using Iberian diving beetles. Divers. Distrib. 17:163–71
    [Google Scholar]
  127. 127.  Sánchez-Fernández D, Lobo JM, Millán A, Ribera I 2012. Habitat type mediates equilibrium with climatic conditions in the distribution of Iberian diving beetles. Global Ecol. Biogeogr. 21:988–97
    [Google Scholar]
  128. 128.  Scheffer M, Vergnon R, van Nes EH, Cuppen JGM, Peeters ETHM et al. 2015. The evolution of functionally redundant species; evidence from beetles. PLOS ONE 10:e0137974
    [Google Scholar]
  129. 129.  Shirt DB, Angus RB 1992. A revision of the Nearctic water beetles related to Potamonectes depressus (Fabricius) (Coleoptera: Dytiscidae). Coleopt. Bull. 46:109–41
    [Google Scholar]
  130. 130.  Short AEZ 2018. Systematics of aquatic beetles (Coleoptera): current state and future directions. Syst. Entomol. 43:1–18Up-to-date review of water beetle taxonomic diversity.
    [Google Scholar]
  131. 131.  Short AEZ, Caterino MS 2009. On the validity of habitat as a predictor of genetic structure in aquatic systems: a comparative study using California water beetles. Mol. Ecol. 18:403–14
    [Google Scholar]
  132. 132.  Short AEZ, Fikáček M 2013. Molecular phylogeny, evolution, and classification of the Hydrophilidae (Coleoptera). Syst. Entomol. 38:723–52
    [Google Scholar]
  133. 133.  Short AEZ, Joly LJ, García M, Wild A, Bloom DD, Maddison DR 2015. Molecular phylogeny of the Hydroscaphidae (Coleoptera: Myxophaga) with description of a remarkable new lineage from the Guiana Shield. Syst. Entomol. 40:214–29
    [Google Scholar]
  134. 134.  Short AEZ, Liebherr JK 2007. Systematics and biology of the endemic water scavenger beetles of Hawaii (Coleoptera: Hydrophilidae: Hydrophilini). Syst. Entomol. 32:601–24
    [Google Scholar]
  135. 135.  Shuker D, Simmons LW 2014. The Evolution of Insect Mating Systems Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  136. 136.  Simmons LW 2014. Sexual selection and genital evolution. Austral Entomol 53:1–17
    [Google Scholar]
  137. 137.  Spangler PJ, Decu V 1998. Coleoptera aquatica. Encyclopaedia Biospeologica, Tome II C Juberthie, V Decu 1031–46 Bucharest, Romania: Soc. Biospéologie Moulis
    [Google Scholar]
  138. 138.  Tierney SM, Cooper SJB, Saint KM, Bertozzi T, Hyde J et al. 2015. Opsin transcripts of predatory diving beetles: a comparison of surface and subterranean photic niches. R. Soc. Open Sci. 2:140386
    [Google Scholar]
  139. 139.  Toussaint EFA, Beutel RG, Morinière J, Jia F, Xu S et al. 2016. Molecular phylogeny of the highly disjunct cliff water beetles from South Africa and China (Coleoptera: Aspidytidae). Zool. J. Linn. Soc. 176:537–46
    [Google Scholar]
  140. 140.  Toussaint EFA, Bloom DD, Short AEZ 2017. Cretaceous West Gondwana vicariance shaped giant water scavenger beetle palaeobiogeography. J. Biogeogr. 44:1952–65
    [Google Scholar]
  141. 141.  Toussaint EFA, Condamine FL, Hawlitschek O, Watts CHS, Porch N et al. 2015. Unveiling the diversification dynamics of Australasian predaceous diving beetles in the Cenozoic. Syst. Biol. 64:3–24
    [Google Scholar]
  142. 142.  Toussaint EFA, Fikáček M, Short AEZ 2016. India–Madagascar vicariance explains cascade beetle biogeography. Biol. J. Linn. Soc. 118:982–91
    [Google Scholar]
  143. 143.  Toussaint EFA, Hendrich L, Escalona H, Porch N, Balke M 2016. Evolutionary history of a secondary terrestrial Australian diving beetle (Coleoptera, Dytiscidae) reveals a lineage of high morphological and ecological plasticity. Syst. Entomol. 41:650–57
    [Google Scholar]
  144. 144.  Toussaint EFA, Hendrich L, Hájek J, Michat M, Panjaita R et al. 2017. Evolution of Pacific Rim diving beetles sheds light on Amphi-Pacific biogeography. Ecography 40:500–10
    [Google Scholar]
  145. 145.  Toussaint EFA, Hendrich L, Shaverdo H, Balke M 2015. Mosaic patterns of diversification dynamics following the colonization of Melanesian islands. Sci. Rep. 5:16016
    [Google Scholar]
  146. 146.  Toussaint EFA, Sagata K, Surbakti S, Hendrich L, Balke M 2013. Australasian sky islands act as a diversity pump facilitating peripheral speciation and complex reversal from narrow endemic to widespread ecological supertramp. Ecol. Evol. 3:1031–49
    [Google Scholar]
  147. 147.  Toussaint EFA, Seidel M, Arriaga-Varela E, Hájek J, Král D et al. 2017. The peril of dating beetles. Syst. Entomol. 42:1–10
    [Google Scholar]
  148. 148.  Toussaint EFA, Short AEZ 2016. Miocenic evolution of Brazilian Shield Platynectes diving beetles in Amazon Basin Paleodrainage systems. Ann. Soc. Entomol. France 52:185–91
    [Google Scholar]
  149. 149.  Toussaint EFA, Short AEZ 2017. Biogeographic mirages? Molecular evidence for dispersal-driven evolution in Hydrobiusini water scavenger beetles. Syst. Entomol. 42:692–702
    [Google Scholar]
  150. 150.  Trizzino M, Audisio PA, Antonini G, Mancini E, Ribera I 2011. Molecular phylogeny and diversification of the “Haenydra” lineage (Hydraenidae, genus Hydraena), a north-Mediterranean endemic-rich group of rheophilic Coleoptera. Mol. Phylogen. Evol. 61:772–83
    [Google Scholar]
  151. 151.  Trizzino M, Jäch MA, Audisio P, Alonso R, Ribera I 2013. A molecular phylogeny of the cosmopolitan hyperdiverse genus Hydraena Kugelann (Coleoptera, Hydraenidae). Syst. Entomol. 38:192–20
    [Google Scholar]
  152. 152.  Verberk WCEP, Bilton DT 2013. Respiratory control in aquatic insects dictates their vulnerability to global warming. Biol. Lett. 9:20130473
    [Google Scholar]
  153. 153.  Verberk WCEP, Bilton DT, Calosi P, Spicer JI 2011. Oxygen supply in aquatic ectotherms: Partial pressure and solubility together explain biodiversity and size patterns. Ecology 92:1565–72
    [Google Scholar]
  154. 154.  Verberk WCEP, Calosi P, Spicer JI, Kehl S, Bilton DT 2018. Does plasticity in thermal tolerance trade off with inherent tolerance? The influence of setal tracheal gills on thermal tolerance and its plasticity in a group of European diving beetles. J. Insect Physiol. 106:163–71
    [Google Scholar]
  155. 155.  Vergnon R, Leijs R, van Nes EH, Scheffer M 2013. Repeated parallel evolution reveals limiting similarity in subterranean diving beetles. Am. Nat. 182:67–75
    [Google Scholar]
  156. 156.  Villastrigo A, Fery H, Manuel M, Millán A, Ribera I 2018. Evolution of salinity tolerance in the diving beetle tribe Hygrotini (Coleoptera, Dytiscidae). Zool. Scr. 47:63–71
    [Google Scholar]
  157. 157.  Watts CHS, Humphreys WF 2004. Thirteen new Dytiscidae (Coleoptera) of the genera Boongurrus Larson, Tjirtudessus Watts & Humphreys and Nirripirti Watts and Humphreys, from underground waters in Australia. Trans. R. Soc. South Aust. 128:99–129
    [Google Scholar]
  158. 158.  Watts CHS, Humphreys WF 2006. Twenty-six new Dytiscidae (Coleoptera) of the genera Limbodessus Guignot and Nirripirti Watts & Humphreys, from underground waters in Australia. Trans. R. Soc. South Aust. 130:123–85
    [Google Scholar]
  159. 159.  Wiens JJ 2004. Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58:193–97
    [Google Scholar]
  160. 160.  Yee DA 2014. Ecology, Systematics, and Natural History of Predaceous Diving Beetles (Coleoptera: Dytiscidae) New York: Springer
    [Google Scholar]
  161. 161.  Zhang S-Q, Che L-H, Li Y, Liang D, Pang H et al. 2018. Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nat. Commun. 9:205
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011118-111829
Loading
/content/journals/10.1146/annurev-ento-011118-111829
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error