1932

Abstract

Bees—including solitary, social, wild, and managed species—are key pollinators of flowering plant species, including nearly three-quarters of global food crops. Their ecological importance, coupled with increased annual losses of managed honey bees and declines in populations of key wild species, has focused attention on the factors that adversely affect bee health, including viral pathogens. Genomic approaches have dramatically expanded understanding of the diversity of viruses that infect bees, the complexity of their transmission routes—including intergenus transmission—and the diversity of strategies bees have evolved to combat virus infections, with RNA-mediated responses playing a prominent role. Moreover, the impacts of viruses on their hosts are exacerbated by the other major stressors bee populations face, including parasites, poor nutrition, and exposure to chemicals. Unraveling the complex relationships between viruses and their bee hosts will lead to improved understanding of viral ecology and management strategies that support better bee health.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Bee Viruses: Ecology, Pathogenicity, and Impacts
Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011118-111942
2019-01-07
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/ento/64/1/annurev-ento-011118-111942.html?itemId=/content/journals/10.1146/annurev-ento-011118-111942&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Ai H, Yan X, Han R 2012. Occurrence and prevalence of seven bee viruses in Apis mellifera and Apis cerana apiaries in China. J. Invertebr. Pathol. 109:160–64
    [Google Scholar]
  2. 2.  Alaux C, Dantec C, Parrinello H, Le Conte Y 2011. Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees. BMC Genom 12:496
    [Google Scholar]
  3. 3.  Andino R, Domingo E 2015. Viral quasispecies. Virology 479–480:46–51
    [Google Scholar]
  4. 4.  Annoscia D, Brown SP, Di Prisco G, De Paoli E, Del Fabbro S et al. 2018. Haemolymph removal by the parasite Varroa destructor can trigger proliferation of the Deformed Wing Virus in mite infested bees (Apis mellifera), contributing to enhanced pathogen virulence. bioRxiv 257667. https://doi.org/10.1101/257667
    [Crossref]
  5. 5.  Annoscia D, Del Piccolo F, Covre F, Nazzi F 2015. Mite infestation during development alters the in-hive behaviour of adult honeybees. Apidologie 46:306–14
    [Google Scholar]
  6. 6.  Annoscia D, Zanni V, Galbraith D, Quirici A, Grozinger C et al. 2017. Elucidating the mechanisms underlying the beneficial health effects of dietary pollen on honey bees (Apis mellifera) infested by Varroa mite ectoparasites. Sci. Rep. 7:6258
    [Google Scholar]
  7. 7.  Bailey L 1976. Viruses attacking the honey bee. Adv. Virus Res. 20:271–304
    [Google Scholar]
  8. 8.  Bailey L, Ball BV 1991. Honey Bee Pathology London: Acad. Press
    [Google Scholar]
  9. 9.  Barron AB 2015. Death of the bee hive: understanding the failure of an insect society. Curr. Opin. Insect Sci. 10:45–50
    [Google Scholar]
  10. 10.  Benaets K, Van Geystelen A, Cardoen D, De Smet L, de Graaf DC et al. 2017. Covert deformed wing virus infections have long-term deleterious effects on honeybee foraging and survival. Proc. Biol. Sci. 284:20162149
    [Google Scholar]
  11. 11.  Biddinger DJ, Rajotte EG 2015. Integrated pest and pollinator management—adding a new dimension to an accepted paradigm. Curr. Opin. Insect Sci. 10:204–9
    [Google Scholar]
  12. 12.  Bigot D, Dalmon A, Roy B, Hou C, Germain M et al. 2017. The discovery of Halictivirus resolves the Sinaivirus phylogeny. J. Gen. Virol. 98:2864–75
    [Google Scholar]
  13. 13.  Birmingham AL, Hoover SE, Winston ML, Ydenberg RC 2004. Drifting bumble bee (Hymenoptera: Apidae) workers in commercial greenhouses may be social parasites. Can. J. Zool. 82:1843–53
    [Google Scholar]
  14. 14.  Bohnenblust EW, Vaudo AD, Egan JF, Mortensen DA, Tooker JF 2016. Effects of the herbicide dicamba on nontarget plants and pollinator visitation. Environ. Toxicol. Chem. 35:144–51
    [Google Scholar]
  15. 15.  Boncristiani H, Underwood R, Schwarz R, Evans JD, Pettis J, vanEngelsdorp D 2012. Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. J. Insect Physiol 58:613–20
    [Google Scholar]
  16. 16.  Bowen-Walker PL, Martin SJ, Gunn A 1999. The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite Varroa jacobsoni Oud. J. Invertebr. Pathol. 73:101–6
    [Google Scholar]
  17. 17.  Brettell LE, Martin SJ 2017. Oldest Varroa tolerant honey bee population provides insight into the origins of the global decline of honey bees. Sci. Rep. 7:45953
    [Google Scholar]
  18. 18.  Bristow PR, Martin RR 1999. Transmission and the role of honeybees in field spread of blueberry shock ilarvirus, a pollen-borne virus of highbush blueberry. Phytopathology 89:124–30
    [Google Scholar]
  19. 19.  Brosi BJ, Delaplane KS, Boots M, de Roode JC 2017. Ecological and evolutionary approaches to managing honeybee disease. Nat. Ecol. Evol. 1:1250–62
    [Google Scholar]
  20. 20.  Brutscher LM, Daughenbaugh KF, Flenniken ML 2015. Antiviral defense mechanisms in honey bees. Curr. Opin. Insect Sci. 10:71–82
    [Google Scholar]
  21. 21.  Brutscher LM, Daughenbaugh KF, Flenniken ML 2017. Virus and dsRNA-triggered transcriptional responses reveal key components of honey bee antiviral defense. Sci. Rep. 7:6448
    [Google Scholar]
  22. 22.  Brutscher LM, Flenniken ML 2015. RNAi and antiviral defense in the honey bee. J. Immunol. Res. 2015:941897
    [Google Scholar]
  23. 23.  Brutscher LM, McMenamin AJ, Flenniken ML 2016. The buzz about honey bee viruses. PLOS Pathog 12:e1005757
    [Google Scholar]
  24. 24.  Bull JC, Ryabov EV, Prince G, Mead A, Zhang CJ et al. 2012. A strong immune response in young adult honeybees masks their increased susceptibility to infection compared to older bees. PLOS Pathog 8:e1003083
    [Google Scholar]
  25. 25.  Burand JP, Hunter WB 2013. RNAi: future in insect management. J. Invertebr. Pathol. 112:Suppl. 1S68–74
    [Google Scholar]
  26. 26.  Cappelle K, Smagghe G, Dhaenens M, Meeus I 2016. Israeli acute paralysis virus infection leads to an enhanced RNA interference response and not its suppression in the bumblebee Bombus terrestris. Viruses 8:334
    [Google Scholar]
  27. 27.  Carrillo-Tripp J, Dolezal AG, Goblirsch MJ, Miller WA, Toth AL, Bonning BC 2016. In vivo and in vitro infection dynamics of honey bee viruses. Sci. Rep. 6:22265
    [Google Scholar]
  28. 28.  Chan SY, Snow JW 2017. Uptake and impact of natural diet-derived small RNA in invertebrates: implications for ecology and agriculture. RNA Biol 14:402–14
    [Google Scholar]
  29. 29.  Chejanovsky N, Ophir R, Schwager MS, Slabezki Y, Grossman S, Cox-Foster D 2014. Characterization of viral siRNA populations in honey bee colony collapse disorder. Virology 454–455:176–83
    [Google Scholar]
  30. 30.  Chen Y, Evans J, Feldlaufer M 2006. Horizontal and vertical transmission of viruses in the honey bee, Apis mellifera. J. Invertebr. Pathol 92:152–59
    [Google Scholar]
  31. 31.  Chen YP, Pettis JS, Corona M, Chen WP, Li CJ et al. 2014. Israeli acute paralysis virus: epidemiology, pathogenesis and implications for honey bee health. PLOS Pathog 10:e1004261
    [Google Scholar]
  32. 32.  Chen Y, Siede R 2007. Honey bee viruses. Adv. Virus Res. 70:33–80
    [Google Scholar]
  33. 33.  Childress AM, Ramsdell DC 1987. Bee-mediated transmission of blueberry leaf mottle virus via infected pollen in highbush blueberry. Phytopathology 77:167–72
    [Google Scholar]
  34. 34.  Cornman RS 2017. Relative abundance of deformed wing virus, Varroa destructor virus 1, and their recombinants in honey bees (Apis mellifera) assessed by kmer analysis of public RNA-Seq data. J. Invertebr. Pathol. 149:44–50
    [Google Scholar]
  35. 35.  Cornman RS, Boncristiani H, Dainat B, Chen Y, vanEngelsdorp D et al. 2013. Population-genomic variation within RNA viruses of the Western honey bee, Apis mellifera, inferred from deep sequencing. BMC Genom 14:154
    [Google Scholar]
  36. 36.  Dainat B, Evans JD, Chen YP, Gauthier L, Neumann P 2012. Predictive markers of honey bee colony collapse. PLOS ONE 7:e32151
    [Google Scholar]
  37. 37.  Dalmon A, Desbiez C, Coulon M, Thomasson M, Le Conte Y et al. 2017. Evidence for positive selection and recombination hotspots in Deformed wing virus (DWV). Sci. Rep. 7:41045
    [Google Scholar]
  38. 38.  Daughenbaugh KF, Martin M, Brutscher LM, Cavigli I, Garcia E et al. 2015. Honey bee infecting Lake Sinai viruses. Viruses 7:3285–309
    [Google Scholar]
  39. 39.  De Maio FA, Risso G, Iglesias NG, Shah P, Pozzi B et al. 2016. The dengue virus NS5 protein intrudes in the cellular spliceosome and modulates splicing. PLOS Pathog 12:e1005841
    [Google Scholar]
  40. 40.  de Miranda JR, Bailey L, Ball BV, Blanchard P, Budge GE et al. 2013. Standard methods for virus research in Apis mellifera. J. Apicult. Res 52:1–56
    [Google Scholar]
  41. 41.  de Miranda JR, Cordoni G, Budge G 2010. The Acute bee paralysis virus–Kashmir bee virus–Israeli acute paralysis virus complex. J. Invertebr. Pathol. 103:Suppl. 1S30–47
    [Google Scholar]
  42. 42.  de Miranda JR, Cornman RS, Evans JD, Semberg E, Haddad N et al. 2015. Genome characterization, prevalence and distribution of a Macula-like virus from Apis mellifera and Varroa destructor. Viruses 7:3586–602
    [Google Scholar]
  43. 43.  de Miranda JR, Genersch E 2010. Deformed wing virus. J. Invertebr. Pathol. 103:Suppl. 1S48–61
    [Google Scholar]
  44. 44.  Deddouche S, Matt N, Budd A, Mueller S, Kemp C et al. 2008. The DExD/H-box helicase Dicer-2 mediates the induction of antiviral activity in drosophila. Nat. Immunol. 9:1425–32
    [Google Scholar]
  45. 45.  DeGrandi-Hoffman G, Ahumada F, Graham H 2017. Are dispersal mechanisms changing the host–parasite relationship and increasing the virulence of Varroa destructor (Mesostigmata: Varroidae) in managed honey bee (Hymenoptera: Apidae) colonies?. Environ. Entomol. 46:737–46
    [Google Scholar]
  46. 46.  DeGrandi-Hoffman G, Chen Y 2015. Nutrition, immunity and viral infections in honey bees. Curr. Opin. Insect Sci. 10:170–76
    [Google Scholar]
  47. 47.  DeGrandi-Hoffman G, Chen Y, Huang E, Huang MH 2010. The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). J. Insect Physiol. 56:1184–91
    [Google Scholar]
  48. 48.  Desai SD, Eu YJ, Whyard S, Currie RW 2012. Reduction in deformed wing virus infection in larval and adult honey bees (Apis mellifera L.) by double-stranded RNA ingestion. Insect Mol. Biol. 21:446–55
    [Google Scholar]
  49. 49.  Di Prisco G, Annoscia D, Margiotta M, Ferrara R, Varricchio P et al. 2016. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. PNAS 113:3203–8
    [Google Scholar]
  50. 50.  Di Prisco G, Cavaliere V, Annoscia D, Varricchio P, Caprio E et al. 2013. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. PNAS 110:18466–71
    [Google Scholar]
  51. 51.  Di Prisco G, Pennacchio F, Caprio E, Boncristiani HF Jr, Evans JD, Chen YP 2011. Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera. J. Gen. Virol 92:151–55
    [Google Scholar]
  52. 52.  Ding SW 2010. RNA-based antiviral immunity. Nat. Rev. Immunol. 10:632–44
    [Google Scholar]
  53. 53.  Doke MA, Frazier M, Grozinger CM 2015. Overwintering honey bees: biology and management. Curr. Opin. Insect Sci. 10:185–93
    [Google Scholar]
  54. 54.  Dolezal AG, Hendrix SD, Scavo NA, Carrillo-Tripp J, Harris MA et al. 2016. Honey bee viruses in wild bees: viral prevalence, loads, and experimental inoculation. PLOS ONE 11:e0166190
    [Google Scholar]
  55. 55.  Dostert C, Jouanguy E, Irving P, Troxler L, Galiana-Arnoux D et al. 2005. The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila. Nat. Immunol. 6:946–53
    [Google Scholar]
  56. 56.  Doublet V, Labarussias M, de Miranda JR, Moritz RF, Paxton RJ 2015. Bees under stress: Sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ. Microbiol. 17:969–83
    [Google Scholar]
  57. 57.  Doublet V, Natsopoulou ME, Zschiesche L, Paxton RJ 2015. Within-host competition among the honey bees pathogens Nosema ceranae and Deformed wing virus is asymmetric and to the disadvantage of the virus. J. Invertebr. Pathol. 124:31–34
    [Google Scholar]
  58. 58.  Doublet V, Poeschl Y, Gogol-Doring A, Alaux C, Annoscia D et al. 2017. Unity in defence: Honeybee workers exhibit conserved molecular responses to diverse pathogens. BMC Genom 18:207
    [Google Scholar]
  59. 59.  Evans JD, Schwarz RS 2011. Bees brought to their knees: microbes affecting honey bee health. Trends Microbiol 19:614–20
    [Google Scholar]
  60. 60.  Fine JD, Cox-Foster DL, Mullin CA 2017. An inert pesticide adjuvant synergizes viral pathogenicity and mortality in honey bee larvae. Sci. Rep. 7:40499
    [Google Scholar]
  61. 61.  Flatt T, Min K-J, D'Alterio C, Villa-Cuesta E, Cumbers J et al. 2008. Drosophila germ-line modulation of insulin signaling and lifespan. PNAS 105:6368–73
    [Google Scholar]
  62. 62.  Flenniken ML, Andino R 2013. Non-specific dsRNA-mediated antiviral response in the honey bee. PLOS ONE 8:e77263
    [Google Scholar]
  63. 63.  Forfert N, Natsopoulou ME, Frey E, Rosenkranz P, Paxton RJ, Moritz RF 2015. Parasites and pathogens of the honeybee (Apis mellifera) and their influence on inter-colonial transmission. PLOS ONE 10:e0140337
    [Google Scholar]
  64. 64.  Forfert N, Natsopoulou ME, Paxton RJ, Moritz RFA 2016. Viral prevalence increases with regional colony abundance in honey bee drones (Apis mellifera L). Infect. Genet. Evol. 44:549–54
    [Google Scholar]
  65. 65.  Fortuna MA, Stouffer DB, Olesen JM, Jordano P, Mouillot D et al. 2010. Nestedness versus modularity in ecological networks: two sides of the same coin?. J. Anim. Ecol. 79:811–17
    [Google Scholar]
  66. 66.  Fries I, Camazine S 2001. Implications of horizontal and vertical pathogen transmission for honey bee epidemiology. Apidologie 32:199–214
    [Google Scholar]
  67. 67.  Furst MA, McMahon DP, Osborne JL, Paxton RJ, Brown MJ 2014. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506:364–66
    [Google Scholar]
  68. 68.  Galbraith DA, Fuller ZL, Brockman A, Frazier M, Gikungu MW et al. 2018. Investigating the viral ecology of global bee communities with high-throughput metagenomics. Sci. Rep. 8:8879
    [Google Scholar]
  69. 69.  Galbraith DA, Yang X, Nino EL, Yi S, Grozinger C 2015. Parallel epigenomic and transcriptomic responses to viral infection in honey bees (Apis mellifera). PLOS Pathog 11:e1004713
    [Google Scholar]
  70. 70.  Gauthier L, Cornman S, Hartmann U, Cousserans F, Evans JD et al. 2015. The Apis mellifera Filamentous virus genome. Viruses 7:3798–815
    [Google Scholar]
  71. 71.  Genersch E, von der Ohe W, Kaatz H, Schroeder A, Otten C et al. 2010. The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41:332–52
    [Google Scholar]
  72. 72.  Genersch E, Yue C, Fries I, de Miranda JR 2006. Detection of Deformed wing virus, a honey bee viral pathogen, in bumble bees (Bombus terrestris and Bombus pascuorum) with wing deformities. J. Invertebr. Pathol. 91:61–63
    [Google Scholar]
  73. 73.  Gisder S, Aumeier P, Genersch E 2009. Deformed wing virus: replication and viral load in mites (Varroa destructor). J. Gen. Virol. 90:463–67
    [Google Scholar]
  74. 74.  Glenny W, Cavigli I, Daughenbaugh KF, Radford R, Kegley SE, Flenniken ML 2017. Honey bee (Apis mellifera) colony health and pathogen composition in migratory beekeeping operations involved in California almond pollination. PLOS ONE 12:e0182814
    [Google Scholar]
  75. 75.  Goblirsch MJ, Spivak MS, Kurtti TJ 2013. A cell line resource derived from honey bee (Apis mellifera) embryonic tissues. PLOS ONE 8:e69831
    [Google Scholar]
  76. 76.  Grozinger CM, Robinson GE 2015. The power and promise of applying genomics to honey bee health. Curr. Opin. Insect Sci. 10:124–32
    [Google Scholar]
  77. 77.  Hartmann U, Forsgren E, Charriere JD, Neumann P, Gauthier L 2015. Dynamics of Apis mellifera filamentous virus (AmFV) infections in honey bees and relationships with other parasites. Viruses 7:2654–67
    [Google Scholar]
  78. 78.  Hernández López J, Schuehly W, Crailsheim K, Riessberger-Gallé U 2014. Trans-generational immune priming in honeybees. Proc. Biol. Sci. 281:20140454
    [Google Scholar]
  79. 79.  Hunter W, Ellis J, vanEngelsdorp D, Hayes J, Westervelt D et al. 2010. Large-scale field application of RNAi technology reducing Israeli Acute Paralysis Virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). PLOS Pathog 6:e1001160
    [Google Scholar]
  80. 80.  Jamieson MA, Burkle LA, Manson JS, Runyon JB, Trowbridge AM, Zientek J 2017. Global change effects on plant–insect interactions: the role of phytochemistry. Curr. Opin. Insect Sci. 23:70–80
    [Google Scholar]
  81. 81.  Jarosch A, Moritz RF 2012. RNA interference in honeybees: off-target effects caused by dsRNA. Apidologie 43:128–38
    [Google Scholar]
  82. 82.  Johnson RM 2015. Honey bee toxicology. Annu. Rev. Entomol. 60:415–34
    [Google Scholar]
  83. 83.  Kevill JL, Highfield A, Mordecai GJ, Martin SJ, Schroeder DC 2017. ABC assay: method development and application to quantify the role of three DWV master variants in overwinter colony losses of European honey bees. Viruses 9:314
    [Google Scholar]
  84. 84.  Koch H, Brown MJF, Stevenson PC 2017. The role of disease in bee foraging ecology. Curr. Opin. Insect Sci. 21:60–67
    [Google Scholar]
  85. 85.  Kuster RD, Boncristiani HF, Rueppell O 2014. Immunogene and viral transcript dynamics during parasitic Varroa destructor mite infection of developing honey bee (Apis mellifera) pupae. J. Exp. Biol. 217:1710–18
    [Google Scholar]
  86. 86.  Lamp B, Url A, Seitz K, Eichhorn J, Riedel C et al. 2016. Construction and rescue of a molecular clone of Deformed wing virus (DWV). PLOS ONE 11:e0164639
    [Google Scholar]
  87. 87.  Lauring AS, Andino R 2010. Quasispecies theory and the behavior of RNA viruses. PLOS Pathog 6:e1001005
    [Google Scholar]
  88. 88.  Levin S, Galbraith D, Sela N, Erez T, Grozinger CM, Chejanovsky N 2017. Presence of Apis rhabdovirus-1 in populations of pollinators and their parasites from two continents. Front. Microbiol. 8:2482
    [Google Scholar]
  89. 89.  Levin S, Sela N, Chejanovsky N 2016. Two novel viruses associated with the Apis mellifera pathogenic mite Varroa destructor. Sci. Rep 6:37710
    [Google Scholar]
  90. 90.  Levitt AL, Singh R, Cox-Foster DL, Rajotte E, Hoover K et al. 2013. Cross-species transmission of honey bee viruses in associated arthropods. Virus Res 176:232–40
    [Google Scholar]
  91. 91.  Li JL, Cornman RS, Evans JD, Pettis JS, Zhao Y et al. 2014. Systemic spread and propagation of a plant-pathogenic virus in European honeybees. Apis mellifera. mBio 5:e00898–13
    [Google Scholar]
  92. 92.  Locke B, Semberg E, Forsgren E, de Miranda JR 2017. Persistence of subclinical deformed wing virus infections in honeybees following Varroa mite removal and a bee population turnover. PLOS ONE 12:e0180910
    [Google Scholar]
  93. 93.  Mao W, Schuler MA, Berenbaum MR 2013. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. PNAS 110:8842–46
    [Google Scholar]
  94. 94.  Maori E, Paldi N, Shafir S, Kalev H, Tsur E et al. 2009. IAPV, a bee-affecting virus associated with Colony Collapse Disorder can be silenced by dsRNA ingestion. Insect Mol. Biol. 18:55–60
    [Google Scholar]
  95. 95.  Martin SJ, Ball BV, Carreck NL 2010. Prevalence and persistence of deformed wing virus (DWV) in untreated or acaricide-treated Varroa destructor infested honey bee (Apis mellifera) colonies. J. Apicult. Res. 49:72–79
    [Google Scholar]
  96. 96.  Martin SJ, Highfield AC, Brettell L, Villalobos EM, Budge GE et al. 2012. Global honey bee viral landscape altered by a parasitic mite. Science 336:1304–6
    [Google Scholar]
  97. 97.  Mazzei M, Carrozza ML, Luisi E, Forzan M, Giusti M et al. 2014. Infectivity of DWV associated to flower pollen: experimental evidence of a horizontal transmission route. PLOS ONE 9:e113448
    [Google Scholar]
  98. 98.  McArt SH, Koch H, Irwin RE, Adler LS 2014. Arranging the bouquet of disease: floral traits and the transmission of plant and animal pathogens. Ecol. Lett. 17:624–36
    [Google Scholar]
  99. 99.  McMahon DP, Furst MA, Caspar J, Theodorou P, Brown MJ, Paxton RJ 2015. A sting in the spit: widespread cross-infection of multiple RNA viruses across wild and managed bees. J. Anim. Ecol. 84:615–24
    [Google Scholar]
  100. 100.  McMahon DP, Natsopoulou ME, Doublet V, Fürst M, Weging S et al. 2016. Elevated virulence of an emerging viral genotype as a driver of honeybee loss. Proc. Biol. Sci. 283:20160811
    [Google Scholar]
  101. 101.  McMenamin A, Flenniken ML 2018. Recently identified bee viruses and their impact on bee pollinators. Curr. Opin. Insect Sci. 26:120–29
    [Google Scholar]
  102. 102.  McMenamin AJ, Brutscher LM, Glenny W, Flenniken ML 2016. Abiotic and biotic factors affecting the replication and pathogenicity of bee viruses. Curr. Opin. Insect Sci. 16:14–21
    [Google Scholar]
  103. 103.  McMenamin AJ, Mumoki F, Frazier M, Kilonzo J, Mweu B et al. 2017. The impact of hive type on the behavior and health of honey bee colonies (Apis mellifera) in Kenya. Apidologie 48:703–15
    [Google Scholar]
  104. 104.  Meeus I, de Miranda JR, de Graaf DC, Wäckers F, Smagghe G 2014. Effect of oral infection with Kashmir bee virus and Israeli acute paralysis virus on bumblebee (Bombus terrestris) reproductive success. J. Invertebr. Pathol. 121:64–69
    [Google Scholar]
  105. 105.  Mogren CL, Lundgren JG 2017. In silico identification of off-target pesticidal dsRNA binding in honey bees (Apis mellifera). PeerJ 5:e4131
    [Google Scholar]
  106. 106.  Mondet F, de Miranda JR, Kretzschmar A, Le Conte Y, Mercer AR 2014. On the front line: quantitative virus dynamics in honeybee (Apis mellifera L.) colonies along a new expansion front of the parasite Varroa destructor. PLOS Pathog 10:e1004323
    [Google Scholar]
  107. 107.  Moore J, Jironkin A, Chandler D, Burroughs N, Evans DJ, Ryabov EV 2011. Recombinants between Deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies. J. Gen. Virol. 92:156–61
    [Google Scholar]
  108. 108.  Mordecai GJ, Wilfert L, Martin SJ, Jones IM, Schroeder DC 2016. Diversity in a honey bee pathogen: first report of a third master variant of the Deformed Wing Virus quasispecies. ISME J 10:1264–73
    [Google Scholar]
  109. 109.  Mullin CA 2015. Effects of ‘inactive’ ingredients on bees. Curr. Opin. Insect Sci. 10:194–200
    [Google Scholar]
  110. 110.  Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R et al. 2010. High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLOS ONE 5:e9754
    [Google Scholar]
  111. 111.  Natsopoulou ME, McMahon DP, Doublet V, Frey E, Rosenkranz P, Paxton RJ 2017. The virulent, emerging genotype B of Deformed wing virus is closely linked to overwinter honeybee worker loss. Sci. Rep. 7:5242
    [Google Scholar]
  112. 112.  Natsopoulou ME, McMahon DP, Paxton RJ 2016. Parasites modulate within-colony activity and accelerate the temporal polyethism schedule of a social insect, the honey bee. Behav. Ecol. Sociobiol. 70:1019–31
    [Google Scholar]
  113. 113.  Nazzi F, Brown SP, Annoscia D, Del Piccolo F, Di Prisco G et al. 2012. Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLOS Pathog 8:e1002735
    [Google Scholar]
  114. 114.  Nazzi F, Le Conte Y 2016. Ecology of Varroa destructor, the major ectoparasite of the Western honey bee, Apis mellifera. Annu. Rev. Entomol 61:417–32
    [Google Scholar]
  115. 115.  Nazzi F, Pennacchio F 2014. Disentangling multiple interactions in the hive ecosystem. Trends Parasitol 30:556–61
    [Google Scholar]
  116. 116.  Nibert ML, Ghabrial SA, Maiss E, Lesker T, Vainio EJ et al. 2014. Taxonomic reorganization of family Partitiviridae and other recent progress in partitivirus research. Virus Res 188:128–41
    [Google Scholar]
  117. 117.  Niu J, Meeus I, Cappelle K, Piot N, Smagghe G 2014. The immune response of the small interfering RNA pathway in the defense against bee viruses. Curr. Opin. Insect Sci. 6:22–27
    [Google Scholar]
  118. 118.  Niu J, Meeus I, Smagghe G 2016. Differential expression pattern of Vago in bumblebee (Bombus terrestris), induced by virulent and avirulent virus infections. Sci. Rep. 6:34200
    [Google Scholar]
  119. 119.  Nolan MP, Delaplane KS 2017. Distance between honey bee Apis mellifera colonies regulates populations of Varroa destructor at a landscape scale. Apidologie 48:8–16
    [Google Scholar]
  120. 120.  O'Neal ST, Anderson TD, Wu-Smart JY 2018. Interactions between pesticides and pathogen susceptibility in honey bees. Curr. Opin. Insect Sci. 26:57–62
    [Google Scholar]
  121. 121.  O'Neal ST, Brewster CC, Bloomquist JR, Anderson TD 2017. Amitraz and its metabolite modulate honey bee cardiac function and tolerance to viral infection. J. Invertebr. Pathol. 149:119–26
    [Google Scholar]
  122. 122.  O'Neal ST, Swale DR, Anderson TD 2017. ATP-sensitive inwardly rectifying potassium channel regulation of viral infections in honey bees. Sci. Rep. 7:8668
    [Google Scholar]
  123. 123.  Ongus JR, Fomburg AT, Irungy J, Masiga D, Raina S 2017. Prevalence of common honey bee pathogens at selected apiaries in Kenya, 2013/2014. Int. J. Trop. Insect Sci. 38:58–70
    [Google Scholar]
  124. 124.  Ongus JR, Peters D, Bonmatin J-M, Bengsch E, Vlak JM, van Oers MM 2004. Complete sequence of a picorna-like virus of the genus Iflavirus replicating in the mite Varroa destructor. J. Gen. Virol 85:3747–55
    [Google Scholar]
  125. 125.  Page RE Jr, Rueppell O, Amdam GV 2012. Genetics of reproduction and regulation of honeybee (Apis mellifera L.) social behavior. Annu. Rev. Genet. 46:97–119
    [Google Scholar]
  126. 126.  Palmer-Young EC, Tozkar , Schwarz RS, Chen Y, Irwin RE et al. 2017. Nectar and pollen phytochemicals stimulate honey bee (Hymenoptera: Apidae) immunity to viral infection. J. Econ. Entomol. 110:1959–72
    [Google Scholar]
  127. 127.  Peck DT, Smith ML, Seeley TD 2016. Varroa destructor mites can nimbly climb from flowers onto foraging honey bees. PLOS ONE 11:e0167798
    [Google Scholar]
  128. 128.  Perry CJ, Sovik E, Myerscough MR, Barron AB 2015. Rapid behavioral maturation accelerates failure of stressed honey bee colonies. PNAS 112:3427–32
    [Google Scholar]
  129. 129.  Piot N, Snoeck S, Vanlede M, Smagghe G, Meeus I 2015. The effect of oral administration of dsRNA on viral replication and mortality in Bombus terrestris. Viruses 7:3172–85
    [Google Scholar]
  130. 130.  Pirk CWW, de Miranda JR, Kramer M, Murray TE, Nazzi F et al. 2013. Statistical guidelines for Apis mellifera research. J. Apicult. Res. 52:1–24
    [Google Scholar]
  131. 131.  Remnant EJ, Shi M, Buchmann G, Blacquiere T, Holmes EC et al. 2017. A diverse range of novel RNA viruses in geographically distinct honey bee populations. J. Virol. 91:e00158–17
    [Google Scholar]
  132. 132.  Roberts JMK, Anderson DL, Durr PA 2017. Absence of deformed wing virus and Varroa destructor in Australia provides unique perspectives on honeybee viral landscapes and colony losses. Sci. Rep. 7:6925
    [Google Scholar]
  133. 133.  Roossinck MJ 2015. Move over, bacteria! Viruses make their mark as mutualistic microbial symbionts. J. Virol. 89:6532–35
    [Google Scholar]
  134. 134.  Ryabov EV, Childers AK, Chen Y, Madella S, Nessa A et al. 2017. Recent spread of Varroa destructor virus-1, a honey bee pathogen, in the United States. Sci. Rep. 7:17447
    [Google Scholar]
  135. 135.  Ryabov EV, Fannon JM, Moore JD, Wood GR, Evans DJ 2016. The Iflaviruses Sacbrood virus and Deformed wing virus evoke different transcriptional responses in the honeybee which may facilitate their horizontal or vertical transmission. PeerJ 4:e1591
    [Google Scholar]
  136. 136.  Ryabov EV, Wood GR, Fannon JM, Moore JD, Bull JC et al. 2014. A virulent strain of Deformed Wing Virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLOS Pathog 10:e1004230
    [Google Scholar]
  137. 137.  Saleh MC, Tassetto M, van Rij RP, Goic B, Gausson V et al. 2009. Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature 458:346–50
    [Google Scholar]
  138. 138.  Santamaria J, Villalobos EM, Brettell LE, Nikaido S, Graham JR, Martin SJ 2018. Evidence of Varroa-mediated deformed wing virus spillover in Hawaii. J. Invertebr. Pathol. 151:126–30
    [Google Scholar]
  139. 139.  Schmehl DR, Teal PE, Frazier JL, Grozinger CM 2014. Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera). J. Insect Physiol. 71:177–90
    [Google Scholar]
  140. 140.  Schoonvaere K, De Smet L, Smagghe G, Vierstraete A, Braeckman BP, de Graaf DC 2016. Unbiased RNA shotgun metagenomics in social and solitary wild bees detects associations with eukaryote parasites and new viruses. PLOS ONE 11:e0168456
    [Google Scholar]
  141. 141.  Schoonvaere K, Smagghe G, Francis F, de Graaf DC 2018. Study of the metatranscriptome of eight social and solitary wild bee species reveals novel viruses and bee parasites. Front. Microbiol. 9:177
    [Google Scholar]
  142. 142.  Schwarz HH, Huck K 1997. Phoretic mites use flowers to transfer between foraging bumblebees. Insectes Soc 44:303–10
    [Google Scholar]
  143. 143.  Shi M, Lin X-D, Tian J-H, Chen L-J, Chen X et al. 2016. Redefining the invertebrate RNA virosphere. Nature 540:539–43
    [Google Scholar]
  144. 144.  Singh R, Levitt AL, Rajotte EG, Holmes EC, Ostiguy N et al. 2010. RNA viruses in hymenopteran pollinators: evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PLOS ONE 5:e14357
    [Google Scholar]
  145. 145.  Smart M, Pettis J, Rice N, Browning Z, Spivak M 2016. Linking measures of colony and individual honey bee health to survival among apiaries exposed to varying agricultural land use. PLOS ONE 11:e0152685
    [Google Scholar]
  146. 146.  Sponsler DB, Johnson RM 2017. Mechanistic modeling of pesticide exposure: the missing keystone of honey bee toxicology. Environ. Toxicol. Chem. 36:871–81
    [Google Scholar]
  147. 147.  Stenberg JA 2017. A conceptual framework for integrated pest management. Trends Plant Sci 22:759–69
    [Google Scholar]
  148. 148.  Tehel A, Brown MJ, Paxton RJ 2016. Impact of managed honey bee viruses on wild bees. Curr. Opin. Virol. 19:16–22
    [Google Scholar]
  149. 149.  Traynor KS, Rennich K, Forsgren E, Rose R, Pettis JS et al. 2016. Multiyear survey targeting disease incidence in US honey bees. Apidologie 47:325–47
    [Google Scholar]
  150. 150.  Tritschler M, Vollmann JJ, Yanez O, Chejanovsky N, Crailsheim K, Neumann P 2017. Protein nutrition governs within-host race of honey bee pathogens. Sci. Rep. 7:14988
    [Google Scholar]
  151. 151.  vanEngelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E et al. 2009. Colony collapse disorder: a descriptive study. PLOS ONE 4:e6481
    [Google Scholar]
  152. 152.  Vaudo AD, Patch HM, Mortensen DA, Tooker JF, Grozinger CM 2016. Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. PNAS 113:E4035–42
    [Google Scholar]
  153. 153.  Vaudo AD, Stabler D, Patch HM, Tooker JF, Grozinger CM, Wright GA 2016. Bumble bees regulate their intake of essential protein and lipid pollen macronutrients. J. Exp. Biol. 219:3962–70
    [Google Scholar]
  154. 154.  Vaudo AD, Tooker JF, Grozinger CM, Patch HM 2015. Bee nutrition and floral resource restoration. Curr. Opin. Insect Sci. 10:133–41
    [Google Scholar]
  155. 155.  von Frisch K 1950. Bees: Their Vision, Chemical Senses, and Language Ithaca, NY: Cornell Univ. Press
    [Google Scholar]
  156. 156.  Wang H, Meeus I, Piot N, Smagghe G 2017. Systemic Israeli acute paralysis virus (IAPV) infection in bumblebees (Bombus terrestris) through feeding and injection. J. Invertebr. Pathol. 151:158–64
    [Google Scholar]
  157. 157.  Wang H, Meeus I, Smagghe G 2016. Israeli acute paralysis virus associated paralysis symptoms, viral tissue distribution and Dicer-2 induction in bumblebee workers (Bombus terrestris). J. Gen. Virol. 97:1981–89
    [Google Scholar]
  158. 158.  White GF 1913. Sacbrood, a Disease of Bees Washington, DC: US Dep. Agric.
    [Google Scholar]
  159. 159.  Wilfert L, Long G, Leggett HC, Schmid-Hempel P, Butlin R et al. 2016. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 351:594–97
    [Google Scholar]
  160. 160.  Wójtowicz I, Jablońska J, Zmojdzian M, Taghli-Lamallem O, Renaud Y et al. 2015. Drosophila small heat shock protein CryAB ensures structural integrity of developing muscles, and proper muscle and heart performance. Development 142:994–1005
    [Google Scholar]
  161. 161.  Wood TJ, Goulson D 2017. The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environ. Sci. Pollut. Res. 24:17285–325
    [Google Scholar]
  162. 162.  Yang X, Cox-Foster D 2007. Effects of parasitization by Varroa destructor on survivorship and physiological traits of Apis mellifera in correlation with viral incidence and microbial challenge. Parasitology 134:405–12
    [Google Scholar]
  163. 163.  Yue C, Schröder M, Gisder S, Genersch E 2007. Vertical-transmission routes for deformed wing virus of honeybees (Apis mellifera). J. Gen. Virol. 88:2329–36
    [Google Scholar]
  164. 164.  Zanni V, Galbraith DA, Annoscia D, Grozinger CM, Nazzi F 2017. Transcriptional signatures of parasitization and markers of colony decline in Varroa-infested honey bees (Apis mellifera). Insect Biochem. Mol. Biol. 87:1–13
    [Google Scholar]
  165. 165.  Zhang X, He SY, Evans JD, Pettis JS, Yin GF, Chen YP 2012. New evidence that deformed wing virus and black queen cell virus are multi-host pathogens. J. Invertebr. Pathol. 109:156–59
    [Google Scholar]
  166. 166.  Zhu F, Ding H, Zhu B 2013. Transcriptional profiling of Drosophila S2 cells in early response to Drosophila C virus. Virol. J. 10:210
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011118-111942
Loading
/content/journals/10.1146/annurev-ento-011118-111942
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error