1932

Abstract

Nest choice in spp.; task allocation and the regulation of activity in , , and spp.; and trail networks in and all provide examples of correspondences between the dynamics of the environment and the dynamics of collective behavior. Some important aspects of the dynamics of the environment include stability, the threat of rupture or disturbance, the ratio of inflow and outflow of resources or energy, and the distribution of resources. These correspond to the dynamics of collective behavior, including the extent of amplification, how feedback instigates and inhibits activity, and the extent to which the interactions that provide the information to regulate behavior are local or spatially centralized.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011118-111923
2019-01-07
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/ento/64/1/annurev-ento-011118-111923.html?itemId=/content/journals/10.1146/annurev-ento-011118-111923&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Adler F, Gordon DM 2003. Optimization, conflict, and nonoverlapping foraging ranges in ants. Am. Nat. 162:529–43
    [Google Scholar]
  2. 2.  Amador-Vargas S, Gronenberg W, Wcislo WT, Mueller U 2015. Specialization and group size: brain and behavioural correlates of colony size in ants lacking morphological castes. Proc. R. Soc. B 282:20142502
    [Google Scholar]
  3. 3.  Arenas A, Roces F 2016. Learning through the waste: Olfactory cues from the colony refuse influence plant preferences in foraging leaf-cutting ants. J. Exp. Biol. 219:2490–96
    [Google Scholar]
  4. 4.  Beekman M, Sumpter DJT, Ratnieks FLW 2001. Phase transition between disordered and ordered foraging in Pharaoh's ants. PNAS 98:9703–6
    [Google Scholar]
  5. 5.  Bengston SE, Dornhaus A 2015. Latitudinal variation in behaviors linked to risk tolerance is driven by nest-site competition and spatial distribution in the ant Temnothorax rugatulus. Behav. Ecol. Sociobiol. 69:1265–74
    [Google Scholar]
  6. 6.  Beshers SN, Fewell JH 2001. Models of division of labor in social insects. Annu. Rev. Entomol. 46:413–40
    [Google Scholar]
  7. 7.  Beshers SN, Traniello JFA 1994. The adaptiveness of worker demography in the attine ant Trachymyrmex septentrionalis. Ecology 75:763–75
    [Google Scholar]
  8. 8.  Bonavita-Cougourdan A, Clement J-L, Lange C 1993. Functional subcaste discrimination (foragers and brood-tenders) in the ant Camponotus vagus scop.: polymorphism of cuticular hydrocarbon patterns. J. Chem. Ecol. 19:1461–77
    [Google Scholar]
  9. 9.  Borgesen LW 2000. Nutritional function of replete workers in the pharaoh's ant, Monomorium pharaonis (L.). Insectes Soc 47:141–46
    [Google Scholar]
  10. 10.  Bouchebti S, Ferrere S, Vittori K, Latil G, Dussutour A, Fourcassié V 2015. Contact rate modulates foraging efficiency in leaf cutting ants. Sci. Rep. 5:18650
    [Google Scholar]
  11. 11.  Bruce AI, Burd M 2012. Allometric scaling of foraging rate with trail dimensions in leaf-cutting ants. Proc. R. Soc. B 279:2442–47
    [Google Scholar]
  12. 12.  Bruce AI, Czaczkes TJ, Burd M 2017. Tall trails: Ants resolve an asymmetry of information and capacity in collective maintenance of infrastructure. Anim. Behav. 127:179–85
    [Google Scholar]
  13. 13.  Buczkowski G, Bennett G 2009. Colony budding and its effects on food allocation in the highly polygynous ant, Monomorium pharaonis. Ethology 115:1091–99
    [Google Scholar]
  14. 14.  Bujan J, Yanoviak SP, Kaspari M 2016. Desiccation resistance in tropical insects: causes and mechanisms underlying variability in a Panama ant community. Ecol. Evol. 6:6282–91
    [Google Scholar]
  15. 15.  Calabi P, Traniello JFA 1989. Social organization in the ant Pheidole dentata. Behav. Ecol. Sociobiol. 24:69–78
    [Google Scholar]
  16. 16.  Cao TT, Dornhaus A 2012. Ants use pheromone markings in emigrations to move closer to food-rich areas. Insectes Soc 59:87–92
    [Google Scholar]
  17. 17.  Chandrasekhar A, Gordon DM, Navlakha S 2018. A distributed algorithm to maintain and repair the trail networks of arboreal ants. Sci. Rep. 8:9297
    [Google Scholar]
  18. 18.  Charbonneau D, Dornhaus A 2015. Workers ‘specialized’ on inactivity: behavioral consistency of inactive workers and their role in task allocation. Behav. Ecol. Sociobiol. 69:1459–72
    [Google Scholar]
  19. 19.  Cibils-Martina L, Elizalde L, Farji-Brener AG 2017. Traffic rules around the corner: walking of leaf-cutting ants at branching points in trunk trails. Insectes Soc 64:549–55
    [Google Scholar]
  20. 20.  Cochet RB, Leon AO, Ortiz-Reyes A 2017. Behavioral patterns of parasitoid phorids (Diptera: Phoridae) of Atta colombica (Hymenoptera: Formicidae). Rev. Biol. Trop. 65:461–73
    [Google Scholar]
  21. 21.  Collett TS, Waxman D 2005. Ant navigation: reading geometrical signposts. Curr. Biol. 15:R171–73
    [Google Scholar]
  22. 22.  Currie CR 2001. A community of ants, fungi, and bacteria: a multilateral approach to studying symbiosis. Annu. Rev. Microbiol. 55:357–80
    [Google Scholar]
  23. 23.  Davidson JD, Arauco-Aliaga RP, Crow S, Gordon DM, Goldman MS 2016. Effect of interactions between harvester ants on forager decisions. Front. Ecol. Evol. 4:115
    [Google Scholar]
  24. 24.  Deneubourg JL, Aron S, Goss S, Pasteels JM, Duerinck G 1986. Random behavior, amplification processes and number of participants: how they contribute to the foraging properties of ants. Physica D 22:176–86
    [Google Scholar]
  25. 25.  Detrain C 1990. Field-study on foraging by the polymorphic ant species, Pheidole pallidula. Insectes Soc. 37:315–32
    [Google Scholar]
  26. 26.  Detrain C, Deneubourg JL, Goss S, Quinet Y 1991. Dynamics of collective exploration in the ant Pheidole pallidula. Psyche 98:21–31
    [Google Scholar]
  27. 27.  Detrain C, Natan C, Deneubourg JL 2001. The influence of the physical environment on the self-organised foraging patterns of ants. Naturwissenschaften 88:171–74
    [Google Scholar]
  28. 28.  Doering GN, Pratt SC 2016. Queen location and nest site preference influence colony reunification by the ant Temnothorax rugatulus. Insectes Soc. 63:585–91
    [Google Scholar]
  29. 29.  Doran C, Newham ZF, Phillips BB, Franks NR 2015. Commitment time depends on both current and target nest value in Temnothorax albipennis ant colonies. Behav. Ecol. Sociobiol. 69:1183–90
    [Google Scholar]
  30. 30.  Dupuis EC, Harrison JF 2017. Trunk trail maintenance in leafcutter ants: caste involvement and effects of obstacle type and size on path clearing in Atta cephalotes. Insectes Soc 64:189–96
    [Google Scholar]
  31. 31.  Dussutour A, Beshers S, Deneubourg J-L, Fourcassié V 2007. Crowding increases foraging efficiency in the leaf-cutting ant Atta colombica. Insectes Soc 54:158–65
    [Google Scholar]
  32. 32.  Dussutour A, Beshers S, Deneubourg J-L, Fourcassié V 2009. Priority rules govern the organization of traffic on foraging trails under crowding conditions in the leaf-cutting ant Atta colombica. J. Exp. Biol. 212:499–505
    [Google Scholar]
  33. 33.  Edwards JP, Abraham L 1990. Changes in food selection by workers of the pharaoh's ant, Monomorium pharaonis. Med. Vet. Entomol. 4:205–11
    [Google Scholar]
  34. 34.  Ellis S, Robinson EJH 2015. The role of non-foraging nests in polydomous wood ant colonies. PLOS ONE 10:e0138321
    [Google Scholar]
  35. 35.  Farji-Brener AG, Amador-Vargas S, Chinchilla F, Escobar S, Cabrera S et al. 2010. Information transfer in head-on encounters between leaf-cutting ant workers: food, trail condition or orientation cues?. Anim. Behav. 79:343–49
    [Google Scholar]
  36. 36.  Farji-Brener AG, Chinchilla F, Umana MN, Ocasio-Torres ME, Chauta-Mellizo A et al. 2015. Branching angles reflect a trade-off between reducing trail maintenance costs or travel distances in leaf-cutting ants. Ecology 96:510–17
    [Google Scholar]
  37. 37.  Farji-Brener AG, Elizalde L, Fernández-Marin H, Amador-Vargas S 2016. Social life and sanitary risks: Evolutionary and current ecological conditions determine waste management in leaf-cutting ants. Proc. R. Soc. B 283:20160625
    [Google Scholar]
  38. 38.  Farji-Brener AG, Morueta-Holme N, Chinchilla F, Willink B, Ocampo N, Bruner G 2012. Leaf-cutting ants as road engineers: the width of trails at branching points in Atta cephalotes. Insectes Soc 59:389–94
    [Google Scholar]
  39. 39.  Feener DH 1981. Competition between ant species: outcome controlled by parasitic flies. Science 214:815–17
    [Google Scholar]
  40. 40.  Flanagan TP, Pinter-Wollman NM, Moses ME, Gordon DM 2013. Fast and flexible: Argentine ants recruit from nearby trails. PLOS ONE 8:e70888
    [Google Scholar]
  41. 41.  Foitzik S, Heinze J 1998. Nest site limitation and colony takeover in the ant Leptothorax nylanderi. Behav. Ecol. 9:367–75
    [Google Scholar]
  42. 42.  Fourcassié V, Deneubourg JL 1994. The dynamics of collective exploration and trail-formation in Monomorium pharaonis: experiments and model. Physiol. Entomol. 19:291–300
    [Google Scholar]
  43. 43.  Fowler HG, Filho FA, Bueno OC 1993. Seasonal space usage by the introduced pharaoh's ant, Monomorium-pharaonis (L.) (Hym., Formicidae), in institutional settings in Brazil and its relation to other structural ant species. J. Appl. Entomol. 115:416–19
    [Google Scholar]
  44. 44.  Franks NR, Dornhaus A, Best CS, Jones EL 2006. Decision making by small and large house-hunting ant colonies: One size fits all. Anim. Behav. 72:611–16
    [Google Scholar]
  45. 45.  Franks NR, Dornhaus A, Fitzsimmons JP, Stevens M 2003. Speed versus accuracy in collective decision making. Proc. R. Soc. B 270:2457–63
    [Google Scholar]
  46. 46.  Frederickson ME, Gordon DM 2009. The intertwined population biology of two Amazonian myrmecophytes and their symbiotic ants. Ecology 90:1595–607
    [Google Scholar]
  47. 47.  Giraldo YM, Patel E, Gronenberg W, Traniello JFA 2013. Division of labor and structural plasticity in an extrinsic serotonergic mushroom body neuron in the ant Pheidole dentata. Neurosci. Lett. 534:107–11
    [Google Scholar]
  48. 48.  Gordon DG, Ilieş I, Traniello JFA 2017. Behavior, brain, and morphology in a complex insect society: trait integration and social evolution in the exceptionally polymorphic ant Pheidole rhea. Behav. Ecol. Sociobiol. 71:166
    [Google Scholar]
  49. 49.  Gordon DM 1983. The relation of recruitment rate to activity rhythms in the harvester ant, Pogonomyrmex barbatus (F. Smith) (Hymenoptera: Formicidae). J. Kansas Entomol. Soc. 56:277–85
    [Google Scholar]
  50. 50.  Gordon DM 1989. Dynamics of task switching in harvester ants. Anim. Behav. 38:194–204
    [Google Scholar]
  51. 51.  Gordon DM 1992. How colony growth affects forager intrusion between neighboring harvester ant colonies. Behav. Ecol. Sociobiol. 31:417–27
    [Google Scholar]
  52. 52.  Gordon DM 1992. Nest relocation in harvester ants. Ann. Entomol. Soc. Am. 85:44–47
    [Google Scholar]
  53. 53.  Gordon DM 1993. The spatial scale of seed collection by harvester ants. Oecologia 95:479–87
    [Google Scholar]
  54. 54.  Gordon DM 1995. The expandable network of ant exploration. Anim. Behav. 50:995–1007
    [Google Scholar]
  55. 55.  Gordon DM 2012. The dynamics of foraging trails in the tropical arboreal ant Cephalotes goniodontus. PLOS ONE 7:e50472
    [Google Scholar]
  56. 56.  Gordon DM 2013. The rewards of restraint in the collective regulation of foraging by harvester ant colonies. Nature 498:91–93
    [Google Scholar]
  57. 57.  Gordon DM 2014. The ecology of collective behavior. PLOS Biol 12:e1001805
    [Google Scholar]
  58. 58.  Gordon DM 2016. From division of labor to the collective behavior of social insects. Behav. Ecol. Sociobiol. 70:1101–8
    [Google Scholar]
  59. 59.  Gordon DM 2017. Local regulation of trail networks of the arboreal turtle ant, Cephalotes goniodontus. Am. Nat. 190:E156–69
    [Google Scholar]
  60. 60.  Gordon DM, Goodwin BC, Trainor LEH 1992. A parallel distributed model of the behavior of ant colonies. J. Theor. Biol. 156:293–307
    [Google Scholar]
  61. 61.  Gordon DM, Guetz A, Greene MJ, Holmes S 2011. Colony variation in the collective regulation of foraging by harvester ants. Behav. Ecol. 22:429–35
    [Google Scholar]
  62. 62.  Gordon DM, Mehdiabadi NJ 1999. Encounter rate and task allocation in harvester ants. Behav. Ecol. Sociobiol. 45:370–77
    [Google Scholar]
  63. 63.  Gordon DM, Rosengren R, Sundstrom L 1992. The allocation of foragers in red wood ants. Ecol. Entomol. 17:114–20
    [Google Scholar]
  64. 64.  Graham JM, Simpson-Kent IL, Seid MA 2016. A mathematical framework exhibiting the emergence of dynamic expansion of task repertoire in Pheidole dentata. J. Biol. Syst. 24:217–35
    [Google Scholar]
  65. 65.  Greene MJ, Gordon DM 2003. Social insects: Cuticular hydrocarbons inform task decisions. Nature 423:32
    [Google Scholar]
  66. 66.  Greene MJ, Pinter-Wollman N, Gordon DM 2013. Interactions with combined chemical cues inform harvester ant foragers' decisions to leave the nest in search of food. PLOS ONE 8:e52219
    [Google Scholar]
  67. 67.  Hart A, Jackson DE 2006. U-turns on ant pheromone trails. Curr. Biol. 16:R42–43
    [Google Scholar]
  68. 68.  Hecker JP, Letendre K, Stolleis K, Washington D, Moses ME 2012. Formica ex machina: ant swarm foraging from physical to virtual and back again. Swarm Intelligence M Dorigo, M Birattari, C Blum, AL Christensen, AP Engelbrecht, R Groß, T Stützle 252–59 Berlin, Ger.: Springer
    [Google Scholar]
  69. 69.  Heinze J 2008. The demise of the standard ant. Myrmecol. News 11:9–20
    [Google Scholar]
  70. 70.  Herbers JM 1989. Community structure in north temperate ants: temporal and spatial variation. Oecologia 81:201–11
    [Google Scholar]
  71. 71.  Hu Y, Sanders JG, Lukasik P et al. 2018. Herbivourous turtle ants obtain essential nutrients from a conserved nitrogen-cycling gut microbiome. Nat. Comm. 9:964–78
    [Google Scholar]
  72. 72.  Ilies I, Muscedere ML, Traniello JFA 2015. Neuroanatomical and morphological trait clusters in the ant Genus pheidole: evidence for modularity and integration in brain structure. Brain Behav. Evolut. 85:63–76
    [Google Scholar]
  73. 73.  Ingram KK, Pilko A, Heer J, Gordon DM 2013. Colony life history and lifetime reproductive success of red harvester ant colonies. J. Anim. Ecol. 82:540–50
    [Google Scholar]
  74. 74.  Jackson DE, Holcombe M, Ratnieks FLW 2004. Trail geometry gives polarity to ant foraging networks. Nature 432:907–9
    [Google Scholar]
  75. 75.  Johnston AB, Wilson EO 1985. Correlates of variation in the major minor ratio of the ant, Pheidole dentata (Hymenoptera, Formicidae). Ann. Entomol. Soc. Am. 78:8–11
    [Google Scholar]
  76. 76.  Jongepier E, Kleeberg I, Job S, Foitzik S 2014. Collective defence portfolios of ant hosts shift with social parasite pressure. Proc. R. Soc. B 281:20140225
    [Google Scholar]
  77. 77.  Kamhi JF, Gronenberg W, Robson SKA, Traniello JFA 2016. Social complexity influences brain investment and neural operation costs in ants. Proc. R. Soc. B 283:20161949
    [Google Scholar]
  78. 78.  Kang Y, Theraulaz G 2016. Dynamical models of task organization in social insect colonies. Bull. Math. Biol. 78:879–915
    [Google Scholar]
  79. 79.  Karsai I, Wenzel JW 1998. Productivity, individual-level and colony-level flexibility, and organization of work as consequences of colony size. PNAS 95:8665–69
    [Google Scholar]
  80. 80.  Lanan M 2014. Spatiotemporal resource distribution and foraging strategies of ants (Hymenoptera: Formicidae). Myrmecol. News 20:53–70
    [Google Scholar]
  81. 81.  Leighton GM, Charbonneau D, Dornhaus A 2017. Task switching is associated with temporal delays in Temnothorax rugatulus ants. Behav. Ecol. 28:319–27
    [Google Scholar]
  82. 82.  MacKay WP 1985. A comparison of the energy budgets of 3 species of Pogonomyrmex harvester ants (Hymenoptera: Formicidae). Oecologia 66:484–94
    [Google Scholar]
  83. 83.  Mallon EB, Pratt SC, Franks NR 2001. Individual and collective decision-making during nest site selection by the ant Leptothorax albipennis. Behav. Ecol. Sociobiol. 50:352–59
    [Google Scholar]
  84. 84.  Mersch DP 2016. The social mirror for division of labor: what network topology and dynamics can teach us about organization of work in insect societies. Behav. Ecol. Sociobiol. 70:1087–99
    [Google Scholar]
  85. 85.  Mertl AL, Sorenson MD, Traniello JFA 2010. Community-level interactions and functional ecology of major workers in the hyperdiverse ground-foraging Pheidole (Hymenoptera, Formicidae) of Amazonian Ecuador. Insectes Soc 57:441–52
    [Google Scholar]
  86. 86.  Mertl AL, Traniello JFA 2009. Behavioral evolution in the major worker subcaste of twig-nesting pheidole (Hymenoptera: Formicidae): Does morphological specialization influence task plasticity?. Behav. Ecol. Sociobiol. 63:1411–26
    [Google Scholar]
  87. 87.  Middleton EJT, Latty T 2016. Resilience in social insect infrastructure systems. J. R. Soc. Interface 13:20151022
    [Google Scholar]
  88. 88.  Miramontes O, Sole RV, Goodwin BC 1993. Collective behavior of random-activated mobile cellular automata. Physica D 63:145–60
    [Google Scholar]
  89. 89.  Mitrus S 2016. Emigration speed and the production of sexuals in colonies of the ant Temnothorax crassispinus under high and low levels of disturbance. Insectes Soc 63:127–34
    [Google Scholar]
  90. 90.  Modlmeier AP, Foitzik S 2011. Productivity increases with variation in aggression among group members in Temnothorax ants. Behav. Ecol. 22:1026–32
    [Google Scholar]
  91. 91.  Möglich M 1978. Social organization of nest emigration in Leptothorax (Hym., Form.). Insectes Soc 25:205–25
    [Google Scholar]
  92. 92.  Muscedere ML 2017. Pheidole ants: sociobiology of a highly diverse genus. Reference Module in Life Sciences Amsterdam, Neth.: Elsevier
    [Google Scholar]
  93. 93.  Muscedere ML, Djermoun A, Traniello JFA 2013. Brood-care experience, nursing performance, and neural development in the ant Pheidole dentata. Behav. Ecol. Sociobiol. 67:775–84
    [Google Scholar]
  94. 94.  Muscedere ML, Traniello JF 2012. Division of labor in the hyperdiverse ant genus Pheidole is associated with distinct subcaste- and age-related patterns of worker brain organization. PLOS ONE 7:e31618
    [Google Scholar]
  95. 95.  Muscedere ML, Traniello JFA, Gronenberg W 2011. Coming of age in an ant colony: Cephalic muscle maturation accompanies behavioral development in Pheidole dentata. Naturwissenschaften 98:783
    [Google Scholar]
  96. 96.  Norman VC, Pamminger T, Hughes WOH 2017. The effects of disturbance threat on leaf-cutting ant colonies: a laboratory study. Insectes Soc 64:75–85
    [Google Scholar]
  97. 97.  O'Donnell S, Bulova SJ 2007. Worker connectivity: a review of the design of worker communication systems and their effects on task performance in insect societies. Insectes Soc 54:203–10
    [Google Scholar]
  98. 98.  O'Shea-Wheller TA, Masuda N, Sendova-Franks AB, Franks NR 2017. Variability in individual assessment behaviour and its implications for collective decision-making. Proc. R. Soc. B 284:20162237
    [Google Scholar]
  99. 99.  Pacala SW, Gordon DM, Godfray HCJ 1996. Effects of social group size on information transfer and task allocation. Evol. Ecol. 10:127–65
    [Google Scholar]
  100. 100.  Passera L, Roncin E, Kaufmann B, Keller L 1996. Increased soldier production in ant colonies exposed to intraspecific competition. Nature 379:630–31
    [Google Scholar]
  101. 101.  Pinter-Wollman N, Bala A, Merrell A, Queirolo J, Stumpe MC et al. 2013. Harvester ants use interactions to regulate forager activation and availability. Anim. Behav. 86:197–207
    [Google Scholar]
  102. 102.  Pinter-Wollman N, Gordon DM, Holmes S 2012. Nest site and weather affect the personality of harvester ant colonies. Behav. Ecol. 23:1022–29
    [Google Scholar]
  103. 103.  Pinter-Wollman N, Hubler J, Holley JA, Franks NR, Dornhaus A 2012. How is activity distributed among and within tasks in Temnothorax ants?. Behav. Ecol. Sociobiol. 66:1407–20
    [Google Scholar]
  104. 104.  Portha S, Deneubourg JL, Detrain C 2002. Self-organized asymmetries in ant foraging: a functional response to food type and colony needs. Behav. Ecol. 13:776–81
    [Google Scholar]
  105. 105.  Pratt SC 2008. Efficiency and regulation of recruitment during colony emigration by the ant Temnothorax curvispinosus. Behav. Ecol. Sociobiol. 62:1369–76
    [Google Scholar]
  106. 106.  Pratt SC 2017. Nest site choice in social insects. Reference Module in Life Sciences Amsterdam, Neth.: Elsevier
    [Google Scholar]
  107. 107.  Pratt SC, Sumpter DJT, Mallon EB, Franks NR 2005. An agent-based model of collective nest choice by the ant Temnothorax albipennis. Anim. Behav. 70:1023–36
    [Google Scholar]
  108. 108.  Razin N, Eckmann JP, Feinerman O 2013. Desert ants achieve reliable recruitment across noisy interactions. J. R. Soc. Interface 10:20130079
    [Google Scholar]
  109. 109.  Robinson EJH, Green KE, Jenner EA, Holcombe M, Ratnieks FLW 2008. Decay rates of attractive and repellent pheromones in an ant foraging trail network. Insectes Soc 55:246–51
    [Google Scholar]
  110. 110.  Robinson EJH, Jackson DE, Holcombe M, Ratnieks FLW 2005. Insect communication: ‘no entry’ signal in ant foraging. Nature 438:442
    [Google Scholar]
  111. 111.  Roces F, Tautz J, Holldobler B 1993. Stridulation in leaf-cutting ants: short-range recruitment through plant-borne vibrations. Naturwissenschaften 80:521–24
    [Google Scholar]
  112. 112.  Röschard J, Roces F 2003. Cutters, carriers and transport chains: distance-dependent foraging strategies in the grass-cutting ant Atta vollenweideri. Insectes Soc 50:237–44
    [Google Scholar]
  113. 113.  Russell JA, Moreau CS, Goldman-Huertas B, Fujiwara M, Lohman DJ, Pierce NE 2009. Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. PNAS 106:21236–41
    [Google Scholar]
  114. 114.  Sasaki T, Colling B, Sonnenschein A, Boggess MM, Pratt SC 2015. Flexibility of collective decision making during house hunting in Temnothorax ants. Behav. Ecol. Sociobiol. 69:707–14
    [Google Scholar]
  115. 115.  Sasaki T, Pratt SC 2018. The psychology of superorganisms: collective decision making by insect societies. Annu. Rev. Entomol. 63:259–75
    [Google Scholar]
  116. 116.  Scharf I, Modlmeier AP, Fries S, Tirard C, Foitzik S 2012. Characterizing the collective personality of ant societies: Aggressive colonies do not abandon their home. PLOS ONE 7:e33314
    [Google Scholar]
  117. 117.  Segev U, Burkert L, Feldmeyer B, Foitzik S 2017. Pace-of-life in a social insect: Behavioral syndromes in ants shift along a climatic gradient. Behav. Ecol. 28:1149–59
    [Google Scholar]
  118. 118.  Seid MA, Traniello JFA 2006. Age-related repertoire expansion and division of labor in Pheidole dentata (Hymenoptera: Formicidae): a new perspective on temporal polyethism and behavioral plasticity in ants. Behav. Ecol. Sociobiol. 60:631–44
    [Google Scholar]
  119. 119.  Sempo G, Detrain C 2010. Social task regulation in the dimorphic ant, Pheidole pallidula: the influence of caste ratio. J. Insect Sci. 10:3
    [Google Scholar]
  120. 120.  Stroeymeyt N, Robinson EJH, Hogan PM, Marshall JAR, Giurfa M, Franks NR 2011. Experience-dependent flexibility in collective decision making by house-hunting ants. Behav. Ecol. 22:535–42
    [Google Scholar]
  121. 121.  Sumpter DJT, Beekman M 2003. From nonlinearity to optimality: pheromone trail foraging by ants. Anim. Behav. 66:273–80
    [Google Scholar]
  122. 122.  Wagner D, Tissot M, Gordon D 2001. Task-related environment alters the cuticular hydrocarbon composition of harvester ants. J. Chem. Ecol. 27:1805–19
    [Google Scholar]
  123. 123.  Waters JS, Fewell JH 2012. Information processing in social insect networks. PLOS ONE 7:e40337
    [Google Scholar]
  124. 124.  Wetterer JK 2010. Worldwide spread of the pharaoh ant, Monomorium pharaonis (Hymenoptera: Formicidae). Myrmecol. News 13:115–29
    [Google Scholar]
  125. 125.  Wilson EO 1976. The organization of colony defense in the ant Pheidole dentata mayr (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 1:63–81
    [Google Scholar]
  126. 126.  Wirth R, Herz H, Reyel R, Beyschlag W, Hölldobler B 2003. Herbivory of Leaf-Cutting Ants: A Case Study on Atta colombica in the Tropical Rainforest of Panama New York: Springer-Verlag Berlin Heidelberg
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011118-111923
Loading
/content/journals/10.1146/annurev-ento-011118-111923
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error