1932

Abstract

The number of insect species at risk of population decline and extinction is increasing rapidly. Yet we know almost nothing about the ecology of these species, except for at-risk butterflies. A growing body of literature shows how butterfly vital rates, including demography and movement, are essential for guiding conservation and recovery. History has shown us that without these data, conservation decisions often weaken, rather than enhance, population viability. This is especially true in changing landscapes. We review knowledge of vital rates across all at-risk butterflies. We have information on movement for 17 of 283 butterfly species and information on demography for 19 species. We find that habitat-specific movement behavior is key to understanding how to connect populations, and habitat-specific demography is central to managing habitats. Methods and analyses worked out for butterflies can provide a scaffold around which to build studies for the conservation of other at-risk insects.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011118-112204
2019-01-07
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/ento/64/1/annurev-ento-011118-112204.html?itemId=/content/journals/10.1146/annurev-ento-011118-112204&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Agrawal AA, Inamine H 2018. Mechanisms behind the monarch's decline. Science 360:1294–96
    [Google Scholar]
  2. 2.  Arnaldo PS, Gonzalez D, Oliveira I, van Langevelde F, Wynhoff I 2014. Influence of host plant phenology and oviposition date on the oviposition pattern and offspring performance of the butterfly Phengaris alcon. J. Insect Conserv 18:1115–22
    [Google Scholar]
  3. 3.  Aschehoug ET, Sivakoff FS, Cayton HL, Morris WF, Haddad NM 2015. Habitat restoration affects immature stages of a wetland butterfly through indirect effects on predation. Ecology 96:1761–67
    [Google Scholar]
  4. 4.  Baguette M, Clobert J, Schtickzelle N 2011. Metapopulation dynamics of the bog fritillary butterfly: experimental changes in habitat quality induced negative density-dependent dispersal. Ecography 34:170–76
    [Google Scholar]
  5. 5.  Battin J 2004. When good animals love bad habitats: ecological traps and the conservation of animal populations. Conserv. Biol. 18:1482–91
    [Google Scholar]
  6. 6.  Baum KA, Sharber WV 2012. Fire creates host plant patches for monarch butterflies. Biol. Lett. 8:968–71
    [Google Scholar]
  7. 7.  Bedick JC, Ratcliffe BC, Hoback WW, Higley LG 1999. Distribution, ecology, and population dynamics of the American burying beetle [Nicrophorus americanus Olivier (Coleoptera, Silphidae)] in south-central Nebraska, USA. J. Insect Conserv. 3:171–81
    [Google Scholar]
  8. 8.  Bergman K-O 1999. Habitat utilization by Lopinga achine (Nymphalidae: Satyrinae) larvae and ovipositing females: implications for conservation. Biol. Conserv. 88:69–74
    [Google Scholar]
  9. 9.  Bhattacharya M, Primack RB, Gerwein J 2003. Are roads and railroads barriers to bumblebee movement in a temperate suburban conservation area?. Biol. Conserv. 109:37–45
    [Google Scholar]
  10. 10.  Bonelli S, Vrabec V, Witek M, Barbero F, Patricelli D, Nowicki P 2013. Selection on dispersal in isolated butterfly metapopulations. Popul. Ecol. 55:469–78
    [Google Scholar]
  11. 11.  Boughton DA 1999. Empirical evidence for complex source–sink dynamics with alternative states in a butterfly metapopulation. Ecology 80:2727–39
    [Google Scholar]
  12. 12.  Brown LM, Breed GA, Severns PM, Crone EE 2017. Losing a battle but winning the war: moving past preference–performance to understand native herbivore–novel host plant interactions. Oecologia 183:441–53
    [Google Scholar]
  13. 13.  Brown LM, Crone EE 2016. Minimum area requirements for an at-risk butterfly based on movement and demography. Conserv. Biol. 30:103–12
    [Google Scholar]
  14. 14.  Brown LM, Fuda RK, Schtickzelle N, Coffman H, Jost A et al. 2017. Using animal movement behavior to categorize land cover and predict consequences for connectivity and patch residence times. Landscape Ecol 32:1657–70
    [Google Scholar]
  15. 15.  Brown LN 1973. Populations of Papilio andraemon bonhotei Sharpe and Papilio aristodemus ponceanus Schaus (Papilionidae) in Biscayne National Monument, Florida. J. Lepidopterists’ Soc. 27:136–40
    [Google Scholar]
  16. 16.  Bubova T, Kulma M, Vrabec V, Nowicki P 2016. Adult longevity and its relationship with conservation status in European butterflies. J. Insect Conserv. 20:1021–32
    [Google Scholar]
  17. 17.  Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N et al. 2011. Patterns of widespread decline in North American bumble bees. PNAS 108:662–67
    [Google Scholar]
  18. 18.  Casacci LP, Cerrato C, Barbero F, Bosso L, Ghidotti S et al. 2015. Dispersal and connectivity effects at different altitudes in the Euphydryas aurinia complex. J. Insect Conserv. 19:265–77
    [Google Scholar]
  19. 19.  Casner KL, Forister ML, Ram K, Shapiro AM 2014. The utility of repeated presence data as a surrogate for counts: a case study using butterflies. J. Insect Conserv. 18:13–27
    [Google Scholar]
  20. 20.  Cassel-Lundhagen A, Sjogren-Gulve P 2007. Limited dispersal by the rare scarce heath butterfly—potential consequences for population persistence. J. Insect Conserv. 11:113–21
    [Google Scholar]
  21. 21.  Cizek O, Konvicka M 2005. What is a patch in a dynamic metapopulation? Mobility of an endangered woodland butterfly, Euphydryas maturna. Ecography 28:791–800
    [Google Scholar]
  22. 22.  Colla SR, Packer L 2008. Evidence for decline in eastern North American bumblebees (Hymenoptera: Apidae), with special focus on Bombus affinis Cresson. Biodivers. Conserv. 17:1379
    [Google Scholar]
  23. 23.  Cooch EG, White GC 2018. Program MARK: A Gentle Introduction Updated April 2018. 18th ed. http://www.phidot.org/software/mark/docs/book
    [Google Scholar]
  24. 24.  Creighton JC, Schnell GD 1998. Short-term movement patterns of the endangered American burying beetle Nicrophorus americanus. Biol. Conserv. 86:281–87
    [Google Scholar]
  25. 25.  Crone EE, Schultz CB 2003. Movement behavior and minimum patch size for butterfly population persistence. Butterflies as Model Systems: Ecology and Evolution Taking Flight CL Boggs, WB Watt, PR Ehrlich 561–76 Chicago: Univ. Chicago Press
    [Google Scholar]
  26. 26.  Cushman JH, Boggs CL, Weiss SB, Murphy DD, Harvey AW, Ehrlich PR 1994. Estimating female reproductive success of a threatened butterfly: influence of emergence time and hostplant phenology. Oecologia 99:194–200
    [Google Scholar]
  27. 27.  Dennis EB, Morgan BJT, Brereton TM, Roy DB, Fox R 2017. Using citizen science butterfly counts to predict species population trends. Conserv. Biol. 31:1350–61
    [Google Scholar]
  28. 28.  Dennis RLH, Shreeve TG, Van Dyck H 2006. Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers. Conserv. 15:1943–66
    [Google Scholar]
  29. 29.  Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B 2014. Defaunation in the Anthropocene. Science 345:401–6
    [Google Scholar]
  30. 30.  Ehrlich PR 1961. Intrinsic barriers to dispersal in checkerspot butterfly. Science 134:108–9
    [Google Scholar]
  31. 31.  Ehrlich PR, Hanski I 2004. On the Wings of Checkerspots New York: Oxford Univ. Press
    [Google Scholar]
  32. 32.  Fischer SJ, Williams EH, Brower LP, Palmiotto PA 2015. Enhancing monarch butterfly reproduction by mowing fields of common milkweed. Am. Midland Nat. 173:229–40
    [Google Scholar]
  33. 33.  Flockhart DTT, Pichancourt JB, Norris DR, Martin TG 2015. Unravelling the annual cycle in a migratory animal: breeding-season habitat loss drives population declines of monarch butterflies. J. Anim. Ecol. 84:155–65
    [Google Scholar]
  34. 34.  Fric Z, Hula V, Klimova M, Zimmermann K, Konvicka M 2010. Dispersal of four fritillary butterflies within identical landscape. Ecol. Res. 25:543–52
    [Google Scholar]
  35. 35.  Goffart P, Schtickzelle N, Turlure C 2010. Conservation and management of the habitats of two relict butterflies in the Belgian Ardenne: Proclossiana eunomia and Lycaena helle. Relict Species: Phylogeography and Conservation Biology JC Habel, T Assmann 357–70 Berlin: Springer-Verlag
    [Google Scholar]
  36. 36.  Goss H 1884. On the probable extinction of Lycaena arion in Britain. Entomol. Mon. Mag. 21:107–9
    [Google Scholar]
  37. 37.  Goulson D, Nicholls E, Botias C, Rotheray EL 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957
    [Google Scholar]
  38. 38. Gov. Can. 2017. Species at risk public registry Gov. Can., Gatineau, Can., updated Nov. 2017. http://www.registrelep-sararegistry.gc.ca/sar/index/default_e.cfm
    [Google Scholar]
  39. 39.  Grixti JC, Wong LT, Cameron SA, Favret C 2009. Decline of bumble bees (Bombus) in the North American Midwest. Biol. Conserv. 142:75–84
    [Google Scholar]
  40. 40.  Haddad NM 2018. Resurrection and resilience of the rarest butterflies. PLOS Biol 16:e2003488
    [Google Scholar]
  41. 41.  Hanski I, Alho J, Moilanen A 2000. Estimating the parameters of survival and migration of individuals in metapopulations. Ecology 81:239–51
    [Google Scholar]
  42. 42.  Hanski I, Thomas CD 1994. Metapopulation dynamics and conservation: a spatially explicit model applied to butterflies. Biol. Conserv. 68:167–80
    [Google Scholar]
  43. 43.  Henry EH 2018. Disturbance and conservation of at-risk butterflies PhD Diss. North Carol. State Univ. Raleigh, NC:123 pp.
    [Google Scholar]
  44. 44.  Himes Boor GK, Schultz CB, Crone EE, Morris WF 2018. Mechanism matters: the cause of fluctuations in boom–bust populations governs optimal habitat restoration strategy. Ecol. Appl. 28:256–72
    [Google Scholar]
  45. 45.  Hovestadt T, Binzenhofer B, Nowicki P, Settele J 2011. Do all inter-patch movements represent dispersal? A mixed kernel study of butterfly mobility in fragmented landscapes. J. Anim. Ecol. 80:1070–77
    [Google Scholar]
  46. 46.  Hudgens BR, Morris WF, Haddad NM, Fields WR, Wilson JW et al. 2012. How complex do models need to be to predict dispersal of threatened species through matrix habitats?. Ecol. Appl. 22:1701–10
    [Google Scholar]
  47. 47. Int. Union Conserv. Nature. 2017. The IUCN Red List of Threatened Species. Version 2017-3 Accessed Oct. 20, 2017. http://www.iucnredlist.org
    [Google Scholar]
  48. 48.  James D, Nunnallee D 2011. Life Histories of Cascadia Butterflies Corvallis, OR: Oregon State Univ. Press
    [Google Scholar]
  49. 49.  Jones R 1977. Movement patterns and egg distribution in cabbage butterflies. J. Anim. Ecol. 46:195–212
    [Google Scholar]
  50. 50.  Joy J, Pullin AS 1999. Field studies on flooding and survival of overwintering large heath butterfly Coenonympha tullia larvae on Fenn's and Whixall Mosses in Shropshire and Wrexham, U.K. Ecol. Entomol. 24:426–31
    [Google Scholar]
  51. 51.  Kajzer-Bonk J, Nowicki P, Bonk M, Skorka P, Witek M, Woyciechowski M 2013. Local populations of endangered Maculinea (Phengaris) butterflies are flood resistant. J. Insect Conserv. 17:1105–12
    [Google Scholar]
  52. 52.  Kuefler D, Hudgens B, Haddad NM, Morris WF, Thurgate N 2010. The conflicting role of matrix habitats as conduits and barriers for dispersal. Ecology 91:944–50
    [Google Scholar]
  53. 53.  Kwilosz JR, Knutson RL 1999. Prescribed fire management of Karner blue butterfly habitat at Indiana Dunes National Lakeshore. Nat. Areas J. 19:98–108
    [Google Scholar]
  54. 54.  Leidner AK, Haddad NM 2011. Combining measures of dispersal to identify conservation strategies in fragmented landscapes. Conserv. Biol. 25:1022–31
    [Google Scholar]
  55. 55.  Lomolino MV, Creighton JC 1996. Habitat selection, breeding success and conservation of the endangered American burying beetle Nicrophorus americanus. Biol. Conserv 77:235–41
    [Google Scholar]
  56. 56.  Marttila O, Saarinen K, Marttila P 2000. Six years from passing bell to recovery: habitat restoration of the threatened Chequered Blue Butterfly (Scolitantides orion) in SE Finland. Entomol. Fennica 11:113–17
    [Google Scholar]
  57. 57.  Matter SF, Roland J, Moilanen A, Hanski I 2004. Migration and survival of Parnassius smintheus: detecting effects of habitat for individual butterflies. Ecol. Appl. 14:1526–34
    [Google Scholar]
  58. 58.  McElderry RM, Salvato MH, Horvitz CC 2015. Population viability models for an endangered endemic subtropical butterfly: effects of density and fire on population dynamics and risk of extinction. Biodivers. Conserv. 24:1589–608
    [Google Scholar]
  59. 59.  McIntire EJB, Schultz CB, Crone EE 2007. Designing a network for butterfly habitat restoration: where individuals, populations and landscapes interact. J. Appl. Ecol. 44:725–36
    [Google Scholar]
  60. 60.  McKenna-Foster A, Perrotti L, Blyth J, LoPresti E, Kennedy RS 2016. Measuring success of a reintroduced population of the American burying beetle (Nicrophorusamericanus Olivier) to Nantucket Island, MA. J. Insect Conserv. 20:895–904
    [Google Scholar]
  61. 61.  Mecenero S, Ball JB, Edge DA, Hamer ML, Henning GA et al. 2013. Conservation Assessment of Butterflies of South Africa, Lesotho and Swaziland: Red List and Atlas Pretoria, S. Afr.: S. Afr. Natl. Biodivers. Inst.
    [Google Scholar]
  62. 62.  Mennechez G, Petit S, Schtickzelle N, Baguette M 2004. Modelling mortality and dispersal: consequences of parameter generalisation on metapopulation dynamics. Oikos 106:243–52
    [Google Scholar]
  63. 63.  Morris WF, Doak DF 2002. Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis Sunderland, Mass.: Sinauer Assoc.
    [Google Scholar]
  64. 64.  Murphy DD 1987. Are we studying our endangered butterflies to death?. J. Res. Lepidoptera 26:236–39
    [Google Scholar]
  65. 65.  New TR 2014. Insects, Fire and Conservation Dordrecht, Neth.: Springer
    [Google Scholar]
  66. 66.  New TR, Pyle RM, Thomas JA, Thomas CD, Hammond PC 1995. Butterfly conservation management. Annu. Rev. Entomol. 40:57–83
    [Google Scholar]
  67. 67.  Nowicki P, Vrabec V 2011. Evidence for positive density-dependent emigration in butterfly metapopulations. Oecologia 167:657–65
    [Google Scholar]
  68. 68.  Nowicki P, Vrabec V, Binzenhofer B, Feil J, Zaksek B et al. 2014. Butterfly dispersal in inhospitable matrix: rare, risky, but long-distance. Landscape Ecol 29:401–12
    [Google Scholar]
  69. 69.  Oberhauser K, Wiederholt R, Diffendorfer JE, Semmens D, Ries L et al. 2017. A trans-national monarch butterfly population model and implications for regional conservation priorities. Ecol. Entomol. 42:51–60
    [Google Scholar]
  70. 70.  Orive ME, Baughman JF 1989. Effects of handling on Euphydryas editha (Nymphalidae). J. Lepidopterists’ Soc. 43:244–47
    [Google Scholar]
  71. 71.  Ovaskainen O 2004. Habitat-specific movement parameters estimated using mark-recapture data and a diffusion model. Ecology 85:242–57
    [Google Scholar]
  72. 72.  Petit S, Moilanen A, Hanski I, Baguette M 2001. Metapopulation dynamics of the bog fritillary butterfly: movements between habitat patches. Oikos 92:491–500
    [Google Scholar]
  73. 73.  Pleasants JM, Zalucki MP, Oberhauser K, Brower L, Taylor O et al. 2017. Interpreting measures of the size of the monarch butterfly population: pitfalls and prospects. PLOS ONE 12:e0181245
    [Google Scholar]
  74. 74.  Polic D, Fiedler K, Nell C, Grill A 2014. Mobility of ringlet butterflies in high-elevation alpine grassland: effects of habitat barriers, resources and age. J. Insect Conserv. 18:1153–61
    [Google Scholar]
  75. 75.  Rabasa SG, Gutiérrez D, Escudero A 2007. Metapopulation structure and habitat quality in modelling dispersal in the butterfly Iolana iolas. Oikos 116:793–806
    [Google Scholar]
  76. 76.  Radchuk V, Turlure C, Schtickzelle N 2013. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. J. Anim. Ecol. 82:275–85
    [Google Scholar]
  77. 77.  Ries L, Oberhauser K, Taron D, Battin J, Rendon-Salinas E et al. 2015. Connecting eastern monarch population dynamics across their migratory cycle. Monarchs in a Changing World: Biology and Conservation of an Iconic Insect KS Oberhauser, KR Nail, S Altizer 268–81 Ithaca, NY: Cornell Univ. Press
    [Google Scholar]
  78. 78.  Rytteri S, Kuussaari M, Saastamoinen M, Ovaskainen O 2017. Can we predict the expansion rate of a translocated butterfly population based on a priori estimated movement rates?. Biol. Conserv. 215:189–95
    [Google Scholar]
  79. 79.  Sands DPA, New TR 2002. The Action Plan for Australian Butterflies Canberra: Environ. Aust.
    [Google Scholar]
  80. 80.  Schtickzelle N, Baguette M 2003. Behavioural responses to habitat patch boundaries restrict dispersal and generate emigration–patch area relationships in fragmented landscapes. J. Anim. Ecol. 72:533–45
    [Google Scholar]
  81. 81.  Schtickzelle N, Mennechez G, Baguette M 2006. Dispersal depression with habitat fragmentation in the bog fritillary butterfly. Ecology 87:1057–65
    [Google Scholar]
  82. 82.  Schultz CB 1998. Dispersal behavior and its implications for reserve design in a rare Oregon butterfly. Conserv. Biol. 12:284–92
    [Google Scholar]
  83. 83.  Schultz CB, Brown LM, Pelton E, Crone EE 2017. Citizen science monitoring demonstrates dramatic declines of monarch butterflies in western North America. Biol. Conserv. 214:343–46
    [Google Scholar]
  84. 84.  Schultz CB, Crone EE 1998. Burning prairie to restore butterfly habitat: a modeling approach to management tradeoffs for the Fender's blue. Restor. Ecol. 6:244–52
    [Google Scholar]
  85. 85.  Schultz CB, Crone EE 2001. Edge-mediated dispersal behavior in a prairie butterfly. Ecology 82:1879–92
    [Google Scholar]
  86. 86.  Schultz CB, Crone EE 2015. Using ecological theory to develop recovery criteria for an endangered butterfly. J. Appl. Ecol. 52:1111–15
    [Google Scholar]
  87. 87.  Schultz CB, Franco AMA, Crone EE 2012. Response of butterflies to structural and resource boundaries. J. Anim. Ecol. 81:724–34
    [Google Scholar]
  88. 88.  Schultz CB, Hammond PC 2003. Using population viability analysis to develop recovery criteria for endangered insects: case study of the Fender's blue butterfly. Conserv. Biol. 17:1372–85
    [Google Scholar]
  89. 89.  Schultz CB, Pe'er BG, Damiani C, Brown L, Crone EE 2017. Does movement behaviour predict population densities? A test with 25 butterfly species. J. Anim. Ecol. 86:384–93
    [Google Scholar]
  90. 90.  Sei M 2009. Flight and oviposition behavior of the adult maritime ringlet (Coenonympha nipisiquit McDunnough) females in response to microhabitat. J. Insect Behav. 22:87–100
    [Google Scholar]
  91. 91.  Sei M, Porter AH 2003. Microhabitat-specific early-larval survival of the maritime ringlet (Coenonympha tullia nipisiquit). Anim. Conserv. 6:55–61
    [Google Scholar]
  92. 92.  Semmens BX, Semmens DJ, Thogmartin WE, Wiederholt R, Lopez-Hoffman L et al. 2016. Quasi-extinction risk and population targets for the Eastern, migratory population of monarch butterflies (Danaus plexippus). Sci. Rep. 6:23265
    [Google Scholar]
  93. 93.  Severns PM 2011. Habitat restoration facilitates an ecological trap for a locally rare, wetland-restricted butterfly. Insect Conserv. Divers. 4:184–91
    [Google Scholar]
  94. 94.  Skorka P, Nowicki P, Lenda M, Witek M, Sliwinska EB et al. 2013. Different flight behaviour of the endangered scarce large blue butterfly Phengaris teleius (Lepidoptera: Lycaenidae) within and outside its habitat patches. Landscape Ecol 28:533–46
    [Google Scholar]
  95. 95.  Stenoien C, Nail K, Zalucki JM, Parry H, Oberhauser K, Zalucki MP 2016. Monarchs in decline: a collateral landscape level effect of modern agriculture. Insect Sci 25:528–41
    [Google Scholar]
  96. 96.  Thomas JA 1980. Why did the large blue become extinct in Britain?. Oryx 15:243–47
    [Google Scholar]
  97. 97.  Timus N, Czekes Z, Rakosy L, Nowicki P 2017. Conservation implications of source-sink dynamics within populations of endangered Maculinea butterflies. J. Insect Conserv. 21:369–78
    [Google Scholar]
  98. 98. U.S. Fish Wildl. Serv. 2018. Endangered species: U.S. species U.S. Fish Wildl. Serv. Falls Church, VA: updated Jan. 16. https://www.fws.gov/endangered/species/us-species.html
    [Google Scholar]
  99. 99.  Van Dyck H, Van Strien AJ, Maes D, Van Swaay CA 2009. Declines in common, widespread butterflies in a landscape under intense human use. Conserv. Biol. 23:957–65
    [Google Scholar]
  100. 100.  van Swaay C, Cuttelod A, Collins S, Maes D, Munguira ML et al. 2010. European Red List of Butterflies Luxembourg: Publ. Off. Eur. Union.
    [Google Scholar]
  101. 101.  Viljura M, Teder T 2018. Disperse or die: Colonisation of transient open habitats in production forests is only weakly dispersal-limited in butterflies. Biol. Conserv. 218:32–40
    [Google Scholar]
  102. 102.  Vlasanek P, Hauck D, Konvicka M 2009. Adult sex ratio in the Parnassius mnemosyne butterfly: effects of survival, migration and weather. Isr. J. Ecol. Evol. 55:233–52
    [Google Scholar]
  103. 103.  Vogel G 2017. Where have all the insects gone?. Science 356:575–78
    [Google Scholar]
  104. 104.  Wahlberg N, Klemetti T, Selonen V, Hanski I 2002. Metapopulation structure and movements in five species of checkerspot butterflies. Oecologia 130:33–43
    [Google Scholar]
  105. 105.  Walter G, Zalucki MP 1999. Rare butterflies and theories of evolution and ecology. Biology of Australian Butterflies RL Kitching, E Scheermeyer, RE Jones, NE Pierce 349–68 Melbourne, Aust.: CSIRO Publ.
    [Google Scholar]
  106. 106.  Wang R, Wang Y, Chen J, Lei G, Xu R 2004. Contrasting movement patterns in two species of chequerspot butterflies, Euphydryas aurinia and Melitaea phoebe, in the same patch network. Ecol. Entomol. 29:367–74
    [Google Scholar]
  107. 107.  Warchola N, Bastianelli C, Schultz C, Crone E 2015. Fire increases ant-tending and survival of the Fender's blue butterfly larvae. J. Insect Conserv. 19:1063–73
    [Google Scholar]
  108. 108.  Warchola N, Crone EE, Schultz C 2018. Balancing costs and benefits of fire for population viability of endangered butterflies. J. Appl. Ecol. 55:800–9
    [Google Scholar]
  109. 109.  Weiss SB 1999. Cars, cows, and checkerspot butterflies: nitrogen deposition and management of nutrient-poor grasslands for a threatened species. Conserv. Biol. 13:1476–86
    [Google Scholar]
  110. 110.  Weldon AJ, Haddad NM 2005. The effects of patch shape on indigo buntings: evidence for an ecological trap. Ecology 86:1422–31
    [Google Scholar]
  111. 111.  Wynhoff I, Kolvoort AM, Bassignana CF, Berg MP, Van Langevelde F 2017. Fen meadows on the move for the conservation of Maculinea (Phengaris) teleius butterflies. J. Insect Conserv. 21:379–92
    [Google Scholar]
  112. 112.  Zalucki MP, Kitching RL 1982. The analysis and description of movement in adult Danaus plexippus L. (Lepidoptera: Danainae). Behaviour 80:174–97
    [Google Scholar]
  113. 113.  Zalucki MP, Parry H, Zalucki J 2016. Movement and egg laying in Monarchs: To move or not to move, that is the equation. Austral Ecol 41:154–67
    [Google Scholar]
  114. 114.  Zielin SB, Littlejohn J, de Rivera CE, Smith WP, Jacobson SL 2016. Ecological investigations to select mitigation options to reduce vehicle-caused mortality of a threatened butterfly. J. Insect Conserv. 20:845–54
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011118-112204
Loading
/content/journals/10.1146/annurev-ento-011118-112204
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error