1932

Abstract

Locusts and grasshoppers (Orthoptera: Acridoidea) are among the most dangerous agricultural pests. Their control is critical to food security worldwide and often requires governmental or international involvement. Although locust and grasshopper outbreaks are now better controlled and often shorter in duration and reduced in extent, large outbreaks, often promoted by climate change, continue to occur in many parts of the world. While some locust and grasshopper control systems are still curative, the recognition of the damage these pests can cause and the socioeconomic consequences of locust and grasshopper outbreaks have led to an increasing paradigm shift from crop protection to preventive management. Effective preventive management strategy relies on an improved knowledge of the pest biology and ecology and more efficient monitoring and control techniques.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011118-112500
2019-01-07
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/ento/64/1/annurev-ento-011118-112500.html?itemId=/content/journals/10.1146/annurev-ento-011118-112500&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Anstey ML, Rogers SM, Ott SR, Burrows M, Simpson SJ 2009. Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts. Science 323:627–30
    [Google Scholar]
  2. 2.  Ariel G, Ayali A 2015. Locust collective motion and its modeling. PLOS Comput. Biol. 11:e1004522
    [Google Scholar]
  3. 3. Aust. Plague Locust Comm. 2009. APLC aerial operations: information for pilots Rep., Aust. Plague Locust Comm. Canberra, Aust: http://www.agriculture.gov.au/SiteCollectionDocuments/animal-plant/aplc/locust/ops-documents/pilot-information-feb09.pdf
    [Google Scholar]
  4. 4.  Axelsen JA, Petersen BS, Maiga IH, Niassy A, Badji K et al. 2009. Simulation studies of Senegalese grasshopper ecosystem interactions II: the role of egg pod predators and birds. Int. J. Pest Manag. 55:99–112
    [Google Scholar]
  5. 5.  Bahana JW, Byaruhanga EK 1999. Advances and review of strategies for red locust plague prevention: the control of red locust, Nomadacris septemfasciata (Serville) into the 21st century. Insect Sci. Appl. 19:265–72
    [Google Scholar]
  6. 6.  Bazazi S, Buhl J, Hale JJ, Anstey ML, Sword GA et al. 2008. Collective motion and cannibalism in locust migratory bands. Curr. Biol. 18:735–39
    [Google Scholar]
  7. 7.  Belayneh YT 2005. Acridid pest management in the developing world: a challenge to the rural population, a dilemma to the international community. J. Orthoptera Res. 14:187–95
    [Google Scholar]
  8. 8.  Belovsky GE 2000. Do grasshoppers diminish grassland productivity? A new perspective for control based on conservation. Grasshoppers and Grassland Health: Managing Grasshopper Outbreaks without Risking Environmental Disaster JA Lockwood, AV Latchininsky, MG Sergeev 7–30 Dordrecht, Neth.: Kluwer Acad. Publ.
    [Google Scholar]
  9. 9.  Brader L, Djibo H, Faye FG, Ghaout S, Lazar M et al. 2006. Towards a more effective response to desert locusts and their impacts on food security, livelihoods and poverty: multilateral evaluation of the 2003–05 Desert Locust campaign Rep., Food Agric. Org. UN Rome, Italy: http://www.fao.org/ag/locusts/common/ecg/1913/en/DesertLocustEvalReportE.pdf
    [Google Scholar]
  10. 10.  Branson DH, Joern A, Sword GA 2006. Sustainable management of insect herbivores in grassland ecosystems: new perspectives in grasshopper control. BioScience 56:743–55
    [Google Scholar]
  11. 11.  Buhl J, Sword GA, Simpson SJ 2012. Using field data to test locust migratory band collective movement models. Interface Focus 2:757–63
    [Google Scholar]
  12. 12.  Cease AJ, Elser JJ, Ford CF, Hao S, Kang L, Harrison JF 2012. Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science 335:467–69
    [Google Scholar]
  13. 13. Centre Overseas Pest Res. 1982. The Locust and Grasshopper Agricultural Manual London: Centre Overseas Pest Res.
    [Google Scholar]
  14. 14.  Chapuis M-P, Plantamp C, Blondin L, Pages C, Lecoq M 2014. Demographic processes shaping genetic variation of the solitarious phase of the desert locust. Mol. Ecol. 23:1749–63
    [Google Scholar]
  15. 15.  Cheke RA, Tang SY, Tratalos JA 2014. Predator–prey population models of migrant insects with phase change. ICES J. Mar. Sci. 71:2221–30
    [Google Scholar]
  16. 16.  Cressman K 1997. SWARMS: a geographic information system for desert locust forecasting. See Ref. 65 27–35
  17. 17.  Cressman K 2008. The use of new technologies in desert locust early warning. Outlooks Pest Manag 19:55–59
    [Google Scholar]
  18. 18.  Cressman K 2013. Role of remote sensing in desert locust early warning. J. Appl. Remote Sens. 7:075098
    [Google Scholar]
  19. 19.  Cressman K 2016. Desert locust. Biological and Environmental Hazards, Risks, and Disasters R Sivanpillai 87–105 Amsterdam, Neth.: Elsevier
    [Google Scholar]
  20. 20.  Cressman K, Hodson D 2009. Surveillance, information sharing and early warning systems for transboundary plant pests diseases: the FAO experience. Arab J. Pl. Prot. 27:226–32
    [Google Scholar]
  21. 21.  Cullen DA, Cease A, Latchininsky AV, Ayali A, Berry K et al. 2017. From molecules to management: mechanisms and consequences of locust phase polyphenism. Adv. Insect Phys. 53:165–285
    [Google Scholar]
  22. 22.  Cullen DA, Sword GA, Dodgson T, Simpson SJ 2010. Behavioural phase change in the Australian plague locust, Chortoicetes terminifera, is triggered by tactile stimulation of the antennae. J. Insect Physiol. 56:937–42
    [Google Scholar]
  23. 23.  de Miranda EE, Lecoq M, Pierozzi I Jr., Duranton J-F, Batistella M 1996. O Gafanhoto do Mato Grosso: Balanço e Perspectivas de 4 Anos de Pesquisas, 19921996 Campinas, Braz.: Embrapa
    [Google Scholar]
  24. 24.  Deshormes A 2011. Institutional study to enhance the roles and responsibilities of the Desert Locust Control Commissions established under Article XIV Financ. Gov. Final Rep., Food Agric. Org. UN Rome, Italy: http://www.fao.org/ag/locusts/common/ecg/2148/en/Financial_Governance_Report_E.pdf
    [Google Scholar]
  25. 25.  Deveson ED 2012. Naturae Amator and the grasshopper infestations of South Australia's early years. Trans. R. Soc. South Aust. 136:1–15
    [Google Scholar]
  26. 26.  Deveson ED 2013. Satellite normalized difference vegetation index data used in managing Australian plague locusts. J. Appl. Remote Sens. 7:075096
    [Google Scholar]
  27. 27.  Deveson ED, Drake VA, Hunter DM, Walker PW, Wang HK 2005. Evidence from traditional and new technologies for northward migrations of Australian plague locusts, Chortoicetes terminifera (Walker) (Orthoptera: Acrididae) to western Queensland. Aust. Ecol. 30:928–43
    [Google Scholar]
  28. 28.  Deveson ED, Hunter DM 2002. The operation of a GIS-based decision support system for Australian locust management. Insect Sci 9:1–12
    [Google Scholar]
  29. 29.  De Vreyer P, Guilbert N, Mesple-Sompsa S 2014. Impact of natural disasters on education outcomes: evidence from the 1987–89 locust plague in Mali. J. Afr. Econ. 24:57–100
    [Google Scholar]
  30. 30.  Duranton J-F, Lecoq M 1990. Le Criquet Pèlerin au Sahel Montpellier, France: CIRAD-PRIFAS
    [Google Scholar]
  31. 31.  Escorihuela MJ, Merlin O, Stefan V, Moyano G, Eweys OA et al. 2018. SMOS based high resolution soil moisture estimates for desert locust preventive management. Remote Sens. Appl. Soc. Env. 11:140–50
    [Google Scholar]
  32. 32.  Everts JW, Ba L 1997. Environmental effects of locust control: state of the art and perspectives. See Ref. 65 331–36
  33. 33.  Farrow RA 1979. Population dynamics of the Australian Plague Locust, Chortoicetes terminifera (Walker), in Central Western New South Wales I. Reproduction and migration in relation to weather. Aust. J. Zool. 27:717–45
    [Google Scholar]
  34. 34.  Farrow RA 1990. Flight and migration in Acridoids. The Biology of Grasshoppers RF Chapman, A Joern 227–314 London: John Wiley
    [Google Scholar]
  35. 35.  Ferenz HJ, Seidelmann K 2003. Pheromones in relation to aggregation and reproduction in desert locusts. Physiol. Entomol. 28:11–18
    [Google Scholar]
  36. 36. Food Agric. Org. UN. 2008. Rapport de l'atelier régional de cadrage relatif à l'élaboration de plans de gestion des risques liés au criquet pèlerin Rep., Food Agric. Org. UN Bamako, Mali: http://www.fao.org/ag/locusts/common/ecg/1643/en/Rapport_atelier_Bamako.pdf
    [Google Scholar]
  37. 37. Food Agric. Org. UN. 2010. Locust watch: locusts in Caucasus and Central Asia. Food and Agriculture Organization of the United Nations http://www.fao.org/ag/locusts-CCA/en/index.html
    [Google Scholar]
  38. 38. Food Agric. Org UN. 2013. PGSE: Plan de gestion sanitaire et environnementale relative à la lutte antiacridienne à Madagascar Rep., Food Agric. Org. UN Rome, Italy: http://www.fao.org/3/a-bl257f.pdf
    [Google Scholar]
  39. 39. Food Agric. Org UN. 2014. Evaluation of field trials data on the efficacy and selectivity of insecticides on locusts and grasshoppers: report to FAO by the Pesticide Referee Group Rep Rome, Italy: http://www.fao.org/ag/locusts/common/ecg/2241/en/PRG10e.pdf
    [Google Scholar]
  40. 40. Food Agric. Org. UN. 2018. Locust watch: desert locust. Updated June 4. Food and Agricultural Organization of the United Nations http://www.fao.org/ag/locusts/en/info/info/index.html
    [Google Scholar]
  41. 41. Food Agric. Org. UN. 2018. Madagascar locus crisis. Food and Agricultural Organization of the United Nations http://www.fao.org/emergencies/crisis/madagascar-locust/en
    [Google Scholar]
  42. 42.  Franc A, Soti V, Tran A, Leclair D, Duvallet G, Duranton J-F 2008. Deforestation, new migration pathways and outbreaks of the red locust Nomadacris septemfasciata (Orthoptera: Acrididae) in the Sofia river basin (Madagascar) Paper presented at SAGEO 2008: Conférence SAGEO Montpellier, France: June 24–27. http://agritrop.cirad.fr/547186
    [Google Scholar]
  43. 43.  Gastón J 1969. Síntesis Histórica de las Invasiones de Langosta en la Argentina. Publicación Miscelánea 433 Buenos Aires, Argent.: Secr. Estado Agric. Ganad. Repúb. Argent.
    [Google Scholar]
  44. 44.  Gay P-E, Lecoq M, Piou C 2018. Improving preventive locust management: insights from a multi-agent model. Pest Manag. Sci. 74:46–58
    [Google Scholar]
  45. 45.  Gong A, Liu X, Jiang X, Zhang L 2003. Transmission of Nosema locustae disease in grasshopper populations in Qinghai grassland. Chin. J. Biol. Control 19:118–21
    [Google Scholar]
  46. 46.  Gunn DL 1960. The biological background of locust control. Annu. Rev. Entomol. 5:279–300
    [Google Scholar]
  47. 47.  Guo F 1989. A brief introduction to locust plague and research in ancient China. The Biology of the Migratory Locusts in China F Guo, YL Chen, BL Lu 1–24 Shandong, China: Shandong Sci. Technol. Press
    [Google Scholar]
  48. 48.  Hansen MJ, Buhl J, Bazazi S, Simpson SJ, Sword GA 2011. Cannibalism in the lifeboat—collective movement in Australian plague locusts. Behav. Ecol. Sociobiol. 65:1715–20
    [Google Scholar]
  49. 49.  Hassanali A, Njagi P, Bashir M 2005. Chemical ecology of locusts and related acridids. Annu. Rev. Entomol. 50:223–45
    [Google Scholar]
  50. 50.  Hastings J, Latchininsky AV, Schell SP 2009. Sustainability of grasshopper management and support through CARMA. Proceedings of the 42nd Annual Hawai‘i International Conference on Systems Sciences1–10 Los Alamitos, CA: IEEE Comp. Soc.
    [Google Scholar]
  51. 51.  Henschel JR 2015. Locust times - monitoring populations and outbreak controls in relation to Karoo natural capital. Trans. R. Soc. S. Afr. 70:135–43
    [Google Scholar]
  52. 52.  Hewitt GB, Onsager JA 1983. Control of grasshoppers on rangeland in the United States: a perspective. J. Range Manag. 36:202–7
    [Google Scholar]
  53. 53.  Hunter DM 1982. Distribution of the Australian plague locust in the Channel Country and adjacent areas. Australian Plague Locust Commission, Annual Report 198081, Research Supplement46–54 Canberra, Aust.: Aust. Gov. Publ. Serv.
    [Google Scholar]
  54. 54.  Hunter DM 2004. Advances in the control of locusts (Orthoptera: Acrididae) in eastern Australia: from crop protection to preventive control. Aust. J. Entomol. 43:293–303
    [Google Scholar]
  55. 55.  Hunter DM 2010. Credibility of an IPM approach for locust and grasshopper control: the Australian example. J. Orthoptera Res. 19:133–37
    [Google Scholar]
  56. 56.  Hunter DM, Cosenzo EL 1990. The origin of plagues and recent outbreaks of the South American locust, Schistocerca cancellata (Orthoptera: Acrididae) in Argentina. Bull. Entomol. Res. 80:295–300
    [Google Scholar]
  57. 57.  Hunter DM, Elder RJ 1999. Rainfall sequences leading to population increases of Austracris guttulosa (Walker) (Orthoptera: Acrididae) in arid north-eastern Australia. Aust. J. Entomol. 38:204–18
    [Google Scholar]
  58. 58.  Hunter DM, McCulloch L, Spurgin PA 2008. Aerial detection of nymphal bands of the Australian plague locust (Chortoicetes terminifera (Walker)) (Orthoptera: Acrididae). Crop Prot 27:118–23
    [Google Scholar]
  59. 59.  Hunter DM, Milner RJ, Spurgin PA 2001. Aerial treatment of the Australian plague locust, Chortoicetes terminifera (Orthoptera: Acrididae) with Metarhizium anisopliae (Deuteromycotina: Hyphomycetes). Bull. Entomol. Res. 91:93–99
    [Google Scholar]
  60. 60.  Jago ND 1990. The 1985–1989 grasshopper/locust upsurge in Sub-Saharan Africa: the usage of conventional pesticides and equipment. Bol. Sanid. Veg., Plagas 20:11–20
    [Google Scholar]
  61. 61.  Ji R, Xie B-Y, Li D-M, Li Z, Zhang X 2004. Use of MODIS data to monitor the oriental migratory locust plague. Agric. Ecosyst. Environ. 104:615–20
    [Google Scholar]
  62. 62.  Joern A 2000. What are the consequences of non-linear ecological interactions for grasshopper control strategies?. Grasshoppers and Grassland Health: Managing Grasshopper Outbreaks Without Risking Environmental Disaster JA Lockwood, AV Latchininsky, MG Sergeev 131–44 NATO Sci. Ser. 2 73 Dordrecht, Neth.: Kluwer Acad. Publ.
    [Google Scholar]
  63. 63.  Joffe S 1995. Desert Locust Management: A Time for Change Washington, DC: World Bank
    [Google Scholar]
  64. 64.  Krall S, Herok C 1997. Economics of desert locust control. See Ref. 65 401–14
  65. 65.  Krall S, Peveling R, Diallo DB 1997. New Strategies in Locust Control Basel, Switz.: Birkhäuser Verlag
    [Google Scholar]
  66. 66.  Langewald J, Kooyman C, Douro-Kpindou O, Lomer JC, Dahmoud AO, Mohamed HO 1997. Field treatment of Desert Locust (Schistocerca gregaria Forskål) hoppers in Mauritania using an oil formulation of the entomopathogenic fungus Metarhizium flavoviride. Biocontrol Sci. Technol. 7:603–12
    [Google Scholar]
  67. 67.  Latchininsky AV 1998. Moroccan locust Dociostaurus maroccanus (Thunberg, 1815): a faunistic rarity or an important economic pest?. J. Insect Conserv. 2:167–78
    [Google Scholar]
  68. 68.  Latchininsky AV 2008. Grasshopper outbreak challenges conservation status of a small Hawaiian Island. J. Insect Conserv. 12:3–4343–57
    [Google Scholar]
  69. 69.  Latchininsky AV 2013. Locusts and remote sensing: a review. J. Appl. Remote Sens. 7:075099
    [Google Scholar]
  70. 70.  Latchininsky AV, Piou C, Franc A, Soti V 2016. Application of remote sensing to locust management. Land Surface Remote Sensing: Environment and Risks N Baghdadi, L Zribi 263–93 London: ISTE Press
    [Google Scholar]
  71. 71.  Latchininsky AV, Schell SP 2006. Pest grasshoppers of the West: identification and management Cooper. Ext. Serv. Bull. B-1171 Univ. Wyoming Laramie, WY: http://www.wyoextension.org/agpubs/pubs/B1171_poster.pdf
    [Google Scholar]
  72. 72.  Latchininsky AV, Sergeev MG, Childebaev MK, Chernyakhovsky ME, Lockwood JA et al. 2002. Acridids of Kazakhstan, Central Asia and Adjacent Territories Laramie, WY: Univ. Wyoming (In Russian)
    [Google Scholar]
  73. 73.  Latchininsky AV, Sivanpillai R 2010. Locust habitat monitoring and risk assessment using remote sensing and GIS technologies. Integrated Management of Arthropod Pests and Insect Borne Diseases, Integrated Management of Plant Pests and Diseases 5 A Ciancio, KG Mukerji 163–88 Dordrecht, Neth.: Springer
    [Google Scholar]
  74. 74.  Latchininsky AV, Sword G, Sergeev M, Cigliano MM, Lecoq M 2011. Locusts and grasshoppers: behavior, ecology, and biogeography. Psyche 2011:578327
    [Google Scholar]
  75. 75.  Lazar M, Piou C, Doumandji-Mitiche B, Lecoq M 2016. Importance of solitarious desert locust population dynamics: lessons from historical survey data in Algeria. Entomol. Exp. Appl. 161:168–80
    [Google Scholar]
  76. 76.  Lecoq M 1975. Les Déplacements par Vol du Criquet Migrateur Malgache en Phase Solitaire: Leur Importance Sur la Dynamique des Populations et la Grégarisation Paris: Min. Coopération
    [Google Scholar]
  77. 77.  Lecoq M 1991. Le Criquet pèlerin. Enseignements de la dernière invasion et perspectives offertes par la biomodélisation. La Lutte Anti-Acridienne A Essaid 71–98 Paris: AUPELF-UREF, John Libbey Eurotext
    [Google Scholar]
  78. 78.  Lecoq M 2001. Recent progress in desert and migratory locust management in Africa. Are preventive actions possible?. J. Orthoptera Res. 10:277–91
    [Google Scholar]
  79. 79.  Lecoq M 2003. Desert locust threat to agricultural development and food security and FAO/international role in its control. Arab J. Pl. Prot. 21:188–93
    [Google Scholar]
  80. 80.  Lecoq M 2005. Desert locust management: from ecology to anthropology. J. Orthoptera Res. 14:179–86
    [Google Scholar]
  81. 81.  Lecoq M, Andriamroahina TRZ, Solofonaina H, Gay P-E 2011. Ecology and population dynamics of solitary red locusts in southern Madagascar. J. Orthoptera Res. 20:141–58
    [Google Scholar]
  82. 82.  Lecoq M, Pierrozi I Jr. 1996. Comportement de vol des essaims de Rhammatocerus schistocercoides (Rehn, 1906) au Mato Grosso, Brésil (Orthoptera, Acrididae, Gomphocerinae). Ann. Soc. Entomol. Fr. 32:265–83
    [Google Scholar]
  83. 83.  Lecoq M, Sukirno 1999. Drought and exceptional outbreak of the oriental migratory locust in Indonesia. J. Orthoptera Res. 8:153–61
    [Google Scholar]
  84. 84.  Li L, Zhu D, Ye S, Yao X, Li et al. 2014. Design and implementation of geographic information systems, remote sensing, and global positioning system-based information platform for locust control. J. Appl. Remote Sens. 8:084899
    [Google Scholar]
  85. 85.  Lima M 2007. Locust plagues, climate variation, and the rhythms of nature. PNAS 104:15972–73
    [Google Scholar]
  86. 86.  Liu X, Zheng Y, Zhang S, Liu K, Zhang S et al. 2016. Perylenediimide-cored cationic nanocarriers deliver virus DNA to kill insect pests. Polym. Chem. 7:3740–46
    [Google Scholar]
  87. 87.  Lockwood JA, Anderson-Sprecher R, Schell SP 2002. When less is more: optimization of reduced agent-area treatments (RAATs) for management of rangeland grasshoppers. Crop Prot 21:551–62
    [Google Scholar]
  88. 88.  Lockwood JA, Latchininsky AV, Sergeev MG 2000. Grasshoppers and Grassland Health: Managing Grasshopper Outbreaks without Risking Environmental Disaster Dordrecht, Neth.: Kluwer Acad. Publ.
    [Google Scholar]
  89. 89.  Lockwood JA, Schell SP 1997. Decreasing economic and environmental costs through Reduced Area and Agent Insecticide Treatments (RAATs) for the control of rangeland grasshoppers: empirical results and their implications for pest management. J. Orthoptera Res. 6:19–32
    [Google Scholar]
  90. 90.  Lockwood JA, Showler AT, Latchininsky AV 2001. Can we make locust and grasshopper management sustainable?. J. Orthoptera Res. 10:315–29
    [Google Scholar]
  91. 91.  Lomer CJ, Bateman RP, Johnson DL, Langewald J, Thomas M 2001. Biological control of locusts and grasshoppers. Annu. Rev. Entomol. 46:667–701
    [Google Scholar]
  92. 92.  Love G, Riwoe D 2005. Economic Costs and Benefits of Locust Control in Eastern Australia Canberra: Aust. Bureau Agric. Res. Econ.
    [Google Scholar]
  93. 93.  Löw F, Waldner F, Latchininsky AV, Biradar C, Bolkart M, Colditz RR 2016. Timely monitoring of Asian migratory locust habitats in the Amudarya Delta, Uzbekistan using time series of satellite remote sensing vegetation index. J. Environ. Manag. 183:562–75
    [Google Scholar]
  94. 94.  Ma J, Han X, Wang C, Zhang Y, Tang J et al. 2005. Monitoring east Asian migratory locust plagues using remote sensing data and field investigations. Int. J. Remote Sensing 26:629–34
    [Google Scholar]
  95. 95.  Magor JI 1994. Desert locust population dynamics. Desert Locust Control with Existing Techniques: An Evaluation of Strategies A van Huis 31–54 Wageningen, Neth.: Wageningen Agric. Univ.
    [Google Scholar]
  96. 96.  Magor JI, Ceccato P, Dobson HM, Pender J, Ritchie L 2007. Preparedness to prevent desert locust plagues in the central region: an historical review. Desert Locust Technical Series AGP/DL/TS/35 Rome, Italy: Food Agric. Org. UN
    [Google Scholar]
  97. 97.  Magor JI, Lecoq M, Hunter DM 2008. Preventive control and desert locust plagues. Crop Prot 27:1527–33
    [Google Scholar]
  98. 98.  Magor JI, Pender J 1997. Desert locust forecasters’ GIS: a researchers’ view. See Ref. 65 21–26
  99. 99.  Maiga IH, Lecoq M, Kooyman C 2008. Ecology and management of the Senegalese grasshopper, Oedaleus senegalensis (Krauss, 1877) (Orthoptera: Acrididae), in West Africa: review and prospects. Ann. Soc. Entomol. Fr. 44:271–88
    [Google Scholar]
  100. 100.  McCulloch L, Hunter DM 1983. Identification and monitoring of Australian plague locust habitats from Landsat. Remote Sens. Environ. 13:95–102
    [Google Scholar]
  101. 101.  McNary TJ, Shambaugh BA, Elliston RJ, Brown CL 2011. Cooperative rangeland grasshopper suppression in Wyoming (USA) in 2010. Metaleptea 31:10–12
    [Google Scholar]
  102. 102.  Meynard CN, Gay P-E, Lecoq M, Foucart A, Piou C, Chapuis M-P 2017. Climate-driven geographic distribution of the desert locust during recession periods: subspecies’ niche differentiation and relative risks under scenarios of climate change. Glob. Change Biol. 23:4739–49
    [Google Scholar]
  103. 103.  Millist N, Abdalla A 2011. Benefit–cost analysis of Australian plague locust control operations for 2010–11: ABARES report prepared for the Australian Plague Locust Commission Rep., Aust. Bureau Agric. Res. Econ. Canberra, Aust: http://www.agriculture.gov.au/SiteCollectionDocuments/animal-plant/aplc/research-papers/locust-control-11.pdf
    [Google Scholar]
  104. 104.  Modder WWD 1994. Control of the variegated grasshopper Zonocerus variegatus (L.) on cassava. Afr. Crop Sci. J. 2:391–406
    [Google Scholar]
  105. 105.  Moussaoui M 2010. Etude sur l'intérêt économique de la lutte préventive contre le Criquet pèlerin Rep., Food Agric. Org. UN, Commission de Lutte contre le Criquet Pèlerin dans la Région Occidentale Rome, Italy: http://clcpro-empres.org/locust/images/articles/clcpro/Etude_interet_economique_LP_contre_CP.pdf
    [Google Scholar]
  106. 106.  Navratil P, Wilps H 2013. Object-based locust habitat mapping using high-resolution multispectral satellite data in southern Aral Sea basin. J. Appl. Remote Sens. 7:075097
    [Google Scholar]
  107. 107.  Pantenius C 2015. Towards better desert locust risk prevention systems in the central region: report on the regional workshop Rep., FAO Comm. Control. Desert Locust Central Reg. Rome, Italy: http://www.fao.org/ag/locusts/common/ecg/2232/en/1502CRC_ContingencyPlanningE.pdf
    [Google Scholar]
  108. 108.  Pekel JF, Ceccato P, Vancutsem C, Cressman K, Vanbogaert E, Defourny P 2011. Development and application of multi-temporal colorimetric transformation to monitor vegetation in the desert locust habitat. IIEE J. Sel. Topics App. Earth Obs. Remote Sens. 4:318–26
    [Google Scholar]
  109. 109.  Pener MP, Simpson SJ 2009. Locust phase polyphenism: an update. Adv. Insect Phys. 36:1–272
    [Google Scholar]
  110. 110.  Peveling R 2001. Environmental conservation and locust control—possible conflicts and solutions. J. Orthoptera Res. 10:171–87
    [Google Scholar]
  111. 111.  Piou C, Lebourgeois V, Benahi AS, Bonnal V, el Hacen Jaavar M et al. 2013. Coupling historical prospection data and a remotely-sensed vegetation index for the preventative control of desert locusts. Basic Appl. Ecol. 14:593–604
    [Google Scholar]
  112. 112.  Propastin P 2013. Satellite-based monitoring system for assessment of vegetation vulnerability to locust hazard in the River Ili delta (Lake Balkhash, Kazakhstan). J. Appl. Remote Sens. 7:075094
    [Google Scholar]
  113. 113.  Rachadi T, Foucart A 1999. Barrier treatment with fipronil to control desert locust Schistocerca gregaria (Forskål, 1775) hopper bands infesting a large area in Mauritania. Int. J. Pest Manag. 45:263–73
    [Google Scholar]
  114. 114.  Renier C, Waldner F, Jacques DC, Babah Ebbe MA, Cressman K, Defourny P 2015. A dynamic vegetation senescence indicator for near-real-time desert locust habitat monitoring with MODIS. Remote Sens 7:7545–70
    [Google Scholar]
  115. 115.  Riegert P, Ewen AB, Lockwood JA 1997. A history of chemical control of grasshoppers and locusts 1940–1990. The Bionomics of Grasshoppers, Katydids and Their Kin S Gangwere, M Muralirangan, M Muralirangan 385–405 New York: Centre Biosci. Agric. Int.
    [Google Scholar]
  116. 116.  Rogers SM, Matheson T, Sasaki K, Kendrick K, Simpson SJ, Burrows M 2004. Substantial changes in central nervous system neurotransmitters and neuromodulators accompany phase change in the locust. J. Exp. Biol. 207:3603–17
    [Google Scholar]
  117. 117.  Rosenberg LJ 2000. Information systems for locust forecasting. Workshop on Research Priorities for Migrant Pests of Agriculture in Southern Africa, Plant Protection Research Institute, Pretoria, South Africa, 2426 March 1999 RA Cheke, LJ Rosenberg, ME Kieser 165–71 Chatham, UK: Nat. Res. Inst.
    [Google Scholar]
  118. 118.  Samways MJ 2000. Can locust control be compatible with conserving biodiversity?. Grasshoppers and Grassland Health. Managing Grasshopper Outbreaks without Risking Environmental Disaster JA Lockwood, AV Latchininsky, MG Sergeev 173–80 Dordrecht, Neth.: Kluwer Acad. Publ.
    [Google Scholar]
  119. 119.  Samways MJ, Lockwood JA 1998. Orthoptera conservation: pests and paradoxes. J. Insect Conserv. 2:143–49
    [Google Scholar]
  120. 120.  Santos D, Vanden Broeck J, Wynant N 2014. Systemic RNA interference in locusts: reverse genetics and possibilities for locust pest control. Curr. Opin. Insect Sci. 6:9–14
    [Google Scholar]
  121. 121.  Scherer R, Rakotonandrasana MA 1993. Barrier treatment with a benzoyl urea insect growth regulator against Locusta migratoria capito (Sauss) hopper bands in Madagascar. Int. J. Pest Manag. 39:4411–17
    [Google Scholar]
  122. 122.  Simpson SJ, Despland E, Hagele BF, Dodgson T 2001. Gregarious behaviour in desert locusts is evoked by touching their back legs. PNAS 98:3895–97
    [Google Scholar]
  123. 123.  Simpson SJ, McCaffery AR, Hägele BF, Dodgson T 1999. A behavioural analysis of phase change in the desert locust. Biol. Rev. 74:461–80
    [Google Scholar]
  124. 124.  Simpson SJ, Sword GA, Lorch PD, Couzin ID 2006. Cannibal crickets on a forced march for protein and salt. PNAS 103:4152–56
    [Google Scholar]
  125. 125.  Sivanpillai R, Latchininsky AV 2007. Mapping locust habitats near Aral Sea, Uzbekistan using multi-temporal MODIS imagery. Environ. Manag. 39:6876–86
    [Google Scholar]
  126. 126.  Sivanpillai R, Latchininsky AV 2008. Can late summer Landsat data be useful for locating Asian migratory locust, Locusta migratoria, oviposition sites in the Amudarya River delta, Uzbekistan?. Entomol. Exp. Appl. 128:346–53
    [Google Scholar]
  127. 127.  Sivanpillai R, Latchininsky AV, Driese KL, Kambulin VE 2006. Mapping locust habitats in River Ili Delta, Kazakhstan, using Landsat imagery. Agric. Ecosyst. Environ. 117:128–34
    [Google Scholar]
  128. 128.  Skaf RM 1972. Le Criquet marocain au Proche-Orient et sa grégarisation sous l'influence de l'homme. Bull. Soc. Ecol. 3:247–325
    [Google Scholar]
  129. 129.  Skaf R, Popov GB, Roffey J 1990. The Desert Locust: an international challenge. Philos. Trans. R. Soc. B 328:525–38
    [Google Scholar]
  130. 130.  Smith DI, Lockwood JA, Latchininsky AV, Legg DE 2006. Changes in non-target arthropods populations following application of liquid bait formulations of insecticides for control of rangeland grasshoppers. Int. J. Pest Manag. 52:125–39
    [Google Scholar]
  131. 131.  Song H 2005. Phylogenetic perspectives on the evolution of locust phase polyphenism. J. Orthoptera Res. 14:235–45
    [Google Scholar]
  132. 132.  Song H 2011. Density-dependent phase polyphenism in nonmodel locusts: a minireview. Pysche 2011:741769
    [Google Scholar]
  133. 133.  Stige LC, Chan KS, Zhang ZB, Frank D, Stenseth NC 2007. Thousand-year-long Chinese time series reveals climatic forcing of decadal locust dynamics. PNAS 104:16188–93
    [Google Scholar]
  134. 134.  Sword GA, Lecoq M, Simpson SJ 2010. Phase polyphenism and preventative locust management. J. Insect Physiol. 56:949–57
    [Google Scholar]
  135. 135.  Symmons P 1997. Evaluating recent locust research. See Ref. 65 2–8
  136. 136.  Symmons P 2009. A critique of “Preventive control and desert locust plague. Crop Prot 28:905–7
    [Google Scholar]
  137. 137.  Tian HD, Stige LC, Cazelles B, Kausrud KL, Svarverud R et al. 2011. Reconstruction of a 1,910-y-long locust series reveals consistent associations with climate fluctuations in China. PNAS 108:14521–26
    [Google Scholar]
  138. 138.  Tratalos JA, Cheke RA 2006. Can NDVI GAC imagery be used to monitor desert locust breeding areas?. J. Arid Environ. 64:342–56
    [Google Scholar]
  139. 139.  Tratalos JA, Cheke RA, Healey RG, Stenseth NC 2010. Desert locust populations, rainfall and climate change: insights from phenomenological models using gridded monthly data. Clim. Res. 43:229–39
    [Google Scholar]
  140. 140.  Tronin AA, Gornyy VI, Kiselev AV, Kritsuk SG, Latypov IS 2014. Forecasting of locust mass breeding by using satellite data. Curr. Probl. Remote Sens. Earth Space 11:137–50
    [Google Scholar]
  141. 141.  Uvarov BP 1937. Biological and ecological basis of locust phases and their practical application. Proceedings of the Fourth International Locust Conference Cairo, April 22, 1936 Cairo, Egypt: Gov. Press
    [Google Scholar]
  142. 142.  van der Valk H 1998. The impact of locust and grasshopper control on beneficial arthropods in West Africa. Ecotoxocology: Pesticides and Beneficial Organisms PT Haskell, P McEwen 372–80 London: Chapman & Hall
    [Google Scholar]
  143. 143.  Voss F, Dreiser U 1997. Mapping of desert locust habitats using remote sensing techniques. See Ref. 65 37–45
  144. 144.  Wang S, Fang W, Wang C, St. Leger RJ 2011. Insertion of an esterase gene into a specific locust pathogen (Metarhizium acridum) enables it to infect caterpillars. PLOS Pathog 7:e1002097
    [Google Scholar]
  145. 145.  Wang XH, Kang L 2014. Molecular mechanisms of phase change in locusts. Annu. Rev. Entomol. 59:225–44
    [Google Scholar]
  146. 146.  Weiss J 2016. Do locusts seek greener pastures? An evaluation of MODIS vegetation indices to predict presence, abundance and impact of the Australian plague locust in southeastern Australia PhD thesis Univ. Melbourne Melbourne, Aust: http://hdl.handle.net/11343/112443
    [Google Scholar]
  147. 147. World Meteriol. Org. 2016. Weather and desert locusts WMO 1175. World Meteorol. Org. Food Agric. Org. U. N. Geneva, Switz: https://library.wmo.int/opac/doc_num.php?explnum_id=3213
    [Google Scholar]
  148. 148.  Wright DE 1986. Economic assessment of actual and potential damage to crops caused by the 1984 locust plague in south-eastern Australia. J. Environ. Manag. 23:293–308
    [Google Scholar]
  149. 149.  Yu GH, Shen H, Liu J 2009. Impacts of climate change on historical locust outbreaks in China. J. Geophysical Res. 114:D18104
    [Google Scholar]
  150. 150.  Zhang JZ, Liu XJ, Zhang JQ, Li DQ, Sun Y, Guo YP, Ma EB, Zhu KY 2010. Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust. Insect Biochem. Mol. Biol. 40:824–33
    [Google Scholar]
  151. 151.  Zhang L 2011. Advances and prospects of strategies and tactics of locust and grasshopper management. Chin. J. Appl. Entomol. 48:804–10 (In Chinese)
    [Google Scholar]
  152. 152.  Zhang L, Hunter DM 2005. Laboratory and field trials of Green Guard®Metarhizium anisopliae var. acridum (Deuteromycotina: Hyphomycetes) against the oriental migratory locust (Locusta migratoria manilensis) (Orthoptera: Acrididae) in China. J. Orthoptera Res. 14:27–30
    [Google Scholar]
  153. 153.  Zhang L, Hunter DM 2017. Locust and grasshopper management in China. J. Orthoptera Res. 26:155–59
    [Google Scholar]
  154. 154.  Zhang L, Yan Y, Wang G, Zhang Z, Pan J, Yang Z 1995. A preliminary survey on the epizootics of infection of Nosema locustae among grasshoppers in rangeland. Acta Agrestia Sin 3:223–29
    [Google Scholar]
  155. 155.  Zhou X, Zhang L 2009. Selection of Antonospora locustae (Protozoa: Microsporidae) with higher virulence against Locusta migratoria manilensis (Orthoptera: Acrididae). Biocontrol Sci. Technol. 19:421–27
    [Google Scholar]
  156. 156.  Zhu EL 1999. The Management of the Oriental Migratory Locust in China Beijing: Agric. Press (In Chinese)
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011118-112500
Loading
/content/journals/10.1146/annurev-ento-011118-112500
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error