1932

Abstract

The last 25 years of phylogenetic investigation into the three orders constituting the superorder Neuropterida—Raphidioptera, Megaloptera, and Neuroptera—have brought about a dramatic revision in our understanding of the evolution of lacewings, snakeflies, dobsonflies, and their diverse relatives. Phylogenetic estimations based on combined analyses of diverse data sources, ranging from adult and larval morphology to full mitochondrial genomic DNA, have begun to converge on similar patterns, many times in accordance with hypotheses put forth by Cyril Withycombe nearly a century ago. These data, in combination with information from the fossil record, have given a revised perspective on the historical evolution and classification of Neuropterida, necessitating an overhaul of their organization and providing focus and insight on fruitful future efforts for neuropterology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-020117-043127
2018-01-07
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/ento/63/1/annurev-ento-020117-043127.html?itemId=/content/journals/10.1146/annurev-ento-020117-043127&mimeType=html&fmt=ahah

Literature Cited

  1. Achtelig M. 1.  1967. Ueber die Anatomie des Kopfes von Raphidia flavipes Stein und die Verwandtschaftsbeziehungen der Raphidiidae zu den Megaloptera. Zool. J. Abt. Anat. Ontog. Tiere 84:249–312 [Google Scholar]
  2. Adams PA. 2.  1967. A review of the Mesochrysinae and Nothochrysinae (Neuroptera: Chrysopidae). Bull. Mus. Comp. Zool. 135:215–38 [Google Scholar]
  3. Afzelius BA, Dallai R. 3.  1988. Spermatozoa of Megaloptera and Raphidioptera (Insecta: Neuropteroidea). J. Ultrastruct. Mol. Struct. Res. 101:2–3185–91 [Google Scholar]
  4. Andersen S. 4.  2001. Silky lacewings (Neuroptera: Psychopsidae) from the Eocene-Paleocene transition of Denmark with a review of the fossil record and comments on phylogeny and zoogeography. Insect Syst. Evol. 32:4419–38 [Google Scholar]
  5. Ansorge J. 5.  2001. Dobbertinia reticulata Handlirsch 1920 from the Lower Jurassic of Dobbertin (Mecklenberg/Germany)—the oldest representative of Sialidae (Megaloptera). N. Jahrb. Geol. Paläontol. Monatshefte 2001:9553–64 [Google Scholar]
  6. Aspöck H. 6.  1998. Distribution and biogeography of the order Raphidioptera: updated facts and a new hypothesis. Acta Zool. Fenn. 209:33–44 [Google Scholar]
  7. Aspöck H, Aspöck U, Rausch H. 7.  1991. Die Raphidiopteren der Erde: Eine monographische Darstellung der Systematik, Taxonomie, Biologie, Ökologie und Chorologie der rezenten Raphidiopteren der Erde, mit einer zusammenfassenden Übersicht der fossilen Raphidiopteren (Insecta: Neuropteroidea) Krefeld, Ger.: Goecke and Evers [Google Scholar]
  8. Aspöck U. 8.  1992. Crucial points in the phylogeny of the Neuroptera (Insecta). Current Research in Neuropterology M Canard, H Aspöck, MW Mansell 63–73 Toulouse, France: SACCOFirst assessment of larval head characters to support a controversial placement for Nevrorthidae. [Google Scholar]
  9. Aspöck U. 9.  1995. Neue Hypothesen zum System der Neuropterida. Mitt. Deut. Ges. Allg. Angew. Entomol. 10:633–36 [Google Scholar]
  10. Aspöck U. 10.  2002. Phylogeny of the Neuropterida (Insecta: Holometabola). Zool. Scripta 31:151–55 [Google Scholar]
  11. Aspöck U, Aspöck H. 11.  2008. Phylogenetic relevance of the genital sclerites of Neuropterida (Insecta: Holometabola). Syst. Entomol. 33:197–127 [Google Scholar]
  12. Aspöck U, Mansell MW. 12.  1994. A revision of the family Rhachiberothidae Tjeder, 1959, stat.n. (Neuroptera). Syst. Entomol. 19:3181–206 [Google Scholar]
  13. Aspöck U, Nemeschkal HL. 13.  1998. A cladistic analysis of the Berothidae (Neuroptera). Acta Zool. Fenn. 209:45–63 [Google Scholar]
  14. Aspöck U, Plant JD, Nemeschkal HL. 14.  2001. Cladistic analysis of Neuroptera and their systematic position within Neuropterida (Insecta: Holometabola: Neuropterida: Neuroptera). Syst. Entomol. 26:173–86 [Google Scholar]
  15. Badano D, Aspöck U, Aspöck H, Cerretti P. 15.  2017. Phylogeny of Myrmeleontiformia based on larval morphology (Neuropterida: Neuroptera). Syst. Entomol. 42:194–117 [Google Scholar]
  16. Bechly G, Wolf-Schwenninger K. 16.  2011. A new fossil genus and species of snakefly (Raphidioptera: Mesoraphidiidae) from Lower Cretaceous Lebanese amber, with a discussion of snakefly phylogeny and fossil history. Insect Syst. Evol. 42:2221–36 [Google Scholar]
  17. Beutel RG, Friedrich F, Aspöck U. 17.  2010. The larval head of Nevrorthidae and the phylogeny of Neuroptera (Insecta). Zool. J. Linn. Soc. 158:3533–62 [Google Scholar]
  18. Boudreaux HB. 18.  1979. Arthropod Phylogeny, with Special Reference to Insects New York: John Wiley & Sons [Google Scholar]
  19. Brooks SJ, Barnard PC. 19.  1990. The green lacewings of the world: a generic review (Neuroptera: Chrysopidae). Bull. Br. Mus. Nat. Hist. Entomol. 59:2117–286 [Google Scholar]
  20. Büning J. 20.  2005. The telotrophic ovary known from Neuropterida exists also in the myxophagan beetle Hydroscapha natans. Dev. Genes Evol. 215:12597–607 [Google Scholar]
  21. Dai Y, Winterton SL, Garzón-Orduña IJ, Liang F, Liu X. 21.  2017. Mitochondrial phylogenomic analysis resolves the subfamily placement of enigmatic green lacewing genus Nothancyla (Neuroptera: Chrysopidae). Austral Entomol 56:3322–31 [Google Scholar]
  22. Duelli P, Henry CS, Mochizuki A. 22.  2014. The endemic Atlantochrysa atlantica (McLachlan) (Neuroptera: Chrysopidae) on Atlantic Islands: African or American origin?. J. Nat. Hist. 48:41–422595–608 [Google Scholar]
  23. Engel MS. 23.  1999. The first fossil of a pleasing lacewing (Neuroptera: Dilaridae). Proc. Entomol. Soc. Wash. 101:4822–26 [Google Scholar]
  24. Engel MS. 24.  2002. The smallest snakefly (Raphidioptera: Mesoraphidiidae): a new species in Cretaceous amber from Myanmar, with a catalog of fossil snakeflies. Am. Mus. Novit. 3363:1–22 [Google Scholar]
  25. Engel MS. 25.  2004. Thorny lacewings (Neuroptera: Rhachiberothidae) in Cretaceous amber from Myanmar. J. Syst. Palaeontol. 2:2137–40 [Google Scholar]
  26. Engel MS. 26.  2016. Two new genera of Cretaceous dustywings in amber from northern Myanmar (Neuroptera: Coniopterygidae). Novit. Paleoentomol. 17:1–16 [Google Scholar]
  27. Engel MS, Grimaldi DA. 27.  2007. The neuropterid fauna of Dominican and Mexican amber (Neuropterida: Megaloptera, Neuroptera). Am. Mus. Novit. 3587:1–58 [Google Scholar]
  28. Engel MS, Grimaldi DA. 28.  2008. Diverse Neuropterida in Cretaceous amber, with particular reference to the paleofauna of Myanmar (Insecta). Nova Suppl. Entomol. 20:1–86 [Google Scholar]
  29. Fang H, Ren D, Wang Y. 29.  2015. Familial clarification of Saucrosmylidae stat. nov. and new saucrosmylids from Daohugou, China (Insecta, Neuroptera). PLOS ONE 10:10e0141048 [Google Scholar]
  30. Faulkner DK. 30.  1990. Current knowledge of the biology of the moth-lacewing Oliarces clara Banks (Insecta: Neuroptera: Ithonidae). Advances in Neuropterology MW Mansell, H Aspöck 197–203 Pretoria, S. Afr.: Dept. Agric. Dev. [Google Scholar]
  31. Gallard L. 31.  1932. Notes on the feeding habits of the brown moth-lacewing. Ithone fusca. Aust. Nat. 8:168–70 [Google Scholar]
  32. Garzón-Orduña IJ, Menchaca-Armenta I, Contreras-Ramos A, Liu X, Winterton SL. 32.  2016. The phylogeny of brown lacewings (Neuroptera: Hemerobiidae) reveals multiple reductions in wing venation. BMC Evol. Biol. 16:192 [Google Scholar]
  33. Grebennikov VV. 33.  2004. Grub-like larvae of Neuroptera (Insecta): a morphological review of the families Ithonidae and Polystoechotidae and a description of Oliarces clara. Eur. J. Entomol. 101:3409–18 [Google Scholar]
  34. Grimaldi D, Engel MS. 34.  2005. Evolution of the Insects Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  35. Haring E, Aspöck U. 35.  2004. Phylogeny of the Neuropterida: a first molecular approach. Syst. Entomol. 29:3415–30 [Google Scholar]
  36. Haring E, Aspöck H, Bartel D, Aspöck U. 36.  2011. Molecular phylogeny of the Raphidiidae (Raphidioptera). Syst. Entomol. 36:116–30 [Google Scholar]
  37. Haruyama N, Mochizuki A, Duelli P, Naka H, Nomura M. 37.  2008. Green lacewing phylogeny, based on three nuclear genes (Chrysopidae, Neuroptera). Syst. Entomol. 33:2275–88 [Google Scholar]
  38. Heming BS. 38.  2003. Insect Development and Evolution Ithaca, NY: Cornell Univ. Press [Google Scholar]
  39. Henry CS. 39.  1978. An unusual ascalaphid larva (Neuroptera: Ascalaphidae) from southern Africa, with comments on larval evolution within the Myrmeleontoidea. Psyche 85:2–3265–74A detailed assessment of myrmeleontiform relationships that served as the basis for the initial subordinal arrangement of Neuroptera. [Google Scholar]
  40. Henry CS. 40.  1982. Neuroptera. Synopsis and Classification of Living Organisms 2 SP Parker 470–82 New York: McGraw-Hill [Google Scholar]
  41. Huang D, Azar D, Engel MS, Cai C, Garrouste R, Nel A. 41.  2016. A new genus of alderflies (Megaloptera: Sialidae) in Upper Cretaceous Burmese amber. Cretac. Res. 64:7–11 [Google Scholar]
  42. Huang D, Azar D, Engel MS, Garrouste R, Cai C, Nel A. 42.  2016. The first araripeneurine antlion in Burmese amber (Neuroptera: Myrmeleontidae). Cretac. Res. 63:1–6 [Google Scholar]
  43. Jepson JE, Makarkin VN, Jarzembowski EA. 43.  2009. New lacewings (Insecta: Neuroptera) from the Lower Cretaceous Wealden Supergroup of southern England. Cretac. Res. 30:51325–38 [Google Scholar]
  44. Khramov AV. 44.  2014. Early osmylids (Neuroptera: Osmylidae) from the Lower-Middle Jurassic of Kyrgyzstan. Russ. Entomol. J. 23:153–60 [Google Scholar]
  45. Komatsu T. 45.  2014. Larvae of the Japanese termitophilous predator Isoscelipteron okamotonis (Neuroptera, Berothidae) use their mandibles and silk web to prey on termites. Insectes Soc 61:2203–5 [Google Scholar]
  46. Kristensen NP. 46.  1981. Phylogeny of insect orders. Annu. Rev. Entomol. 26:135–57 [Google Scholar]
  47. Kristensen NP. 47.  1991. Phylogeny of extant hexapods. The Insects of Australia: A Textbook for Students and Research Workers 1 ID Naumann 125–40 Ithaca, NY: Cornell Univ. Press, 2nd ed.. [Google Scholar]
  48. Kubrakiewicz J, Jedrzejowska I, Biliński SM. 48.  1998. Neuropteroidea—different ovary structure in related groups. Folia Histochem. Cytobiol. 36:4179–87 [Google Scholar]
  49. Lambkin KJ. 49.  1986. A revision of the Australian Mantispidae (Insecta: Neuroptera) with a contribution to the classification of the family. I. General and Drepanicinae. Aust. J. Zool. Suppl. Ser. 116:1–142 [Google Scholar]
  50. Lambkin KJ. 50.  1988. A re-examination of Lithosmylidia Riek from the Triassic of Queensland with notes on Mesozoic ‘osmylid-like’ fossil Neuroptera (Insecta: Neuroptera). Mem. Qld. Mus. 25:445–58 [Google Scholar]
  51. Liu X, Aspöck H, Aspöck U. 51.  2012. Sinoneurorthusyunnanicus n. gen. et n. sp.—a spectacular new species and genus of Nevrorthidae (Insecta: Neuroptera) from China, with phylogenetic and biogeographical implications. Aquat. Insects 34:2131–41 [Google Scholar]
  52. Liu X, Aspöck H, Winterton SL, Zhang W, Aspöck U. 52.  2017. Phylogeny of pleasing lacewings (Neuroptera: Dilaridae) with a revised generic classification and description of a new subfamily. Syst. Entomol. 42:2448–71 [Google Scholar]
  53. Liu X, Dong R, Yang D. 53.  2014. New transitional fossil snakeflies from China illuminate the early evolution of Raphidioptera. BMC Evol. Biol. 14:84 [Google Scholar]
  54. Liu X, Hayashi F, Yang D. 54.  2015. Phylogeny of the family Sialidae (Insecta: Megaloptera) inferred from morphological data, with implications for generic classification and historical biogeography. Cladistics 31:118–49 [Google Scholar]
  55. Liu X, Y, Aspöck H, Yang D, Aspöck U. 55.  2016. Homology of the genital sclerites of Megaloptera (Insecta: Neuropterida) and their phylogenetic relevance. Syst. Entomol. 41:1256–86 [Google Scholar]
  56. Liu X, Wang Y, Shih C, Ren D, Yang D. 56.  2012. Early evolution and historical biogeography of fishflies (Megaloptera: Chauliodinae): implications from a phylogeny combining fossil and extant taxa. PLOS ONE 7:e40345 [Google Scholar]
  57. Liu X, Winterton SL, Wu C, Piper R, Ohl M. 57.  2014. A new genus of mantidflies discovered in the Oriental region, with a higher-level phylogeny of Mantispidae (Neuroptera) using DNA sequences and morphology. Syst. Entomol. 40:1183–206 [Google Scholar]
  58. Liu X, Zhang W, Winterton SL, Breitkreuz LCV, Engel MS. 58.  2016. Early morphological specialization for insect-spider associations in Mesozoic lacewings. Curr. Biol. 26:121590–94 [Google Scholar]
  59. MacLeod EG. 59.  1964. A comparative morphological study of the head capsule and cervix of larval Neuroptera (Insecta) PhD Diss. Harvard Univ. Cambridge, MA:An expansion of Withycombe's work; vast in scope and detail regarding neuropteran larvae and their phylogenetic implications, and unrivaled to this day. [Google Scholar]
  60. Makarkin VN, Archibald SB, Oswald JD. 60.  2003. New Early Eocene brown lacewings (Neuroptera: Hemerobiidae) from western North America. Can. Entomol. 135:5637–53 [Google Scholar]
  61. Makarkin VN, Perkovsky EE. 61.  2016. An interesting new species of Sisyridae (Neuroptera) from the Upper Cretaceous Taimyr amber. Cretac. Res. 63:170–76 [Google Scholar]
  62. Makarkin VN, Yang Q, Ren D. 62.  2013. A new Cretaceous family of enigmatic two-winged lacewings (Neuroptera). Foss. Rec. 16:167–75 [Google Scholar]
  63. Malicky H. 63.  1984. Ein Beitrag zur Autökologie und Bionomie der aquatischen Netzflüglergattung Neurorthus [sic] (Insecta, Neuroptera, Neurorthidae [sic]). Arch. Hyrdrobiol. 101:231–46 [Google Scholar]
  64. Mansell MW. 64.  1992. The systematic position of Nemopteridae (Insecta: Neuroptera: Myrmeleontoidea). Current Research in Neuropterology M Canard, H Aspöck, MW Mansell 233–41 Toulouse, France: SACCO [Google Scholar]
  65. Martins-Neto RG, Heads SW, Bechly G. 65.  2007. Neuropterida: snakeflies, dobsonflies and lacewings. The Crato Fossil Beds of Brazil: Window into an Ancient World, DM Martill, G Bechly, RF Loveridge 328–40 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  66. McKellar RC, Engel MS. 66.  2009. A new thorny lacewing (Neuroptera: Rhachiberothidae) from Canadian Cretaceous amber. J. Kans. Entomol. Soc. 82:2114–21 [Google Scholar]
  67. Meinander M. 67.  1972. A revision of the family Coniopterygidae (Planipennia). Acta Zool. Fenn. 136:1–357 [Google Scholar]
  68. Meinander M. 68.  1975. Fossil Coniopterygidae (Neuroptera). Not. Entomol. 55:253–57 [Google Scholar]
  69. Michel B, Clamens A-L, Béthoux O, Kergoat GJ, Condamine FL. 69.  2017. A first higher-level time-calibrated phylogeny of antlions (Neuroptera: Myrmeleontidae). Mol. Phylogenet. Evol. 107:103–16 [Google Scholar]
  70. Misof B, Liu S, Meusemann K, Peters RS, Donath A. 70.  et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346:6210763–67 [Google Scholar]
  71. Monserrat VJ. 71.  1996. Larval stages of European Nemopterinae, with systematic consideration on the family Nemopteridae (Insecta, Neuroptera). Deut. Entomol. Z. 43:199–121 [Google Scholar]
  72. Myskowiak J, Escuillié F, Nel A. 72.  2015. A new Osmylidae (Insecta, Neuroptera) from the Lower Cretaceous Crato Formation in Brazil. Cretac. Res. 54:27–33 [Google Scholar]
  73. Nel A, Roques P, Nel P, Prokin AA, Bourgoin T. 73.  et al. 2013. The earliest known holometabolous insects. Nature 503:7475257–61 [Google Scholar]
  74. New TR. 74.  1982. A reappraisal of the status of the Stilbopterygidae (Neuroptera: Myrmeleontoidea). J. Aust. Entomol. Soc. 21:171–75 [Google Scholar]
  75. New TR. 75.  1986. A review of the biology of Neuroptera Planipennia. Neurop. Intl. 1:Suppl.1–57 [Google Scholar]
  76. New TR. 76.  1989. Planipennia: lacewings. Handbuch der Zoologie: Ein Naturgeschichte der Stämme des Tierreiches, Band IV Arthropoda: Insecta, Teilband 30 M Fischer 1–132 Berlin, Ger.: Walter de Gruyter [Google Scholar]
  77. Oswald JD. 77.  1993. A new genus and species of brown lacewing from Venezuela (Neuroptera: Hemerobiidae), with comments on the evolution of the hemerobiid forewing radial vein. Syst. Entomol. 18:4363–70 [Google Scholar]
  78. Oswald JD. 78.  1993. Phylogeny, taxonomy, and biogeography of extant silky lacewings (Insecta: Neuroptera: Psychopsidae). Mem. Am. Entomol. Soc. 40:1–65 [Google Scholar]
  79. Oswald JD. 79.  1993. Revision and cladistic analysis of the world genera of the family Hemerobiidae (Insecta: Neuroptera). J. N. Y. Entomol. Soc. 101:2143–299 [Google Scholar]
  80. Oswald JD. 80.  1996. A new brachypterous Nusalala species from Costa Rica, with comments on the evolution of flightlessness in brown lacewings (Neuroptera: Hemerobiidae). Syst. Entomol. 21:4343–52 [Google Scholar]
  81. Oswald JD. 81.  1998. Annotated catalogue of the Dilaridae (Insecta: Neuroptera) of the world. Tijdschr. Entomol. 141:1–2115–28 [Google Scholar]
  82. Oswald JD. 82.  1999. The brown lacewing genus Notiobiella (Neuroptera: Hemerobiidae) from Dominican amber. J. N. Y. Entomol. Soc. 107:4297–303 [Google Scholar]
  83. Oswald JD. 83.  2017. Lacewing Digital Library. Accessed April 17, 2017. http://lacewing.tamu.edu
  84. Peng Y, Makarkin VN, Ren D. 84.  2016. Diverse new middle Jurassic Osmylopsychopidae (Neuroptera) from China shed light on the classification of psychopsoids. J. Syst. Palaeontol. 14:4261–95 [Google Scholar]
  85. Pérez-de la Fuente R, Delclòs X, Peñalver E, Engel MS. 85.  2016. A defensive behavior and plant-insect interaction in Early Cretaceous amber—the case of the immature lacewing Hallucinochrysa diogenesi. Arthropod Struct. Dev. 45:2133–39 [Google Scholar]
  86. Pérez-de la Fuente R, Delclòs X, Peñalver E, Speranza M, Wierzchos J. 86.  et al. 2012. Early evolution and ecology of camouflage in insects. PNAS 109:5221414–19 [Google Scholar]
  87. Pérez-de la Fuente R, Peñalver E, Delclòs X, Engel MS. 87.  2012. Snakefly diversity in Early Cretaceous amber from Spain (Neuropterida, Raphidioptera). ZooKeys 204:1–40 [Google Scholar]
  88. Perrichot V, Engel MS. 88.  2007. Early Cretaceous snakefly larvae in amber from Lebanon, Myanmar, and France (Raphidioptera). Am. Mus. Novit. 3598:1–11 [Google Scholar]
  89. Peters RS, Meusemann K, Petersen M, Mayer C, Wilbrandt J. 89.  et al. 2014. The evolutionary history of holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data. BMC Evol. Biol. 14:52 [Google Scholar]
  90. Prokop J, Fernandes FR, Lapeyrie J, Nel A. 90.  2015. Discovery of the first lacewings (Neuroptera: Permithonidae) from the Guadalupian of the Lodève Basin (southern France). Geobios 48:3263–70 [Google Scholar]
  91. Randolf S, Zimmermann D, Aspöck U. 91.  2014. Head anatomy of adult Nevrorthus apatelios and basal splitting events in Neuroptera (Neuroptera: Nevrorthidae). Arthropod Syst. Phyl. 72:2111–36 [Google Scholar]
  92. Randolf S, Zimmermann D, Aspöck U. 92.  2017. Head anatomy of adult Coniopteryx pygmaea Enderlein, 1906: effects of miniaturization and the systematic position of Coniopterygidae (Insecta: Neuroptera). Arthropod Struct. Dev. 46:2304–22 [Google Scholar]
  93. Ren D, Engel MS. 93.  2008. A second antlion from the Mesozoic of northeastern China (Neuroptera: Myrmeleontidae). Alavesia 2:183–86 [Google Scholar]
  94. Ren D, Engel MS. 94.  2008. Aetheogrammatidae, a new family of lacewings from the Mesozoic of China (Neuroptera: Myrmeleontiformia). J. Kans. Entomol. Soc. 81:3161–67 [Google Scholar]
  95. Ren D, Engel MS, W. 95.  2002. New giant lacewings from the Middle Jurassic of Inner Mongolia, China (Neuroptera: Polystoechotidae). J. Kans. Entomol. Soc. 75:3188–93 [Google Scholar]
  96. Ren D, Makarkin VN. 96.  2009. Ascalochrysidae—a new lacewing family from the Mesozoic of China (Insecta: Neuroptera: Chrysopoidea). Cretac. Res. 30:51217–22 [Google Scholar]
  97. Ren D, Yin J. 97.  2003. New ‘osmylid-like’ fossil Neuroptera from the Middle Jurassic of Inner Mongolia, China. J. N. Y. Entomol. Soc. 111:11–11 [Google Scholar]
  98. Shi C, Béthoux O, Shih C, Ren D. 98.  2012. Guyiling jianboni gen. et sp.n., an antlion-like lacewing, illuminating homologies and transformations in Neuroptera wing venation. Syst. Entomol. 37:3617–31 [Google Scholar]
  99. Shi C, Winterton SL, Ren D. 99.  2015. Phylogeny of split-footed lacewings (Neuroptera, Nymphidae), with descriptions of new Cretaceous fossil species from China. Cladistics 31:5455–90 [Google Scholar]
  100. Sole CL, Scholtz CH, Ball JB, Mansell MW. 100.  2013. Phylogeny and biogeography of southern African spoon-winged lacewings (Neuroptera: Nemopteridae: Nemopterinae). Mol. Phyl. Evol. 66:1360–68 [Google Scholar]
  101. Song F, Li H, Jiang P, Zhou X, Liu J. 101.  et al. 2016. Capturing the phylogeny of Holometabola with mitochondrial genome data and Bayesian site-heterogenous mixture models. Genome Biol. Evol. 8:51411–26 [Google Scholar]
  102. Song N, An S, Yin X, Zhao T, Wang X. 102.  2016. Insufficient resolving power of mitogenome data in deciphering deep phylogeny of Holometabola. J. Syst. Evol. 54:5545–59 [Google Scholar]
  103. Sziraki G. 103.  1996. The internal genitalia of females of some coniopterygid genera, compared with other neuropteroid taxa (Insecta: Neuroptera: Coniopterygidae). Pure and Applied Research in Neuropterology M Canard, H Aspöck, MW Mansell 217–28 Toulouse, France: SACCO [Google Scholar]
  104. Sziraki G. 104.  2007. Studies on Brucheiserinae (Neuroptera: Coniopterygidae), with description of the second genus of the subfamily. Acta Zool. Acad. Sci. Hung. 53:Suppl. 1231–54 [Google Scholar]
  105. Tauber CA, Tauber MJ. 105.  1968. Lomamyia latipennis (Neuroptera: Berothidae) life history and larval descriptions. Can. Entomol. 100:6623–29 [Google Scholar]
  106. Tauber CA, Tauber MJ, Albuquerque GS. 106.  2014. Debris-carrying larval Chrysopidae: unraveling its evolutionary history. Ann. Entomol. Soc. Am. 107:2295–314 [Google Scholar]
  107. Wang B, Xia F, Engel MS, Perrichot V, Shi G. 107.  et al. 2016. Debris-carrying camouflage among diverse lineages of Cretaceous insects. Sci. Adv. 2:e1501918 [Google Scholar]
  108. Wang B, Zhang H-C. 108.  2010. Earliest evidence of fishflies (Megaloptera: Corydalidae): an exquisitely preserved larva from the Middle Jurassic of China. J. Paleontol. 84:4774–80 [Google Scholar]
  109. Wang W, Liu Z. 109.  2007. Molecular phylogenetic relationship of the Coniopterygidae from China based on 16S rRNA sequences. Acta Zootaxon. Sin. 32:4851–55 [Google Scholar]
  110. Wang Y, Engel MS, Rafael JA, Wu H, Rédei D. 110.  et al. 2016. Fossil record of stem groups employed in evaluating the chronogram of insects (Arthropoda: Hexapoda). Sci. Rep. 6:38939 [Google Scholar]
  111. Wang Y, Liu X, Garzón-Orduña IJ, Winterton SL, Yan Y. 111.  et al. 2017. Mitochondrial phylogenomics illuminates the evolutionary history of Neuropterida. Cladistics In press [Google Scholar]
  112. Wang Y, Liu X, Winterton SL, Yang D. 112.  2012. The first mitochondrial genome for the fishfly subfamily Chauliodinae and implications for the higher phylogeny of Megaloptera. PLOS ONE 7:e47302 [Google Scholar]
  113. Wang Y, Liu Z, Wang X, Shih C, Zhao Y. 113.  et al. 2010. Ancient pinnate leaf mimesis among lacewings. PNAS 107:3716212–15 [Google Scholar]
  114. Wang Y, Liu Z, Ren D, Shih C. 114.  2011. New Middle Jurassic kempynin [sic] osmylid lacewings from China. Acta Palaeontol. Pol. 56:4865–69 [Google Scholar]
  115. Wichard W. 115.  2017. Family Nevrorthidae (Insecta, Neuroptera) in mid-Cretaceous Burmese amber. Palaeodiversity 10:1–5 [Google Scholar]
  116. Wichard W, Buder T, Caruso C. 116.  2010. Aquatic lacewings of family Nevrorthidae (Neuroptera) in Baltic amber. Denisia 29:445–57 [Google Scholar]
  117. Willmann R. 117.  1990. The phylogenetic position of the Rhachiberothinae and the basal sister-group relationships within the Mantispidae (Neuroptera). Syst. Entomol. 15:2253–65 [Google Scholar]
  118. Willmann R. 118.  1994. Raphidiodea aus dem Lias und die Phylogenie der Kamelhalsfliegen (Insecta: Holometabola). Paläontol. Z. 68:1–2167–97 [Google Scholar]
  119. Winterton SL. 119.  2003. Molecular phylogeny of Neuropterida with emphasis on the lacewings (Neuroptera). Entomol. Abhand. 61:2158–60 [Google Scholar]
  120. Winterton SL, Hardy NB, Wiegmann BM. 120.  2010. On wings of lace: phylogeny and Bayesian divergence time estimates of Neuropterida (Insecta) based on morphological and molecular data. Syst. Entomol. 35:3349–78The first combined morphological and molecular study attempting to explore the relationships among the families of all Neuropterida. [Google Scholar]
  121. Winterton SL, Makarkin VN. 121.  2010. Phylogeny of moth lacewings and giant lacewings (Neuroptera: Ithonidae, Polystoechotidae) using DNA sequence data, morphology, and fossils. Ann. Entomol. Soc. Am. 103:4511–22 [Google Scholar]
  122. Winterton SL, Zhao J, Garzón-Orduña IJ, Wang Y, Liu Z. 122.  2017. The phylogeny of lance lacewings (Neuroptera: Osmylidae). Syst. Entomol. 42:3555–74 [Google Scholar]
  123. Withycombe CL. 123.  1925. Some aspects of the biology and morphology of the Neuroptera. With special reference to the immature stages and their possible phylogenetic significance. Trans. Entomol. Soc. Lond. 1924:303–406The immensely prescient study of Neuroptera phylogeny based on larval data. [Google Scholar]
  124. Yang Q, Makarkin VN, Winterton SL, Khramov AV, Ren D. 124.  2012. A remarkable new family of Jurassic insects (Neuroptera) with primitive wing venation and its phylogenetic position in Neuropterida. PLOS ONE 7:9e44762 [Google Scholar]
  125. Yang Q, Wang Y, Labandeira CC, Shih C, Ren D. 125.  2014. Mesozoic lacewings from China provide phylogenetic insight into evolution of the Kalligrammatidae (Neuroptera). BMC Evol. Biol. 14:126 [Google Scholar]
  126. Zhao C, Liu X, Yang D. 126.  2014. Wing base structural data support the sister relationship of Megaloptera and Neuroptera (Insecta: Neuropterida). PLOS ONE 9:12e114695 [Google Scholar]
  127. Zhao J, Li H, Winterton SL, Liu Z. 127.  2013. Ancestral gene organization in the mitochondrial genome of Thyridosmylus langii (McLachlan, 1870) (Neuroptera: Osmylidae) and implications for lacewing evolution. PLOS ONE 8:5e62943 [Google Scholar]
  128. Zhao Y, Zhang H, Zhang Y. 128.  2017. Complete mitochondrial genome of Neochauliodes parasparsus (Megaloptera: Corydalidae) with phylogenetic consideration. Biochem. Syst. Ecol. 70:192–99 [Google Scholar]
  129. Zimmermann D, Klepal W, Aspöck U. 129.  2009. The first holistic SEM study of Coniopterygidae (Neuroptera)—structural evidence and phylogenetic implications. Eur. J. Entomol. 106:4651–62 [Google Scholar]
  130. Zizzari ZV, Lupetti P, Mencarelli C, Dallai R. 130.  2008. Sperm ultrastructure and spermiogenesis of Coniopterygidae (Neuroptera, Insecta). Arthropod Struct. Dev. 37:5410–14 [Google Scholar]
  131. Zizzari ZV, Lupetti P, Pantaleoni RA, Letardi A, Dallai R. 131.  2011. Sperm ultrastructure of some Neuroptera and phylogenetic considerations. Ital. J. Zool. 78:135–44 [Google Scholar]
  132. Zwick P. 132.  1967. Beschreibung der aquatischen Larve von Neurorthus [sic] fallax (Rambur) und Errichtung der neuen Planipennierfamilie Neurorthidae [sic] fam. nov. Gewässer Abwässer 44–45:65–86 [Google Scholar]
/content/journals/10.1146/annurev-ento-020117-043127
Loading
/content/journals/10.1146/annurev-ento-020117-043127
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error