1932

Abstract

The recent introduction and spread of throughout South America highlight the invasiveness and adaptability of moths in the genus. Long-range movement in three key members, , , and , occurs by migration and international trade. These movements facilitate high population admixture and genetic diversity, with important economic, biosecurity, and control implications in today's agricultural landscape. This is particularly true for the spread of resistance alleles to transgenic crops expressing (Bt) toxins that are planted over vast areas to suppress spp. The ability to track long-distance movement through radar technology, population genetic markers, and/or long-distance dispersal modeling has advanced in recent years, yet we still know relatively little about the population trajectories or migratory routes in spp. Here, we consider how experimental and theoretical approaches can be integrated to fill key knowledge gaps and assist management practices.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011118-111959
2019-01-07
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ento/64/1/annurev-ento-011118-111959.html?itemId=/content/journals/10.1146/annurev-ento-011118-111959&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Abrahams P, Bateman M, Beale T, Clottey V, Cock M et al. 2017. Fall armyworm: impacts and implications for Africa Rep., Dept. Int. Dev. London, UK: http://www.invasive-species.org/Uploads/InvasiveSpecies/Fall%20Armyworm%20Evidence%20Note%20September%202017.pdf
  2. 2.  Anderson CJ, Oakeshott JG, Tay WT, Gordon KHJ, Zwick A, Walsh TK 2018. Hybridization and gene flow in the mega-pest lineage of moth, Helicoverpa. PNAS 115:5034–39
    [Google Scholar]
  3. 3.  Anderson CJ, Tay WT, McGaughran A, Gordon K, Walsh TK 2016. Population structure and gene flow in the global pest, Helicoverpa armigera. Mol. Ecol. 25:5296–311
    [Google Scholar]
  4. 4.  Armes NJ, Cooter RJ 1991. Effects of age and mated status on flight potential of Helicoverpa armigera (Lepidoptera: Noctuidae). Physiol. Entomol. 16:131–44
    [Google Scholar]
  5. 5.  Arnemann JA 2015. Molecular tools to identify and study invasive pests in Brazil PhD Thesis Ghent Univ. Ghent, Belg.:
  6. 6.  Arnemann JA, James WJ, Walsh TK, Guedes JVC, Smagghe G et al. 2016. Mitochondrial DNA COI characterization of Helicoverpa armigera (Lepidoptera: Noctuidae) from Paraguay and Uruguay. Genet. Mol. Res. 15:gmr.15028292
    [Google Scholar]
  7. 7.  Asokan R, Nagesha SN, Manamohan M, Krishnakumar NK, Mahadevaswamy HM et al. 2012. Molecular diversity of Helicoverpa armigera Hübner (Noctuidae: Lepidoptera) in India. Orient. Insects 46:130–43
    [Google Scholar]
  8. 8.  Beerwinkle KR, Lopez JD, Witz JA, Schleider PG, Eyster RS, Lingren PD 1994. Seasonal radar and meteorological observations associated with nocturnal insect flight at altitudes to 900 meters. Environ. Entomol. 23:676–83
    [Google Scholar]
  9. 9.  Behere GT, Tay WT, Russell DA, Batterham P 2008. Molecular markers to discriminate among four pest species of Helicoverpa (Lepidoptera: Noctuidae). Bull. Entomol. Res. 98:599–603
    [Google Scholar]
  10. 10.  Behere GT, Tay WT, Russell DA, Heckel DG, Appleton BR et al. 2007. Mitochondrial DNA analysis of field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) and of its relationship to H. zea. BMC Evol. Biol. 7:117
    [Google Scholar]
  11. 11.  Behere GT, Tay WT, Russell DA, Kranthi KR, Batterham P 2013. Population genetic structure of the cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in India as inferred from EPIC-PCR DNA markers. PLOS ONE 8:e53448
    [Google Scholar]
  12. 12.  Bentivenha JPF, Paula-Moraes SV, Baldin ELL, Specht A, da Silva IF, Hunt TE 2016. Battle in the New World: Helicoverpa armigera versus Helicoverpa zea (Lepidoptera: Noctuidae). PLOS ONE 11:e0167182
    [Google Scholar]
  13. 13.  Bowden J, Johnson CG 1976. Migrating and other terrestrial insects at sea. Marine Insects L Cheng Amsterdam: North-Holland Publ. Co.
    [Google Scholar]
  14. 14.  Carrière Y, Crowder DW, Tabashnik BE 2010. Evolutionary ecology of insect adaptation to Bt crops. Evol. Appl. 3:561–73
    [Google Scholar]
  15. 15.  Casimero V, Nakasuji F, Fujisaki K 2001. The influences of larval and adult food quality on the calling rate and pre-calling period of females of the cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Appl. Entomol. Zool. 36:33–40
    [Google Scholar]
  16. 16.  Cassama M, Arreu L 1994. IPM Implementation Workshop for West Africa: Workshop Proceedings, Accra, Ghana, 1992 Chatham, UK: Nat. Res. Inst. Integr. Pest Manag. Work. Group
  17. 17. Cent. Agric. Biosci. Int. 2018. Spodoptera eridania (southern armyworm). Datasheet, updated Sept. 4. https://www.cabi.org/isc/datasheet/44518
  18. 18.  Chapman JW, Drake VA, Reynolds DR 2011. Recent insights from studies of insect flight. Annu. Rev. Entomol. 56:337–56
    [Google Scholar]
  19. 19.  Chapman JW, Nesbit RL, Burgin LE, Reynolds DR, Smith AD et al. 2010. Flight orientation behaviors promote optimal migration trajectories in high-flying insects. Science 327:682–85
    [Google Scholar]
  20. 20.  Chapman JW, Reynolds DR, Wilson K 2015. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol. Lett. 18:287–302
    [Google Scholar]
  21. 21.  Cho S, Mitchell A, Mitter C, Regier J, Matthews M, Robertson R 2008. Molecular phylogenetics of heliothine moths (Lepidoptera: Noctuidae: Heliothinae), with comments on the evolution of host range and pest status. Syst. Entomol. 33:581–94
    [Google Scholar]
  22. 22.  Chumakov MA, Kuznetsova TL, Saulich MI 2004. Area of distribution and damage of the Cotton Bollworm (Helicoverpa armigera Hbn.). Interactive Agricultural Ecological Atlas of Russia and Neighboring Countries: Economic Plants and their Diseases, Pests and Weeds AN Afonin, SL Greene, NI Dzyubenko, AN Frolov. http://www.agroatlas.ru/en/content/pests/Helicoverpa_armigera/map
    [Google Scholar]
  23. 23.  Cock MJW, Beseh PK, Buddie AG, Cafa G, Crozier J 2017. Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Sci. Rep. 7:4103
    [Google Scholar]
  24. 24.  Colvin J 1995. The regulation of migration in Helicoverpa armigera. See Ref. 38 265–77
  25. 25.  Colvin J, Gatehouse AG 1993. Migration and the effect of three environmental factors on the pre-reproductive period of the cotton-bollworm moth, Helicoverpa armigera. Physiol. Entomol. 18:109–13
    [Google Scholar]
  26. 26.  Colvin J, Gatehouse AG 1993. The reproduction-flight syndrome and the inheritance of tethered-flight activity in the cotton-bollworm moth, Heliothis armigera. Physiol. Entomol. 18:16–22
    [Google Scholar]
  27. 27.  Coombs M 1997. Tethered-flight and age-related reproductive performance of Helicoverpa punctigera (Wallengren) and H. armigera (Hübner) (Lepidoptera: Noctuidae). Aust. J. Zool. 45:409–22
    [Google Scholar]
  28. 28.  Coombs M, Del Socorro AP, Fitt GP, Gregg PC 1993. The reproductive maturity and mating status of Heliothis armigera, Heliothis punctigera and Mythimna convecta (Lepidoptera: Noctuidae) collected in tower-mounted light traps in northern New South Wales, Australia. Bull. Entomol. Res. 83:529–34
    [Google Scholar]
  29. 29.  Culin JD 1995. Local dispersal of male Helicoverpa zea. Entomol. Exp. Appl. 74:165–76
    [Google Scholar]
  30. 30.  Cunningham JP, Zalucki MP 2014. Understanding heliothine (Lepidoptera: Heliothinae) pests: What is a host plant?. J. Econ. Entomol. 107:881–96
    [Google Scholar]
  31. 31.  Czepak C, Albernaz KC, Vivan LM, Guimarães HO, Carvalhais T 2013. First reported occurrence of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in Brazil. Pesqui. Agropecu. Trop. 43:110–13
    [Google Scholar]
  32. 32.  Dingle H 2014. Migration: The Biology of Life on the Move Oxford, UK: Oxford Univ. Press
  33. 33.  Downes S, Kriticos D, Parry H, Paull C, Schellhorn N, Zalucki MP 2017. A perspective on management of Helicoverpa armigera: transgenic Bt cotton, IPM, and landscapes. Pest Manag. Sci. 73:485–92
    [Google Scholar]
  34. 34.  Downes S, Parker T, Mahon R 2010. Incipient resistance of Helicoverpa punctigera to the Cry2Ab Bt toxin in Bollgard II® cotton. PLOS ONE 5:e12567
    [Google Scholar]
  35. 35.  Downes S, Walsh T, Tay WT 2016. Bt resistance in Australian insect pest species. Curr. Opin. Insect Sci. 15:78–83
    [Google Scholar]
  36. 36.  Drake VA, Farrow RA 1985. A radar and aerial-trapping study of an early spring migration of moths (Lepidoptera) in inland New South Wales. Aust. J. Zool. 10:223–35
    [Google Scholar]
  37. 37.  Drake VA, Fitt GP 1990. Studies of Heliothis mobility at Narrabri, summer 1989/90. Fifth Australian Cotton Conference295–304 Narrabri, Aust.: Aust. Cotton Grow. Res. Assoc.
    [Google Scholar]
  38. 38.  Drake VA, Gatehouse AG 1995. Insect Migration: Tracking Resources Through Space and Time Cambridge, UK: Cambridge Univ. Press
  39. 39.  Drake VA, Gatehouse AG, Farrow RA 1995. Insect migration: a holistic conceptual model. See Ref. 38 427–57
  40. 40.  Drake VA, Reynolds DR 2012. Radar Entomology: Observing Insect Flight and Migration Wallingford, UK: CABI
  41. 41.  Dumas P, Barbut J, Le Ru B, Silvain JF, Clamens AL et al. 2015. Phylogenetic molecular species delimitations unravel potential new species in the pest genus Spodoptera Guenée, 1852 (Lepidoptera, Noctuidae). PLOS ONE 10:e0122407
    [Google Scholar]
  42. 42.  Dumas P, Legeai F, Lemaitre C, Scaon E, Orsucci M et al. 2015. Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: two host strains or two distinct species?. Genetica 143:305–16
    [Google Scholar]
  43. 43.  Durr P, Graham K, Freeman J, Beckett D, van Klinken RD 2015. TAPPAS: Tool for Assessing Pest and Pathogen Aerial Spread, Version 1.0. Software https://tappas.csiro.au
  44. 44.  Elawad SA, Gowen SR, Hague NGM 2001. Progeny production of Steinernema abbasi in lepidopterous larvae. Int. J. Pest Manag. 41:17–21
    [Google Scholar]
  45. 45.  Endersby NM, Hoffmann AA, McKechnie SW, Weeks AR 2007. Is there genetic structure in populations of Helicoverpa armigera from Australia?. Entomol. Exp. Appl. 122:253–63
    [Google Scholar]
  46. 46. Eur. Mediterr. Plant Prot. Org. 2018. Helicoverpa armigera EPPO Glob. Database Paris, France: updated Dec. 2017. https://gd.eppo.int/taxon/HELIAR/distribution
  47. 47.  Farrow RA, Daly JC 1987. Long-range movements as an adaptive strategy in the genus Heliothis (Lepidoptera, Noctuidae): a review of its occurrence and detection in 4 pest species. Aust. J. Zool. 35:1–24
    [Google Scholar]
  48. 48.  Feng HQ, Gould F, Huang YX, Jiang YY, Wu KM 2010. Modeling the population dynamics of cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) over a wide area in northern China. Ecol. Model. 221:1819–30
    [Google Scholar]
  49. 49.  Feng HQ, Wu KM, Cheng DF, Guo YY 2004. Northward migration of Helicoverpa armigera (Lepidoptera: Noctuidae) and other moths in early summer observed with radar in northern China. J. Econ. Entomol. 97:1874–83
    [Google Scholar]
  50. 50.  Feng HQ, Wu KM, Ni YX, Cheng DF, Guo YY 2005. High-altitude windborne transport of Helicoverpa armigera (Lepidoptera: Noctuidae) in mid-summer in northern China. J. Insect Behav. 18:335–49
    [Google Scholar]
  51. 51.  Feng HQ, Wu KM, Ni YX, Cheng DF, Guo YY 2005. Return migration of Helicoverpa armigera (Lepidoptera: Noctuidae) during autumn in northern China. Bull. Entomol. Res. 95:361–70
    [Google Scholar]
  52. 52.  Feng HQ, Wu XF, Wu B, Wu KM 2009. Seasonal migration of Helicoverpa armigera (Lepidoptera: Noctuidae) over the Bohai Sea. J. Econ. Entomol. 102:95–104
    [Google Scholar]
  53. 53.  Fitt GP 1989. The ecology of Heliothis species in relation to agroecosystems. Annu. Rev. Entomol. 34:17–52
    [Google Scholar]
  54. 54.  Fitt GP 1991. Host selection in the Heliothinae. Reproductive Behaviour in Insects: Individuals and Populations J Ridsdill-Smith, W Bailey 173–201 London: Chapman and Hall
    [Google Scholar]
  55. 55.  Fitt GP, Dillon ML, Hamilton JG 1995. Spatial dynamics of Helicoverpa populations in Australia: simulation modeling and empirical studies of adult movement. Comput. Electron. Agric. 13:177–92
    [Google Scholar]
  56. 56.  Gilligan TM, Tembrock LR, Farris RE, Barr NB, van der Straten MJ et al. 2015. A multiplex real-time PCR assay to diagnose and separate Helicoverpa armigera and H. zea (Lepidoptera: Noctuidae) in the New World. PLOS ONE 10:e0142912
    [Google Scholar]
  57. 57.  Goergen G 2018. New alien invasive pest identified in West and Central Africa! Fact Sheet, IITA, Cotonou Benin: http://www.iita.org/wp-content/uploads/2018/05/SAW_factsheet-22-May-2018.pdf
  58. 58.  Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M 2016. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLOS ONE 11:e0165632
    [Google Scholar]
  59. 59.  Gordon K, Tay WT, Collinge D, Williams A, Batterham P 2009. Genetics and molecular biology of the major crop pest genus Helicoverpa. Molecular Biology and Genetics of the Lepidoptera MR Goldsmith, F Marec 219–38 Boca Raton, FL: CRC Press
    [Google Scholar]
  60. 60.  Gouin A, Bretaudeau A, Nam K, Gimenez S, Aury JM et al. 2017. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci. Rep. 7:11816
    [Google Scholar]
  61. 61.  Gould F, Blair N, Reid M, Rennie TL, Lopez J, Micinski S 2002. Bacillus thuringiensis-toxin resistance management: Stable isotope assessment of alternate host use by Helicoverpa zea. PNAS 99:16581–86
    [Google Scholar]
  62. 62.  Gregg PC, Del Socoro A, Rochester WA 2001. Field test of a model of migration of moths (Lepidoptera: Noctuidae) in inland Australia. Aust. J. Entomol. 40:249–56
    [Google Scholar]
  63. 63.  Gregg PC, Fitt GP, Coombs M, Henderson GS 1993. Migrating moths (Lepidoptera) collected in tower-mounted light traps in northern New South Wales, Australia: species composition and seasonal abundance. Bull. Entomol. Res. 83:563–78
    [Google Scholar]
  64. 64.  Gregg PC, Fitt GP, Coombs M, Henderson GS 1994. Migrating moths collected in tower-mounted light traps in northern New South Wales, Australia: influence of local and synoptic weather. Bull. Entomol. Res. 84:17–30
    [Google Scholar]
  65. 65.  Gregg PC, Fitt GP, Zalucki MP, Murray DAH 1995. Insect migration in an arid continent. II. Helicoverpa spp. in eastern Australia. See Ref. 38 151–72
  66. 66.  Hackett D, Gatehouse AG 1981. Studies on the biology of Heliothis spp. in Sudan. Proceedings of the International Workshop on Heliothis Management29–38 Patancheru, India: Int. Crops Res. Inst. Semi-Arid Trop.
    [Google Scholar]
  67. 67.  Hardwick D 1965. The corn earworm complex. Mem. Entomol. Soc. Can. 97:S405–247
    [Google Scholar]
  68. 68.  Hmimina PM, Poitout S, Bues R 1993. Variabilité des potentialités diapausantes intra et interpopulations chez Heliothis armigera Hb. (Lep., Noctuidae) [Variability of diapause in populations of Heliothis armigera Hb. (Lep, Noctuidae)]. J. Appl. Entomol. 116:273–83
    [Google Scholar]
  69. 69.  Hopkinson RF, Soroka JJ 2010. Air trajectory model applied to an in-depth diagnosis of potential diamondback moth infestations on the Canadian Prairies. Agric. Forest Meteorol. 150:1–11
    [Google Scholar]
  70. 70. Indian Counc. Agric. Res.–Natl. Bur. Agric. Insect Res. 2018. Pest Alert: 30th July, 2018. Spodoptera frugiperda (J. E. Smith) (Insecta: Lepidoptera) ICAR-NBAIR Bengaluru, India: http://www.nbair.res.in/recent_events/Pest%20Alert%2030th%20July%202018-new1.pdf
    [Google Scholar]
  71. 71.  Isard SA, Gage SH, Comtois P, Russo JM 2005. Principles of the atmospheric pathway for invasive species applied to soybean rust. BioScience 55:851–61
    [Google Scholar]
  72. 72.  Ives AR, Paull C, Hulthen A, Downes S, Andow DA et al. 2017. Spatio-temporal variation in landscape composition may speed resistance evolution of pests to Bt crops. PLOS ONE 12:e0169167
    [Google Scholar]
  73. 73.  Jin L, Wei YY, Zhang L, Yang YH, Tabashnik BE, Wu YD 2013. Dominant resistance to Bt cotton and minor cross-resistance to Bt toxin Cry2Ab in cotton bollworm from China. Evol. Appl. 6:1222–35
    [Google Scholar]
  74. 74.  Jin L, Zhang HN, Lu YH, Yang YH, Wu KM et al. 2015. Large-scale test of the natural refuge strategy for delaying insect resistance to transgenic Bt crops. Nat. Biotech. 33:169–74
    [Google Scholar]
  75. 75.  Johnson CG 1969. Migration and Dispersal of Insects by Flight London: Methuen
  76. 76.  Jones CM, Papanicolaou A, Mironidis GK, Vontas J, Yang Y et al. 2015. Genomewide transcriptional signatures of migratory flight activity in a globally invasive insect pest. Mol. Ecol. 24:4901–11
    [Google Scholar]
  77. 77.  Joyce RJV 1983. Aerial transport of pests and pest outbreaks. EPPO Bull 13:111–19
    [Google Scholar]
  78. 78.  Krauel JJ, Westbrook JK, McCracken GF 2015. Weather-driven dynamics in a dual-migrant system: moths and bats. J. Anim. Ecol. 84:604–14
    [Google Scholar]
  79. 79.  Kriticos DJ, Ota N, Hutchison WD, Beddow J, Walsh T et al. 2015. The potential distribution of invading Helicoverpa armigera in North America: Is it just a matter of time?. PLOS ONE 10:e0133224
    [Google Scholar]
  80. 80.  Lammers JW, MacLeod A 2007. Report of a pest risk analysis: Helicoverpa armigera (Hübner, 1808) Rep., Plant Prot. Serv. (Neth.), Cent. Sci. Lab UK: http://webarchive.nationalarchives.gov.uk/20130123162956/http:/www.defra.gov.uk/planth/pra/helicoverpa.pdf
    [Google Scholar]
  81. 81.  Laster ML, Sheng CF 1995. Search for hybrid sterility for Helicoverpa zea in crosses between the North American Heliothis zea and Helicoverpa armigera (Lepidoptera, Noctuidae) from China. J. Econ. Entomol. 88:1288–91
    [Google Scholar]
  82. 82.  Leite NA, Alves-Pereira A, Correa AS, Zucchi MI, Omoto C 2014. Demographics and genetic variability of the New World bollworm (Helicoverpa zea) and the Old World bollworm (Helicoverpa armigera) in Brazil. PLOS ONE 9:e113286
    [Google Scholar]
  83. 83.  Leite NA, Correa AS, Alves-Pereira A, Campos JB, Zucchi MI, Omoto C 2016. Cross-species amplification and polymorphism of microsatellite loci in Helicoverpa armigera and Helicoverpa zea (Lepidoptera: Noctuidae) in Brazilian cropping systems. Genet. Mol. Res. 15:gmr.15027890
    [Google Scholar]
  84. 84.  Liedvogel M, Akesson S, Bensch S 2011. The genetics of migration on the move. Trends Ecol. Evolut. 26:561–69
    [Google Scholar]
  85. 85.  Mallet JH, Korman A, Heckel DG, King P 1993. Biochemical genetics of Heliothis and Helicoverpa (Lepidoptera: Noctuidae) and evidence for a founder event in Helicoverpa zea. Ann. Entomol. Soc. Am. 86:189–97
    [Google Scholar]
  86. 86.  Mastrangelo T, Paulo DF, Bergamo LW, Morais EGF, Silva M et al. 2014. Detection and genetic diversity of a Heliothine invader (Lepidoptera: Noctuidae) from north and northeast of Brazil. J. Econ. Entomol. 107:970–80
    [Google Scholar]
  87. 87.  McNeil JN, Cusson M, Delisle J, Orchard I, Tobe SS 1995. Physiological integration of migration in Lepidoptera. See Ref. 38 279–302
  88. 88.  Meyer M, Cox JA, Hitchings MDT, Burgin L, Hort MC et al. 2017. Quantifying airborne dispersal routes of pathogens over continents to safeguard global wheat supply. Nat. Plants 3:780–86
    [Google Scholar]
  89. 89.  Murúa MG, Cazado LE, Casmuz A, Herrero MI, Villagrán ME et al. 2016. Species from the Heliothinae complex (Lepidoptera: Noctuidae) in Tucuman, Argentina, an update of geographical distribution of Helicoverpa armigera. J. Insect Sci. 16:61
    [Google Scholar]
  90. 90.  Nibouche S, Bues R, Toubon JF, Poitout S 1998. Allozyme polymorphism in the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae): comparison of African and European populations. Heredity 80:438–45
    [Google Scholar]
  91. 91.  Otim MH, Tay WT, Walsh TK, Kanyesigye D, Adumo S et al. 2018. Detection of sister-species in invasive populations of the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) from Uganda. PLOS ONE 13:4e0194571
    [Google Scholar]
  92. 92.  Pair SD, Raulston JR, Rummel DR, Westbrook JK, Wolf WW et al. 1987. Development and production of corn earworm and fall armyworm in the Texas high plains: evidence for reverse fall migration. Southwest. Entomol. 12:89–99
    [Google Scholar]
  93. 93.  Parry HR, Eagles D, Kriticos DJ 2015. Simulation modelling of long-distance windborne dispersal for invasion ecology. Pest Risk Modelling and Mapping for Invasive Alien Species RC Venette 49–64 Wallingford, UK: CABI
    [Google Scholar]
  94. 94.  Parry HR, Paull CA, Zalucki MP, Ives AR, Hulthen A, Schellhorn NA 2017. Estimating the landscape distribution of eggs by Helicoverpa spp., with implications for Bt resistance management. Ecol. Model. 365:129–40
    [Google Scholar]
  95. 95.  Pearce SL, Clarke DF, East PD, Elfekih S, Gordon KHJ et al. 2017. Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species. BMC Biol 15:63
    [Google Scholar]
  96. 96.  Pearson EO 1958. The Insect Pests of Cotton in Tropical Africa London: Commonw. Inst. Entomol.
  97. 97.  Pedgley DE 1986. Windborne migration in the Middle East by the moth Heliothis armigera (Lepidoptera, Noctuidae). Ecol. Entomol. 11:467–70
    [Google Scholar]
  98. 98.  Pedgley DE, Tucker MR, Pawar CS 1987. Windborne migration of Heliothis armigera (Hübner) (Lepidoptera: Noctuidae) in India. Insect Sci. Appl. 8:599–604
    [Google Scholar]
  99. 99.  Raulston JR, Pair SD, Pedraza Martinez FA, Westbrook JK, Sparks AN, Sanchez Valdez VM 1986. Ecological studies indicating the migration of Heliothis zea, Spodoptera frugiperda and Heliothis virescens, from Northeast Mexico and Texas. Insect Flight: Dispersal and Migration W Danthanarayana 204–20 Berlin: Springer-Verlag
    [Google Scholar]
  100. 100.  Raulston JR, Wolf WW, Lingren PD, Sparks AN 1982. Migration as a factor in Heliothis management. Proceedings of the International Workshop on Heliothis Management61–73 Patancheru, India: Int. Res. Inst. Semi-Arid Trop.
    [Google Scholar]
  101. 101.  Riley JR, Armes NJ, Reynolds DR, Smith AD 1992. Nocturnal observations on the emergence and flight behaviour of Helicoverpa armigera (Lepidoptera: Noctuidae) in the post-rainy season in central India. Bull. Entomol. Res. 82:243–56
    [Google Scholar]
  102. 102.  Rochester WA, Dillon ML, Fitt GP, Zalucki MP 1996. A simulation model of the long-distance migration of Helicoverpa spp. moths. Ecol. Model. 86:151–56
    [Google Scholar]
  103. 103.  Roff DA, Fairbairn DJ 2007. The evolution and genetics of migration in insects. BioScience 57:155–64
    [Google Scholar]
  104. 104.  Roome RE 1975. Activity of adult Heliothis armigera (Hb.) (Lepidoptera, Noctuidae) with reference to the flowering of sorghum and maize in Botswana. Bull. Entomol. Res. 65:523–30
    [Google Scholar]
  105. 105.  Roome RE 1979. Pupal diapause in Heliothis armigera (Hübner) (Lepidoptera: Noctuidae) in Botswana: its regulation by environmental factors. Bull. Entomol. Res. 69:149–60
    [Google Scholar]
  106. 106.  Schellhorn NA, Parry HR, Macfadyen S, Wang YM, Zalucki MP 2015. Connecting scales: achieving in-field pest control from areawide and landscape ecology studies. Insect Sci 22:35–51
    [Google Scholar]
  107. 107.  Scott KD, Lawrence N, Lange CL, Scott LJ, Wilkinson KS et al. 2005. Assessing moth migration and population structuring in Helicoverpa armigera (Lepidoptera: Noctuidae) at the regional scale: example from the Darling Downs, Australia. J. Econ. Entomol. 98:2210–19
    [Google Scholar]
  108. 108.  Scott KD, Wilkinson KS, Lawrence N, Lange CL, Scott LJ et al. 2005. Gene-flow between populations of cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) is highly variable between years. Bull. Entomol. Res. 95:381–92
    [Google Scholar]
  109. 109.  Scott KD, Wilkinson KS, Merritt MA, Scott LJ, Lange CL et al. 2003. Genetic shifts in Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) over a year in the Dawson/Callide Valleys. Aust. J. Agric. Res. 54:739–44
    [Google Scholar]
  110. 110.  Seymour M, Perera OP, Fescemyer HW, Jackson RE, Fleischer SJ, Abel CA 2016. Peripheral genetic structure of Helicoverpa zea indicates asymmetrical panmixia. Ecol. Evol. 6:3198–207
    [Google Scholar]
  111. 111.  Sharma HC 2005. Heliothis/Helicoverpa Management: Emerging Trends and Strategies for Future Research New Dehli, India: Oxford & IBH Publ.
  112. 112.  Simpson SJ, Sword GA, Lo N 2011. Polyphenism in insects. Curr. Biol. 21:R738–49
    [Google Scholar]
  113. 113.  Sosa-Gómez DR, Specht A, Paula-Moraes SV, Lopes-Lima A, Yano SAC et al. 2016. Timeline and geographical distribution of Helicoverpa armigera (Hübner) (Lepidoptera, Noctuidae: Heliothinae) in Brazil. Rev. Bras. Entomol. 60:101–4
    [Google Scholar]
  114. 114.  Specht A, Sosa-Gómez DR, Paula-Moraes SVd, Yano SAC 2013. Identificação morfológica e molecular de Helicoverpa armigera (Lepidoptera: Noctuidae) e ampliação de seu registro de ocorrência no Brasil [Morphological and molecular identification of Helicoverpa armigera (Lepidoptera: Noctuidae) and expansion of its occurrence record in Brazil]. Pesqui. Agropec. Bras. 48:689–92
    [Google Scholar]
  115. 115.  Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F 2015. NOAA's HYSPLIT atmospheric transport and dispersion modelling system. Bull. Am. Meteor. Soc. 96:2059–77
    [Google Scholar]
  116. 116.  Tabashnik BE, Brévault T, Carrière Y 2013. Insect resistance to Bt crops: lessons from the first billion acres. Nat. Biotech. 31:510–21
    [Google Scholar]
  117. 117.  Tabashnik BE, Carrière Y 2017. Surge in insect resistance to transgenic crops and prospects for sustainability. Nat. Biotech. 35:926–35
    [Google Scholar]
  118. 118.  Tabashnik BE, Gassmann AJ, Crowder DW, Carrière Y 2008. Insect resistance to Bt crops: evidence versus theory. Nat. Biotech. 26:199–202
    [Google Scholar]
  119. 119.  Tay WT, Behere GT, Batterham P, Heckel DG 2010. Generation of microsatellite repeat families by RTE retrotransposons in lepidopteran genomes. BMC Evol. Biol. 10:144
    [Google Scholar]
  120. 120.  Tay WT, Behere GT, Heckel DG, Lee SF, Batterham P 2008. Exon-primed intron-crossing (EPIC) PCR markers of Helicoverpa armigera (Lepidoptera: Noctuidae). Bull. Entomol. Res. 98:509–18
    [Google Scholar]
  121. 121.  Tay WT, Mahon RJ, Heckel DG, Walsh TK, Downes S et al. 2015. Insect resistance to Bacillus thuringiensis toxin Cry2Ab is conferred by mutations in an ABC transporter subfamily A protein. PLOS Genet 11:e1005534
    [Google Scholar]
  122. 122.  Tay WT, Soria MF, Walsh T, Thomazoni D, Silvie P et al. 2013. A brave new world for an Old World pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil. PLOS ONE 8:e80134
    [Google Scholar]
  123. 123.  Tay WT, Walsh TK, Downes S, Anderson C, Jermiin LS et al. 2017. Mitochondrial DNA and trade data support multiple origins of Helicoverpa armigera (Lepidoptera, Noctuidae) in Brazil. Sci. Rep. 7:45302
    [Google Scholar]
  124. 124.  Vassal JM, Brevault T, Achaleke J, Menozzi P 2008. Genetic structure of the polyphagous pest Helicoverpa armigera (Lepidoptera: Nocutidae) across the Sub-Saharan cotton belt. Commun. Appl. Biol. Sci. 73:433–37
    [Google Scholar]
  125. 125.  Venette RC, Davis EE, Zaspel J, Heisler H, Larson M 2003. Mini Risk Assessment: Old World Bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) St. Paul: Dept. Entomol. Univ. Minn.
    [Google Scholar]
  126. 126.  Walden KJ 1995. Insect migration in an arid continent. III. The Australian plague locust Chortoicetes terminifera and the native budworm Helicoverpa punctigera in Western Australia. See Ref. 38 173–90
  127. 127.  Walsh TK, Downes SJ, Gascoyne J, James W, Parker T et al. 2014. Dual Cry2Ab and Vip3A resistant strains of Helicoverpa armigera and Helicoverpa punctigera (Lepidoptera: Noctuidae); Testing linkage between loci and monitoring of allele frequencies. J. Econ. Entomol. 107:1610–17
    [Google Scholar]
  128. 128.  Walsh TK, Joußen N, Tian KT, McGaughran A, Anderson CJ et al. 2018. Multiple recombination events between two cytochrome P450 loci contribute to global pyrethroid resistance in Helicoverpa armigera. PLOS ONE 13:e0197760
    [Google Scholar]
  129. 129.  Weeks AR, Endersby NM, Lange CL, Lowe A, Zalucki MP, Hoffmann AA 2010. Genetic variation among Helicoverpa armigera populations as assessed by microsatellites: a cautionary tale about accurate allele scoring. Bull. Entomol. Res. 100:445–50
    [Google Scholar]
  130. 130.  Westbrook JK 2008. Noctuid migration in Texas within the nocturnal aeroecological boundary layer. Integr. Comp. Biol. 48:99–106
    [Google Scholar]
  131. 131.  Westbrook JK, Lopez JD 2010. Long-distance migration in Helicoverpa zea: what we know and need to know. Southwest. Entomol. 35:355–60
    [Google Scholar]
  132. 132.  Westbrook JK, Nagoshi RN, Meagher RL, Fleischer SJ, Jairam S 2016. Modeling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 60:255–67
    [Google Scholar]
  133. 133.  Woodrow KP, Gatehouse AG, Davies DA 1987. The effect of larval phase on flight performance of African armyworm moths, Spodoptera exempta (Walker) (Lepidoptera, Noctuidae). Bull. Entomol. Res. 77:113–22
    [Google Scholar]
  134. 134.  Zalucki MP, Daglish G, Firempong S, Twine P 1986. The biology and ecology of Heliothis armigera (Hübner) and Heliothis punctigera Wallengren (Lepidoptera, Noctuidae) in Australia: What do we know?. Aust. J. Zool. 34:779–814
    [Google Scholar]
  135. 135.  Zalucki MP, Furlong MJ 2005. Forecasting Helicoverpa populations in Australia: a comparison of regression based models and a bio-climatic based modelling approach. Insect Sci 12:45–56
    [Google Scholar]
  136. 136.  Zalucki MP, Murray DAH, Gregg PC, Fitt GP, Twine PH, Jones C 1994. Ecology of Helicoverpa armigera (Hübner) and H. punctigera in the inland areas of eastern Australia: larval sampling and host plant relationships during winter/spring. Aust. J. Zool. 42:329–46
    [Google Scholar]
  137. 137.  Zhang H, Tian W, Zhao J, Jin L, Yang J et al. 2012. Diverse genetic basis of field-evolved resistance to Bt cotton in cotton bollworm from China. PNAS 109:10275–80
    [Google Scholar]
  138. 138.  Zhou XF, Applebaum SW, Coll M 2000. Overwintering and spring migration in the bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) in Israel. Environ. Entomol. 29:1289–94
    [Google Scholar]
  139. 139.  Zhou XF, Coll M, Applebaum SW 2000. Effect of temperature and photoperiod on juvenile hormone biosynthesis and sexual maturation in the cotton bollworm, Helicoverpa armigera: implications for life history traits. Insect Biochem. Mol. Biol. 30:863–68
    [Google Scholar]
  140. 140.  Zhou XF, Faktor O, Applebaum SW, Coll M 2000. Population structure of the pestiferous moth Helicoverpa armigera in the eastern Mediterranean using RAPD analysis. Heredity 85:251–56
    [Google Scholar]
  141. 141.  Zink FA, Tembrock LR, Timm AE, Farris RE, Perera OP, Gilligan TM 2017. A droplet digital PCR (ddPCR) assay to detect Helicoverpa armigera (Lepidoptera: Noctuidae) in bulk trap samples. PLOS ONE 12:e0178704
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011118-111959
Loading
/content/journals/10.1146/annurev-ento-011118-111959
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error