Insects and mites are common inhabitants and accidental invaders of food, including durable commodities, and their presence can have both direct and indirect effects on human health. The most common direct effect is contamination of food with arthropod fragments and related contaminants, which may be allergenic or even carcinogenic. The most important indirect effect is that their presence can change the storage microenvironment, making durable products suitable for the rapid development of fungi and other microorganisms. Some of these fungi can produce toxins (e.g., aflatoxins) that endanger human health. Insects may actively or passively contribute to the spread of microorganisms, increasing product contamination, and they may host bacteria that have developed antibiotic resistance, contributing to their spread in food. Several species also may host, attract, or transmit tapeworms, predators, or parasitoids that may affect health. This review synthesizes research on these topics and suggests directions for future research.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adler C. 1.  2013. New developments in stored product protection. Rural 21 47:26–29 [Google Scholar]
  2. Alanko K, Tuomi T, Vanhanen M, Pajari-Backas M, Kanerva L. 2.  et al. 2000. Occupational IgE-mediated allergy to Tribolium confusum (confused flour beetle). Allergy 55:879–82 [Google Scholar]
  3. Alvarez MJ, Castillo R, Ortega N, Blanco C, Carrillo T, Rey A. 3.  1999. Occupational asthma in a grain worker due to Lepidoglyphus destructor, assessed by bronchial provocation test and induced sputum. Allergy 54:884–89 [Google Scholar]
  4. Anderson RM. 4.  1993. Epidemiology. Modern Parasitology: A Textbook of Parasitology FEG Cox 75–116 Oxford, UK: Blackwell Sci, 2nd ed.. [Google Scholar]
  5. Arlian LG. 5.  2002. Arthropod allergens and human health. Annu. Rev. Entomol. 47:395–433 [Google Scholar]
  6. Arlian LG, Morgan MS, Peterson KT. 6.  2008. House dust and storage mite extracts influence skin keratinocyte and fibroblast function. Int. Arch. Allergy Immunol. 145:33–42 [Google Scholar]
  7. Armentia A, Lombardero M, Martinez C, Barber D, Vega JM, Callejo A. 7.  2004. Occupational asthma due to grain pests Eurygaster and Ephestia. J. Asthma 41:99–107 [Google Scholar]
  8. Athanassiou CG, Kavallieratos NG, Sciarreta A, Palyvos NE, Trematerra P. 8.  2011. Spatial associations of insects and mites in stored wheat. J. Econ. Entomol. 104:1752–64 [Google Scholar]
  9. Aucamp JL. 9.  1969. The role of mite vectors in the development of aflatoxin in groundnuts. J. Stored Prod. Res. 5:245–49 [Google Scholar]
  10. Beti JA, Phillips TW, Smalley EB. 10.  1995. Effects of maize weevils (Coleoptera: Curculionidae) on production of aflatoxin B1 by Aspergillus flavus in stored corn. J. Econ. Entomol. 88:1776–82 [Google Scholar]
  11. Blainey AD, Topping MD, Ollier S, Davies RJ. 11.  1988. Respiratory symptoms in arable farmworkers: role of storage mites. Thorax 43:697–702 [Google Scholar]
  12. Blanco C, Quiralte J, Castillo R, Delgado J, Arteaga C. 12.  et al. 1997. Anaphylaxis after ingestion of wheat flour contaminated with mites. J. Allergy Clin. Immunol. 99:308–12 [Google Scholar]
  13. Boquete M, Carballás C, Carballada F, Iraola V, Carnés J, Fernández-Caldas E. 13.  2006. In vivo and in vitro allergenicity of the domestic mite Chortoglyphus arcuatus. Ann. Allergy Asthma Immunol. 97:203–8 [Google Scholar]
  14. Broce AB, Zurek L, Kalisch JA, Brown R, Keith DL. 14.  et al. 2006. Pyemotes herfsi (Acari: Pyemotidae), a mite new to North America as the cause of bite outbreaks. J. Med. Entomol. 43:610–13 [Google Scholar]
  15. Campbell JF, Arbogast RT. 15.  2004. Stored-product insects in a flour mill: population dynamics and response to fumigation treatments. Entomol. Exp. Appl. 112:217–25 [Google Scholar]
  16. Campolo O, Patanè V, Verdone AM, Palmeri V. 16.  2012. Survey of solid impurities and active infestation in flours produced in Calabria (Italy). J. Stored Prod. Res. 50:36–41 [Google Scholar]
  17. Cevizci S, Gökçe S, Bostan K, Kaypmaz A. 17.  2010. A view of mites infestation on cheese and stored foods in terms of public health [Depo gıdalarını ve peynirleri enfeste eden akarlara halk sağlığı açısından bakiş]. Turk. Parazitol. Derg. 34:191–99 [Google Scholar]
  18. Channaiah LH, Subramanyam B, McKinney LJ, Zurek L. 18.  2010. Stored-product insects carry antibiotic-resistant and potentially virulent enterococci. FEMS Microbiol. Ecol. 74:464–71 [Google Scholar]
  19. Channaiah LH, Subramanyam B, Zurek L. 19.  2010. Survival of Enterococcus faecalis OG1RF:pCF10 in poultry and cattle feed: vector competence of the red flour beetle, Tribolium castaneum (Herbst). J. Food Prot. 73:568–73 [Google Scholar]
  20. Collins DA. 20.  2012. A review on the factors affecting mite growth in stored grain commodities. Exp. Appl. Acarol. 56:191–208 [Google Scholar]
  21. Crippen TL, Zheng L, Sheffield CL, Tomberlin JK, Beier RC, Yu Z. 21.  2012. Transient gut retention and persistence of Salmonella through metamorphosis in the lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae). J. Appl. Microbiol. 112:920–26 [Google Scholar]
  22. Crumrine MH, Foltz VD, Harris JO. 22.  1971. Transmission of Salmonella montevideo in wheat by stored-product insects. Appl. Microbiol. 22:578–80 [Google Scholar]
  23. Cui Y. 23.  2014. When mites attack: Domestic mites are not just allergens. Parasites Vectors 7:411 [Google Scholar]
  24. Djekic I, Jankovic D, Rajkovic A. 24.  2017. Analysis of foreign bodies present in European food using data from Rapid Alert System for Food and Feed (RASFF). Food Control 79:143–49The study demonstrated insect pests as the most frequently reported (according to the Rapid Alert System for Food and Feed database) foreign body in food in Europe. [Google Scholar]
  25. Dunkel FV. 25.  1988. The relationship of insects to the deterioration of stored grain by fungi. Int. J. Food Microbiol. 7:227–44 [Google Scholar]
  26. Edston E, van Hage-Hamsten M. 26.  2003. Death in anaphylaxis in a man with house dust mite allergy. Int. J. Legal Med. 117:299–301This case study describes the death of a 47-year-old farmer who was sensitive to mites. [Google Scholar]
  27. El-Mofty MM, Khudoley VV, Sakr SA, Fathala NG. 27.  1992. Flour infested with Tribolium castaneum, biscuits made of this flour, and 1,4-benzoquinone induce neoplastic lesions in Swiss albino mice. Nutr. Cancer 17:97–104 [Google Scholar]
  28. El-Mofty MM, Sakr SA, Osman SI, Toulan BA. 28.  1989. Carcinogenic effect of biscuits made of flour infested with Tribolium castaneum in Bufo regularis. Oncology 46:63–65 [Google Scholar]
  29. Erban T, Hubert J. 29.  2008. Digestive function of lysozyme in synanthropic acaridid mites enables utilization of bacteria as a food source. Exp. Appl. Acarol. 44:199–212 [Google Scholar]
  30. Erban T, Hubert J. 30.  2011. Longterm persistence of proteolytic activities in frass of Blattella germanica increases its allergenic potential. Med. Vet. Entomol. 25:209–16 [Google Scholar]
  31. Erban T, Hubert J. 31.  2015. Two-dimensional gel proteomic analysis of Dermatophagoides farinae feces. Exp. Appl. Acarol. 65:73–87 [Google Scholar]
  32. Erban T, Rybanska D, Harant K, Hortova B, Hubert J. 32.  2016. Feces derived allergens of Tyrophagus putrescentiae reared on dried dog food and evidence of the strong nutritional interaction between the mite and Bacillus cereus producing protease bacillolysins and exo-chitinases. Front. Physiol. 7:53 [Google Scholar]
  33. Erban T, Stejskal V, Aulicky R, Krizkova-Kudlikova I, Nesvorna M, Hubert J. 33.  2010. The influence of environmental temperature and humidity on temporal decomposition of cockroach allergens Bla g 1 and Bla g 2 in feces. J. Med. Entomol. 47:1062–70 [Google Scholar]
  34. 34. FDA (Food Drug Adm.). 1987. CPG Sec. 578.450 Wheat Flour—Adulteration with Insect Fragments and Rodent Hairs. Silver Spring, MD: US FDA https://www.fda.gov/ICECI/ComplianceManuals/CompliancePolicyGuidanceManual/ucm074610.htm [Google Scholar]
  35. Fernández-Caldas E. 35.  2013. On mite allergy in dogs and humans. Int. Arch. Allergy Immunol. 160:329–30 [Google Scholar]
  36. Fleurat-Lessard F. 36.  2002. Qualitative reasoning and integrated management of the quality of stored grain: a promising new approach. J. Stored Prod. Res. 38:191–218 [Google Scholar]
  37. Flinn PW, Hagstrum DW. 37.  2001. Augmentative releases of parasitoid wasps in stored wheat reduces insect fragments in flour. J. Stored Prod. Res. 37:179–86 [Google Scholar]
  38. Franzolin MR, Gambale W, Cuero RG, Correa B. 38.  1999. Interaction between toxigenic Aspergillus flavus and mites (Tyrophagus putrescentiae Schrank) on maize grains: effects on fungal growth and aflatoxin production. J. Stored Prod. Res. 35:215–24This study provided experimental proof that Tyrophagus putrescentiae contribute to fungal dispersal and influence mycotoxin production in grain. [Google Scholar]
  39. Gecan JS, Atkinson JC. 39.  1983. Microanalytical quality of wheat flour. J. Food Prot. 46:582–84 [Google Scholar]
  40. González-Pérez R, Poza-Guedes P, Matheu V, Sánchez-Machin I. 40.  2013. Oral mite ingestion: expect more than anaphylaxis. J. Allergy Clin. Immunol. 132:505 [Google Scholar]
  41. Gorham JR. 41.  1977. FDA Training Manual for Analytical Entomology in the Food Industry Washington, DC: Food Drug Adm. [Google Scholar]
  42. Gorham JR. 42.  1979. The significance for human health of insects in food. Annu. Rev. Entomol. 24:209–24 [Google Scholar]
  43. Gorham JR. 43.  1991. Food pests as diseases vectors. Ecology and Management of Food-Industry Pests JR Gorham 477–82 Arlington, VA: Assoc. Off. Anal. Chem. [Google Scholar]
  44. Hagstrum DW, Subramanyam B. 44.  2009. Stored-Product Insect Resource Saint Paul, MN: AACC Int. [Google Scholar]
  45. Hald B, Olsen A, Madsen M. 45.  1998. Typhaea stercorea (Coleoptera: Mycetophagidae), a carrier of Salmonella enterica serovar Infantis in a Danish broiler house. J. Econ. Entomol. 91:660–64 [Google Scholar]
  46. Harein PK, de las Casas E, Larsen CT, Pomeroy BS. 46.  1972. Microbial relationship between the lesser mealworm and its associated environment in a turkey brooder house. Environ. Entomol. 1:189–94 [Google Scholar]
  47. Harein PK, de las Casas E, Pomeroy BS, York MD. 47.  1970. Salmonella spp. and serotypes of Escherichia coli isolated from the lesser mealworm collected in poultry brooder houses. J. Econ. Entomol. 63:80–82 [Google Scholar]
  48. Hatsushika R, Miyoshi K, Okino T. 48.  1990. Case studies on sting dermatitis by bethylid wasp, Cephalonomiagallicola (Ashmead, 1887) (Hymenoptera: Bethylidae) found in Okayama, Japan. Kawasaki Med. J. 16:133–40 [Google Scholar]
  49. Hell K, Cardwell KF, Setamou M, Poehling H-M. 49.  2000. The influence of storage practices on aflatoxin contamination in maize in four agroecological zones of Benin, west Africa. J. Stored Prod. Res. 36:365–82 [Google Scholar]
  50. Herling C, Svendsen UG, Schou C. 50.  1995. Identification of important allergenic proteins in extracts of the granary weevil (Sitophilus granarius). Allergy 50:441–46 [Google Scholar]
  51. Hodges RJ, Robinson R, Hall DR. 51.  1996. Quinone contamination of dehusked rice by Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Stored Prod. Res. 32:31–37 [Google Scholar]
  52. Howard RW. 52.  1987. Chemosystematic studies of the Triboliini (Coleoptera: Tenebrionidae): phylogenetic inferences from the defensive chemicals of eight Tribolium spp., Palorus ratzeburgi (Wissmann), and Latheticus oryzae Waterhouse. Ann. Entomol. Soc. Am. 80:398–405 [Google Scholar]
  53. Hubert J, Erban T, Nesvorna M, Stejskal V. 53.  2011. Emerging risk of infestation and contamination of dried fruits by mites in the Czech Republic. Food Addit. Contam. A 28:1129–35 [Google Scholar]
  54. Hubert J, Jarošík V, Mourek J, Kubátová A, Žd'árková E. 54.  2004. Astigmatid mite growth and fungi preference (Acari: Acaridida): comparisons in laboratory experiments. Pedobiologia 48:205–14 [Google Scholar]
  55. Hubert J, Münzbergová Z, Kučerová Z, Stejskal V. 55.  2006. Comparison of communities of stored product mites in grain mass and grain residues in the Czech Republic. Exp. Appl. Acarol. 39:149–58 [Google Scholar]
  56. Hubert J, Nesvorná M, Hujslová M, Stará J, Hajšlová J, Stejskal V. 56.  2013. Acarus siro and Tyrophagus putrescentiae (Acari: Acarididae) transfer of Fusarium culmorum into germinated barley increases mycotoxin deoxynivalenol content in barley under laboratory conditions. Int. J. Acarol. 39:235–38 [Google Scholar]
  57. Hubert J, Nesvorná M, Kopecký J. 57.  2014. The effect of Tyrophagus putrescentiae on Fusarium poae transmission and fungal community in stored barley in a laboratory experiment. Insect Sci 21:65–73 [Google Scholar]
  58. Hubert J, Stejskal V, Kubátová A, Münzbergová Z, Váňová M, Žd'árková E. 58.  2003. Mites as selective fungal carriers in stored grain habitats. Exp. Appl. Acarol. 29:69–87 [Google Scholar]
  59. Hubert J, Stejskal V, Münzbergová Z, Kubátová A, Váňová M, Žd'árková E. 59.  2004. Mites and fungi in heavily infested stores in the Czech Republic. J. Econ. Entomol. 97:2144–53 [Google Scholar]
  60. Husted SR, Mills RB, Foltz VD, Crumrine MH. 60.  1969. Transmission of Salmonella montevideo from contaminated to clean wheat by the rice weevil. J. Econ. Entomol. 62:1489–91 [Google Scholar]
  61. Ishibashi O, Sakuragi K, Fukutomi Y, Kawakami Y, Kamata Y. 61.  et al. 2017. Lip b 1 is a novel allergenic protein isolated from the booklouse, Liposcelis bostrychophila. Allergy 72:918–26 [Google Scholar]
  62. Jacquet A. 62.  2011. The role of innate immunity activation in house dust mite allergy. Trends Mol. Med. 17:604–11 [Google Scholar]
  63. Jakubas-Zawalska J, Asman M, Kłyś M, Solarz K. 63.  2016. Sensitization to Sitophilus granarius in selected suburban population of South Poland. J. Stored Prod. Res. 69:1–6 [Google Scholar]
  64. Jeong SK, Kim HJ, Youm J-K, Ahn SK, Choi EH. 64.  et al. 2008. Mite and cockroach allergens activate protease-activated receptor 2 and delay epidermal permeability barrier recovery. J. Investig. Dermatol. 128:1930–39 [Google Scholar]
  65. Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T. 65.  2012. Symbiont-mediated insecticide resistance. PNAS 109:8618–22 [Google Scholar]
  66. Kleine-Tebbe J, Jeep S, Josties C, Meysel U, O'Connor A, Kunkel G. 66.  1992. IgE-mediated inhalant allergy in inhabitants of a building infested by the rice weevil (Sitophilus oryzae). Ann. Allergy 69:497–504 [Google Scholar]
  67. Kučerová Z, Aulický R, Stejskal V. 67.  2003. Accumulation of pest-arthropods in grain residues found in an empty store. J. Plant Dis. Prot. 110:499–504 [Google Scholar]
  68. Langer K, Breuer K, Kapp A, Werfel T. 68.  2007. Staphylococcus aureus-derived enterotoxins enhance house dust mite–induced patch test reactions in atopic dermatitis. Exp. Dermatol. 16:124–29 [Google Scholar]
  69. Larson Z, Subramanyam B, Herrman T. 69.  2008. Stored-product insects associated with eight feed mills in the Midwestern United States. J. Econ. Entomol. 101:998–1005 [Google Scholar]
  70. Larson Z, Subramanyam B, Zurek L, Herrman T. 70.  2008. Diversity and antibiotic resistance of enterococci associated with stored-product insects collected from feed mills. J. Stored Prod. Res. 44:198–203This pioneering study described the isolation of antibiotic-resistant enterococci from stored-product beetles. [Google Scholar]
  71. Lee I-Y, Shin C-S, Sim S, Park J-W, Yong T-S. 71.  2014. Human sting of Cephalonomia gallicola (Hymenoptera: Bethylidae) in Korea. Korean J. Parasitol. 52:681–84 [Google Scholar]
  72. Leffer AM, Kuttel J, Martins LM, Pedroso AC, Astolfi-Ferreira CS. 72.  et al. 2010. Vectorial competence of larvae and adults of Alphitobius diaperinus in the transmission of Salmonella enteritidis in poultry. Vector-Borne Zoonotic Dis 10:481–87 [Google Scholar]
  73. Levi MH, Raucher BG, Teicher E, Sheehan DJ, McKitrick JC. 73.  1987. Hymenolepis diminuta: one of three enteric pathogens isolated from a child. Diagn. Microbiol. Infect. Dis. 7:255–59 [Google Scholar]
  74. Li CP, Cui Y-B, Wang J, Yang Q-G, Tian Y. 74.  2003. Acaroid mite, intestinal and urinary acariasis. World J. Gastroenterol. 9:874–77This was the first study to document acariasis caused by stored-product mites in humans. [Google Scholar]
  75. Li CP, Wang J. 75.  2000. Intestinal acariasis in Anhui Province. World J. Gastroenterol. 6:597–600 [Google Scholar]
  76. Lugo G, Cipolla C, Bonfiglioli R, Sassi C, Maini S. 76.  et al. 1994. A new risk of occupational disease: allergic asthma and rhinoconjunctivitis in persons working with beneficial arthropods: preliminary data. Int. Arch. Occup. Environ. Health 65:291–94 [Google Scholar]
  77. Lunn JA. 77.  1966. Millworkers’ asthma: allergic responses to the grain weevil (Sitophilus granarius). Br. J. Ind. Med. 23:149–52 [Google Scholar]
  78. Mäkinen-Kiljunen S, Mussalo-Rauhamaa H, Petman L, Rinne J, Haahtela T. 78.  2001. A baker's occupational allergy to flour moth (Ephestia kuehniella). Allergy 56:696–700 [Google Scholar]
  79. Marangi M, Zechini B, Fileti A, Quaranta G, Aceti A. 79.  2003. Hymenolepis diminuta infection in a child living in the urban area of Rome, Italy. J. Clin. Microbiol. 41:3994–95 [Google Scholar]
  80. Mariana A, Ho TM, Gendeh BS, Iskandar H, Zainuldin-Taib M. 80.  2000. First report on sensitization to allergens of a house dust mite, Suidasia pontifica (Acari: Saproglyphidae). Southeast Asian J. Trop. Med. Public Health 31:722–23 [Google Scholar]
  81. Marraccini P, Previdi M, Cantone L, Varin E, Salimbeni R. 81.  et al. 2007. The possible role of cockroaches in baker's asthma. Med. Lav. 98:284–88 [Google Scholar]
  82. Marx JJ, Twiggs JT, Ault BJ, Merchant JA, Fernandez-Caldas E. 82.  1993. Inhaled aeroallergen and storage mite reactivity in a Wisconsin farmer nested case-control study. Am. Rev. Respir. Dis. 147:354–58 [Google Scholar]
  83. Matsumoto T, Hisano T, Hamaguchi M, Miike T. 83.  1996. Systemic anaphylaxis after eating storage-mite-contaminated food. Int. Arch. Allergy Immunol. 109:197–200 [Google Scholar]
  84. Matsumoto T, Satoh A. 84.  2004. The occurrence of mite-containing wheat flour. Pediatr. Allergy Immunol. 15:469–71 [Google Scholar]
  85. Müsken H, Fernández-Caldas E, Marañón F, Franz JT, Masuch G, Bergmann KC. 85.  2002. In vivo and in vitro sensitization to domestic mites in German urban and rural allergic patients. J. Investig. Allergol. Clin. Immunol. 12:177–81 [Google Scholar]
  86. Müsken H, Franz JT, Wahl R, Paap A, Cromwell O. 86.  et al. 2000. Sensitization to different mite species in German farmers: clinical aspects. J. Investig. Allergol. Clin. Immunol. 10:346–51 [Google Scholar]
  87. Müsken H, Franz JT, Wahl R, Paap A, Cromwell O. 87.  et al. 2003. Sensitization to different mite species in German farmers: in vitro analyses. J. Investig. Allergol. Clin. Immunol. 13:26–35 [Google Scholar]
  88. Nayak MK, Collins PJ, Throne JE, Wang J-J. 88.  2014. Biology and management of psocids infesting stored products. Annu. Rev. Entomol. 59:279–97 [Google Scholar]
  89. Nesvorná M, Gabrielová L, Hubert J. 89.  2012. Suitability of a range of Fusarium species to sustain populations of three stored product mite species (Acari: Astigmata). J. Stored Prod. Res. 48:37–45 [Google Scholar]
  90. Neto HJC, Rosario NA, Hubert J, Žd'árková E, Oliveira CH. 90.  2002. Skin test reactivity to Cheyletus eruditus (Ce) in atopic patients. Allergy 57:Suppl. 73287 [Google Scholar]
  91. Nowaczyk K, Obrepalska-Steplowska A, Gawlak M, Throne JE, Olejarski P, Nawrot J. 91.  2009. Molecular techniques for detection of Tribolium confusum infestations in stored products. J. Econ. Entomol. 102:1691–95 [Google Scholar]
  92. Olsen AR, Gecan JS, Ziobro GC, Bryce JR. 92.  2001. Regulatory action criteria for filth and other extraneous materials V. Strategy for evaluating hazardous and nonhazardous filth. Regul. Toxicol. Pharmacol. 33:363–92 [Google Scholar]
  93. Omaye ST, Wirtz RA, Fruin JT. 93.  1981. Toxicity of substituted p-benzoquinones found in the secretion of tenebrionid flour beetles. Proc. West. Pharmacol. Soc. 24:169–71 [Google Scholar]
  94. Opit GP, Phillips TW, Aikins MJ, Hasan MM. 94.  2012. Phosphine resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in Oklahoma. J. Econ. Entomol. 105:1107–14 [Google Scholar]
  95. Orriss GD, Whitehead AJ. 95.  2000. Hazard analysis and critical control point (HACCP) as a part of an overall quality assurance system in international food trade. Food Control 11:345–51This paper discusses the roles of HACCP and governments in food safety and international trade. [Google Scholar]
  96. Pedersen JR. 96.  1992. Insects: identification, damage, and detection. Storage of Cereal Grains and Their Products DB Sauer 435–89 Saint Paul, MN: Am. Assoc. Cereal Chem. [Google Scholar]
  97. Perez-Mendoza J, Throne JE, Maghirang EB, Dowell FE, Baker JE. 97.  2005. Insect fragments in flour: relationship to lesser grain borer (Coleoptera: Bostrichidae) infestation level in wheat and rapid detection using near-infrared spectroscopy. J. Econ. Entomol. 98:2282–91 [Google Scholar]
  98. Perotin J-M, Scherer P, Leduc V, Bouchet F, Deslee G, Lavaud F. 98.  2011. Allergic asthma to psocids, a new indoor allergen of ecological building materials. Allergy 66:1257–58 [Google Scholar]
  99. Phillips JK, Burkholder WE. 99.  1984. Health hazards of insects and mites in food. Insect Management for Food Storage and Processing FJ Baur 280–93 Saint Paul, MN: Am. Assoc. Cereal Chem. [Google Scholar]
  100. Puerta L, Fernández-Caldas E, Lockey RF, Caraballo LR. 100.  1993. Sensitization to Chortoglyphus arcuatus and Aleuroglyphus ovatus in Dermatophagoides spp. allergic individuals. Clin. Exp. Allergy 23:117–23 [Google Scholar]
  101. Puerta L, Lagares A, Mercado D, Fernández-Caldas E, Caraballo L. 101.  2005. Allergenic composition of the mite Suidasia medanensis and cross-reactivity with Blomia tropicalis. Allergy 60:41–47 [Google Scholar]
  102. Raghavender CR, Reddy BN, Rani GS. 102.  2008. Insect–fungal infestation of stored grains of pearl millet and its impact on aflatoxin production. Proc. Natl. Acad. Sci. India B 78:331–37 [Google Scholar]
  103. Rodriguez JG, Potts MF, Patterson CG. 103.  1984. Mycotoxin-producing fungi: effects on stored product mites. Acarology VI 2 DA Griffiths, CE Bowman 343–50 Chichester, UK: Ellis Horwood [Google Scholar]
  104. Rodriguez JG, Potts MF, Rodriguez LD. 104.  1980. Mycotoxin toxicity to Tyrophagus putrescentiae. J. Econ. Entomol. 73:282–84 [Google Scholar]
  105. Rohlfs M, Churchill ACL. 105.  2011. Fungal secondary metabolites as modulators of interactions with insects and other arthropods. Fungal Genet. Biol. 48:23–34 [Google Scholar]
  106. Rosen S, Yeruham I, Braverman Y. 106.  2002. Dermatitis in humans associated with the mites Pyemotes tritici, Dermanyssus gallinae, Ornithonyssus bacoti and Androlaelaps casalis in Israel. Med. Vet. Entomol 16:442–44 [Google Scholar]
  107. Rudolph R, Stresemann E, Stresemann B, Haupthof M. 107.  1987. Sensitizations against Tribolium confusum Du Val in patients with occupational and non-occupational exposure. Advances in Aerobiology: Proceedings of the 3rd International Conference on Aerobiology, August 6–9, Basel, Switzerland G Boehm, RM Leuschner 177–82 Basel, Switz.: Birkhäuser [Google Scholar]
  108. Sánchez-Borges M, Capriles-Hulett A, Fernandez-Caldas E, Suarez-Chacon R, Caballero F. 108.  et al. 1997. Mite-contaminated foods as a cause of anaphylaxis. J. Allergy Clin. Immunol. 99:738–43 [Google Scholar]
  109. Sánchez-Borges M, Chacón RS, Capriles-Hulett A, Caballero-Fonseca F, Fernández-Caldas E. 109.  2013. Anaphylaxis from ingestion of mites: pancake anaphylaxis. J. Allergy Clin. Immunol. 131:31–35 [Google Scholar]
  110. Scandola M, Bastianelli A, Spoto A, Vidotto G. 110.  2010. The Fear of Cockroaches Questionnaire (FCQ). Rev. Psychol. 17:111–17 [Google Scholar]
  111. Schultze-Werninghaus G, Zachgo W, Rotermund H, Wiewrodt R, Merget R. 111.  et al. 1991. Tribolium confusum (confused flour beetle, rice flour beetle)—an occupational allergen in bakers: demonstration of IgE antibodies. Int. Arch. Allergy Appl. Immunol. 94:371–72 [Google Scholar]
  112. Seitz LM, Sauer DB. 112.  1996. Volatile compounds and odors in grain sorghum infested with common storage insects. Cereal Chem 73:744–50 [Google Scholar]
  113. Shostak AW. 113.  2014. Hymenolepis diminuta infections in tenebrionid beetles as a model system for ecological interactions between helminth parasites and terrestrial intermediate hosts: a review and meta-analysis. J. Parasitol. 100:46–58 [Google Scholar]
  114. Sidenius KE, Hallas TE, Stenderup J, Poulsen LK, Mosbech H. 114.  2002. Decay of house-dust mite allergen Der f 1 at indoor climatic conditions. Ann. Allergy Asthma Immunol. 89:34–37This study showed that mite-associated allergens have a half-life longer than 1 year in the human environment. [Google Scholar]
  115. Sinha KK, Sinha AK. 115.  1992. Impact of stored grain pests on seed deterioration and aflatoxin contamination in maize. J. Stored Prod. Res. 28:211–19 [Google Scholar]
  116. Sinha RN. 116.  1961. Insects and mites associated with hot spots in farm stored grain. Can. Entomol. 93:609–21 [Google Scholar]
  117. Sinha RN. 117.  1968. Adaptive significance of mycophagy in stored-product Arthropoda. Evolution 22:785–98 [Google Scholar]
  118. Sinha RN. 118.  1979. Ecology of microflora in stored grain. Ann. Technol. Agric. 28:191–209 [Google Scholar]
  119. Sinha RN, Mills JT. 119.  1968. Feeding and reproduction of the grain mite and the mushroom mite on some species of Penicillium. J. Econ. Entomol. 61:1548–52 [Google Scholar]
  120. Smith LW, Pratt JJ, Nii I, Umina AP. 120.  1971. Baking and taste properties of bread made from hard wheat flour infested with species of Tribolium, Tenebrio, Trogoderma and Oryzaephilus. J. Stored Prod. Res. 6:307–16 [Google Scholar]
  121. Smrž J, Čatská V. 121.  1989. The effect of the consumption of some soil fungi on the internal microanatomy of the mite Tyrophagus putrescentiae (Schrank) (Acari, Acaridida). Acta Univ. Carol. Biol. 33:81–93 [Google Scholar]
  122. Smrž J, Čatská V. 122.  1987. Food selection of the field population of Tyrophagus putrescentiae (Schrank) (Acari, Acarida). J. Appl. Entomol. 104:329–35 [Google Scholar]
  123. Stejskal V, Aulicky R, Kucerova Z. 123.  2014. Pest control strategies and damage potential of seed-infesting pests in the Czech stores—a review. Plant Prot. Sci. 50:165–73 [Google Scholar]
  124. Stejskal V, Hubert J. 124.  2008. Risk of occupational allergy to stored grain arthropods and false pest-risk perception in Czech grain stores. Ann. Agric. Environ. Med. 15:29–35 [Google Scholar]
  125. Stejskal V, Hubert J, Aulicky R, Kucerova Z. 125.  2015. Overview of present and past and pest-associated risks in stored food and feed products: European perspective. J. Stored Prod. Res. 64:122–32This overview highlights discrepancies between the European Union and the United States in quality and safety parameters for trade, food, and agricultural commodities. [Google Scholar]
  126. Stejskal V, Hubert J, Kučerová Z, Münzbergová Z, Lukáš J, Žd'árková E. 126.  2003. The influence of the type of storage on pest infestation of stored grain in the Czech Republic. Plant Soil Environ 49:55–62 [Google Scholar]
  127. Streit E, Schatzmayr G, Tassis P, Tzika E, Marin D. 127.  et al. 2012. Current situation of mycotoxin contamination and co-occurrence in animal feed—focus on Europe. Toxins 4:788–809 [Google Scholar]
  128. Sun X, Wang L-F, Feng Y, Xie H, Zheng X-Y. 128.  et al. 2016. A case report: a rare case of infant gastrointestinal canthariasis caused by larvae of Lasioderma serricorne (Fabricius, 1792) (Coleoptera: Anobiidae). Infect. Dis. Poverty 5:34This case study described the presence of living larvae of Lasioderma serricorne in an infant's stool. [Google Scholar]
  129. Tay SY, Tham E, Yeo CT, Yi FC, Chen JY. 129.  et al. 2008. Anaphylaxis following the ingestion of flour contaminated by house dust mites—a report of two cases from Singapore. Asian Pac. J. Allergy Immunol. 26:165–70 [Google Scholar]
  130. Tena D, Simón M, Gimeno C, Pomata MTP, Illescas S. 130.  et al. 1998. Human infection with Hymenolepis diminuta: case report from Spain. J. Clin. Microbiol. 36:2375–76 [Google Scholar]
  131. Thind BB, Clarke PG. 131.  2001. The occurrence of mites in cereal-based foods destined for human consumption and possible consequences of infestation. Exp. Appl. Acarol. 25:203–15This study showed that stored-product mites are present almost everywhere in homes, but usually in low numbers. [Google Scholar]
  132. Thomas WR, Smith W-A, Hales BJ, Mills KL, O'Brien RM. 132.  2002. Characterization and immunobiology of house dust mite allergens. Int. Arch. Allergy Immunol. 129:1–18 [Google Scholar]
  133. Trematerra P, Stejskal V, Hubert J. 133.  2011. The monitoring of semolina contamination by insect fragments using the light filth method in an Italian mill. Food Control 22:1021–26This study showed that flour from Italian mills is contaminated by insect fragments, despite the European Union's zero tolerance standard. [Google Scholar]
  134. Trienens M, Rohlfs M. 134.  2011. Experimental evolution of defense against a competitive mold confers reduced sensitivity to fungal toxins but no increased resistance in Drosophila larvae. BMC Evol. Biol. 11:206 [Google Scholar]
  135. Tsai W-T, Mason LJ, Woloshuk CP. 135.  2007. Effect of three stored-grain fungi on the development of Typhaea stercorea. J. Stored Prod. Res. 43:129–33 [Google Scholar]
  136. Tuma D, Sinha RN, Muir WE, Abramson D. 136.  1990. Odor volatiles associated with mite-infested bin-stored wheat. J. Chem. Ecol. 16:713–24This study showed that mites infesting stored grain produce specific odors that were identified as tridecane. [Google Scholar]
  137. Turner BD, Bishop J. 137.  1998. An analysis of the incidence of psocids in domestic kitchens: the PPFA 1997 household survey (What's bugging your kitchen). Environ. Health J. 106:310–14 [Google Scholar]
  138. Unruh LM, Xu R, Kramer KJ. 138.  1998. Benzoquinone levels as a function of age and gender of the red flour beetle, Tribolium castaneum. Insect Biochem. Mol. Biol. 28:969–77 [Google Scholar]
  139. van Hage-Hamsten M, Johansson SGO, Höglund S, Tüll P, Wirén A, Zetterstrom O. 139.  1985. Storage mite allergy is common in a farming population. Clin. Exp. Allergy 15:555–64 [Google Scholar]
  140. Wirtz RA. 140.  1991. Food pests as disease agents. Ecology and Management of Food-Industry Pests JR Gorham 469–75 Arlington, VA: Assoc. Off. Anal. Chem. [Google Scholar]
  141. Wright VF, de las Casas E, Harein PK. 141.  1980. Evaluation of Penicillium mycotoxins for activity in stored-product Coleoptera. Environ. Entomol. 9:217–21 [Google Scholar]
  142. Wright VF, de las Casas E, Harein PK. 142.  1980. The nutritional value and toxicity of Penicillium isolates for Tribolium confusum. Environ. Entomol. 9:204–12 [Google Scholar]
  143. Wright VF, Harein PK. 143.  1982. Effects of some mycotoxins on the Mediterranean flour moth. Environ. Entomol. 11:1043–45 [Google Scholar]
  144. Wright VF, Harein PK, Collins NA. 144.  1980. Preference of the confused flour beetle for certain Penicillium isolates. Environ. Entomol. 9:213–16 [Google Scholar]
  145. Yezerski A, Cussatt G, Glick D, Evancho M. 145.  2005. The effects of the presence of stored product pests on the microfauna of a flour community. J. Appl. Microbiol. 98:507–15 [Google Scholar]
  146. Yoshikawa M. 146.  1985. Skin lesions of papular urticaria induced experimentally by Cheyletus malaccensis and Chelacaropsis sp. (Acari: Cheyletidae). J. Med. Entomol. 22:115–17 [Google Scholar]
  147. Yoshikawa M. 147.  1987. Feeding of Cheyletus malaccensis (Acari: Cheyletidae) on human body fluids. J. Med. Entomol. 24:46–53 [Google Scholar]
  148. Zahradnik E, Sander I, Kendzia B, Fleischer C, Brüning T, Raulf-Heimsoth M. 148.  2011. Passive airborne dust sampling to assess mite antigen exposure in farming environments. J. Environ. Monit. 13:2638–44 [Google Scholar]
  149. Žd'árková E. 149.  1998. Biological control of storage mites by Cheyletus eruditus. Integr. Pest Manag. Rev. 3:111–16 [Google Scholar]
  150. Zheng L, Crippen TL, Sheffield CL, Poole TL, Yu Z, Tomberlin JK. 150.  2012. Evaluation of Salmonella movement through the gut of the lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae). Vector-Borne Zoonotic Dis 12:287–92 [Google Scholar]
  151. Zurek L, Ghosh A. 151.  2014. Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits. Appl. Environ. Microbiol. 80:3562–67 [Google Scholar]
  152. Zurek L, Gorham JR. 152.  2010. Insects as vectors of foodborne pathogens. Wiley Handbook of Science and Technology for Homeland Security JG Voeller 1683–96 Hoboken, NJ: Wiley [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error