Under the superorganism concept, insect societies are so tightly integrated that they possess features analogous to those of single organisms, including collective cognition. If so, colony function might fruitfully be studied using methods developed to understand individual animals. Here, we review research that uses psychological approaches to understand decision making by colonies. The application of neural models to collective choice shows fundamental similarities between how brains and colonies balance speed/accuracy trade-offs in decision making. Experimental analyses have explored collective rationality, cognitive capacity, and perceptual discrimination at both individual and colony levels. A major theme is the emergence of improved colony-level function from interactions among relatively less capable individuals. However, colonies also encounter performance costs due to their reliance on positive feedback, which generates consensus but can also amplify errors. Collective learning is a nascent field for the further application of psychological methods to colonies. The research strategy reviewed here shows how the superorganism concept can serve as more than an illustrative analogy.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ah-King M, Gowaty PA. 1.  2016. A conceptual review of mate choice: stochastic demography, within-sex phenotypic plasticity, and individual flexibility. Ecol. Evol. 6:144607–42 [Google Scholar]
  2. Altshuler E, Ramos O, Núñez Y, Fernández J, Batista-Leyva AJ, Noda C. 2.  2005. Symmetry breaking in escaping ants. Am. Nat. 166:6643–49 [Google Scholar]
  3. Amé J-M, Halloy J, Rivault C, Detrain C, Deneubourg J-L. 3.  2006. Collegial decision making based on social amplification leads to optimal group formation. PNAS 103:155835–40 [Google Scholar]
  4. Ariely D. 4.  2008. Predictably Irrational: The Hidden Forces That Shape Our Decisions New York: HarperCollins [Google Scholar]
  5. Bahrami B, Olsen K, Bang D, Roepstorff A, Rees G, Frith C. 5.  2012. What failure in collective decision-making tells us about metacognition. Philos. Trans. R. Soc. B 367:15941350–65 [Google Scholar]
  6. Bateson M. 6.  2010. Rational choice behavior: definitions and evidence. See Ref. 16 13–19
  7. Bateson M, Healy SD. 7.  2005. Comparative evaluation and its implications for mate choice. Trends Ecol. Evol. 20:12659–64 [Google Scholar]
  8. Bateson M, Healy SD, Hurly TA. 8.  2002. Irrational choices in hummingbird foraging behaviour. Anim. Behav. 63:3587–96 [Google Scholar]
  9. Bateson M, Healy SD, Hurly TA. 9.  2003. Context-dependent foraging decisions in rufous hummingbirds. Proc. R. Soc. B 270:15211271–76 [Google Scholar]
  10. Biro D, Sasaki T, Portugal SJ. 10.  2016. Bringing a time-depth perspective to collective animal behaviour. Trends Ecol. Evol. 31:7550–62 [Google Scholar]
  11. Biro D, Sumpter DJT, Meade J, Guilford T. 11.  2006. From compromise to leadership in pigeon homing. Curr. Biol. 16:212123–28 [Google Scholar]
  12. Bogacz R. 12.  2007. Optimal decision-making theories: linking neurobiology with behaviour. Trends Cogn. Sci. 11:3118–25 [Google Scholar]
  13. Bogacz R, Brown E, Moehlis J, Holmes P, Cohen JD. 13.  2006. The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 113:4700–65 [Google Scholar]
  14. Bogacz R, Wagenmakers E-J, Forstmann BU, Nieuwenhuis S. 14.  2010. The neural basis of the speed-accuracy tradeoff. Trends Neurosci 33:110–16 [Google Scholar]
  15. Bonabeau E, Dorigo M, Theraulaz G. 15.  1999. Swarm Intelligence New York: Oxford Univ. Press [Google Scholar]
  16. Breed MD, Moore J. 16. , eds. 2010. Encyclopedia of Animal Behavior 3 Oxford, UK: Academic [Google Scholar]
  17. Camazine S, Deneubourg J-L, Franks NR, Sneyd J, Theraulaz G, Bonabeau E. 17.  2001. Self-Organization in Biological Systems Princeton, NJ: Princeton Univ. Press [Google Scholar]
  18. Canonge S, Deneubourg J-L, Sempo G. 18.  2011. Group living enhances individual resources discrimination: the use of public information by cockroaches to assess shelter quality. PLOS ONE 6:6e19748 [Google Scholar]
  19. Cao TT, Dornhaus A. 19.  2012. Ants use pheromone markings in emigrations to move closer to food-rich areas. Insectes Sociaux 59:187–92 [Google Scholar]
  20. Chittka L, Thomson JD. 20. , eds. 2001. Cognitive Ecology of Pollination: Animal Behavior and Floral Evolution Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  21. Condorcet J-A-N, de C. 21.  1785. Essai sur l'Application de l'Analyse à la Probabilité des Décisions Rendus à la Pluralité des Voix Paris: Imprimerie Royale [Google Scholar]
  22. Couzin ID. 22.  2009. Collective cognition in animal groups. Trends Cogn. Sci. 13:136–43 [Google Scholar]
  23. Couzin ID, Ioannou CC, Demirel G, Gross T, Torney CJ. 23.  et al. 2011. Uninformed individuals promote democratic consensus in animal groups. Science 334:60621578–80 [Google Scholar]
  24. Dell'Ariccia G, Dell'Omo G, Wolfer DP, Lipp H-P. 24.  2008. Flock flying improves pigeons’ homing: GPS track analysis of individual flyers versus small groups. Anim. Behav. 76:41165–72 [Google Scholar]
  25. Detrain C, Deneubourg J-L. 25.  2006. Self-organized structures in a superorganism: Do ants “behave” like molecules?. Phys. Life Rev. 3:3162–87 [Google Scholar]
  26. Detrain C, Deneubourg J-L. 26.  2008. Collective decision-making and foraging patterns in ants and honeybees. Adv. Insect Physiol. 35:123–73 [Google Scholar]
  27. Dornhaus A, Franks NR. 27.  2008. Individual and collective cognition in ants and other insects (Hymenoptera: Formicidae). Myrmecol. News 11:215–26 [Google Scholar]
  28. Dussutour A, Nicolis SC, Deneubourg J-L, Fourcassié V. 28.  2006. Collective decisions in ants when foraging under crowded conditions. Behav. Ecol. Sociobiol. 61:117–30 [Google Scholar]
  29. Dussutour A, Simpson SJ, Despland E, Colasurdo N. 29.  2007. When the group denies individual nutritional wisdom. Anim. Behav. 74:4931–39 [Google Scholar]
  30. Dyer AG, Chittka L. 30.  2004. Biological significance of distinguishing between similar colours in spectrally variable illumination: bumblebees (Bombus terrestris) as a case study. J. Comp. Physiol. A 190:2105–14 [Google Scholar]
  31. Dyer AG, Spaethe J, Prack S. 31.  2008. Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection. J. Comp. Physiol. A 194:7617–27 [Google Scholar]
  32. Dyer JRG, Ioannou CC, Morrell LJ, Croft DP, Couzin ID. 32.  et al. 2008. Consensus decision making in human crowds. Anim. Behav. 75:2461–70 [Google Scholar]
  33. Dyer JRG, Johansson A, Helbing D, Couzin ID, Krause J. 33.  2009. Leadership, consensus decision making and collective behaviour in humans. Philos. Trans. R. Soc. B 364:1518781–89 [Google Scholar]
  34. Edwards SC, Pratt SC. 34.  2009. Rationality in collective decision-making by ant colonies. Proc. R. Soc. B 276:16733655–61 [Google Scholar]
  35. Feinerman O, Korman A. 35.  2017. Individual versus collective cognition in social insects. J. Exp. Biol. 220:173–82 [Google Scholar]
  36. Franks NR, Dornhaus A, Fitzsimmons JP, Stevens M. 36.  2003. Speed versus accuracy in collective decision making. Proc. R. Soc. B 270:15322457–63 [Google Scholar]
  37. Franks NR, Hooper J, Webb C, Dornhaus A. 37.  2005. Tomb evaders: house-hunting hygiene in ants. Biol. Lett. 1:2190–92 [Google Scholar]
  38. Franks NR, Hooper JW, Dornhaus A, Aukett PJ, Hayward AL, Berghoff SM. 38.  2007. Reconnaissance and latent learning in ants. Proc. R. Soc. B 274:16171505–9 [Google Scholar]
  39. Franks NR, Mallon EB, Bray HE, Hamilton MJ, Mischler TC. 39.  2003. Strategies for choosing between alternatives with different attributes: exemplified by house-hunting ants. Anim. Behav. 65:1215–23 [Google Scholar]
  40. Franks NR, Pratt SC, Mallon EB, Britton NF, Sumpter DJT. 40.  2002. Information flow, opinion polling and collective intelligence in house-hunting social insects. Philos. Trans. R. Soc. B 357:14271567–83 [Google Scholar]
  41. Galton F. 41.  1907. Vox populi. Nature 75:450–51 [Google Scholar]
  42. Garnier S, Gautrais J, Asadpour M, Jost C, Theraulaz G. 42.  2009. Self-organized aggregation triggers collective decision making in a group of cockroach-like robots. Adapt. Behav. 17:2109–33 [Google Scholar]
  43. Gescheider GA. 43.  1997. Psychophysics: The Fundamentals Mahwah, NJ: Erlbaum [Google Scholar]
  44. Giurfa M, Sandoz J-C. 44.  2012. Invertebrate learning and memory: fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learn. Mem. 19:254–66 [Google Scholar]
  45. Goss S, Aron S, Deneubourg J-L, Pasteels JM. 45.  1989. Self-organized shortcuts in the Argentine ant. Naturwissenschaften 76:12579–81 [Google Scholar]
  46. Healey CIM, Pratt SC. 46.  2008. The effect of prior experience on nest site evaluation by the ant Temnothorax curvispinosus. Anim. Behav. 76:893–99 [Google Scholar]
  47. Hofstadter DR. 47.  2006. Gödel, Escher, Bach: An Eternal Golden Braid New York: Basic Books [Google Scholar]
  48. Hölldobler B, Wilson EO. 48.  2009. The Super-Organism: The Beauty, Elegance, and Strangeness of Insect Societies New York: Norton [Google Scholar]
  49. Houston AI. 49.  1997. Natural selection and context-dependent values. Proc. R. Soc. Lond. B. 264:13871539–41 [Google Scholar]
  50. Houston AI, Mcnamara JM, Steer MD. 50.  2007. Violations of transitivity under fitness maximization. Biol. Lett. 3:4365–67 [Google Scholar]
  51. Huber J, Payne JW, Puto C. 51.  1982. Adding asymmetrically dominated alternatives: violations of regularity and the similarity hypothesis. J. Consum. Res. 9:190–98 [Google Scholar]
  52. Jeanson R, Deneubourg J-L, Theraulaz G. 52.  2004. Discrete dragline attachment induces aggregation in spiderlings of a solitary species. Anim. Behav. 67:3531–37 [Google Scholar]
  53. Jeanson R, Dussutour A, Fourcassié V. 53.  2012. Key factors for the emergence of collective decision in invertebrates. Front. Neurosci. 6:1–15 [Google Scholar]
  54. Johnson BR, Linksvayer TA. 54.  2010. Deconstructing the superorganism: social physiology, groundplans, and sociogenomics. Q. Rev. Biol. 85:157–79 [Google Scholar]
  55. Kacelnik A. 55.  2006. Meanings of rationality. Rational Animals? S Hurley, M Nudds 87–106 Oxford, UK: Oxford Univ. Press [Google Scholar]
  56. Kao AB, Miller N, Torney C, Hartnett A, Couzin ID. 56.  2014. Collective learning and optimal consensus decisions in social animal groups. PLOS Comput. Biol. 10:8e1003762 [Google Scholar]
  57. Kerr NL, Tindale RS. 57.  2004. Group performance and decision making. Annu. Rev. Psychol. 55:623–55 [Google Scholar]
  58. Krause J, Ruxton GD, Krause S. 58.  2010. Swarm intelligence in animals and humans. Trends Ecol. Evol. 25:128–34 [Google Scholar]
  59. Kurvers RHJM, Wolf M, Naguib M, Krause J. 59.  2015. Self-organized flexible leadership promotes collective intelligence in human groups. R. Soc. Open Sci. 2:12150222 [Google Scholar]
  60. Langridge EA, Franks NR, Sendova-Franks AB. 60.  2004. Improvement in collective performance with experience in ants. Behav. Ecol. Sociobiol. 56:6523–29 [Google Scholar]
  61. Latty T, Beekman M. 61.  2010. Irrational decision-making in an amoeboid organism: transitivity and context-dependent preferences. Proc. R. Soc. B 278:1703307–12 [Google Scholar]
  62. Latty T, Beekman M. 62.  2011. Speed-accuracy trade-offs during foraging decisions in the acellular slime mould Physarum polycephalum. Proc. R. Soc. B 278:1705539–45 [Google Scholar]
  63. Leonard NE, Shen T, Nabet B, Scardovi L, Couzin ID, Levin SA. 63.  2012. Decision versus compromise for animal groups in motion. PNAS 109:1227–32 [Google Scholar]
  64. Lihoreau M, Deneubourg J-L, Rivault C. 64.  2010. Collective foraging decision in a gregarious insect. Behav. Ecol. Sociobiol. 64:101577–87 [Google Scholar]
  65. Lorenz J, Rauhut H, Schweitzer F, Helbing D. 65.  2011. How social influence can undermine the wisdom of crowd effect. PNAS 108:229020–25 [Google Scholar]
  66. Mallon EB, Pratt SC, Franks NR. 66.  2001. Individual and collective decision-making during nest site selection by the ant Leptothorax albipennis. Behav. Ecol. Sociobiol. 50:4352–59 [Google Scholar]
  67. Marshall JAR, Bogacz R, Dornhaus A, Planqué R, Kovacs T, Franks NR. 67.  2009. On optimal decision-making in brains and social insect colonies. J. R. Soc. Interface 6:401065–74 [Google Scholar]
  68. Marshall JAR, Dornhaus A, Franks NR, Kovacs T. 68.  2006. Noise, cost and speed-accuracy trade-offs: decision-making in a decentralized system. J. R. Soc. Interface 3:7243–54 [Google Scholar]
  69. Marshall JAR, Franks NR. 69.  2009. Colony-level cognition. Curr. Biol. 19:10R395–96 [Google Scholar]
  70. McNamara JM, Trimmer PC, Houston AI. 70.  2014. Natural selection can favour ‘irrational’ behaviour. Biol. Lett. 10:120130935 [Google Scholar]
  71. Mitrus S. 71.  2016. Emigration speed and the production of sexuals in colonies of the ant Temnothorax crassispinus under high and low levels of disturbance. Insectes Sociaux 63:1127–34 [Google Scholar]
  72. Möglich M. 72.  1978. Social organization of nest emigration in Leptothorax (Hym., Form.). Insectes Sociaux 25:3205–25 [Google Scholar]
  73. Newsome WT, Britten KH, Movshon JA. 73.  1989. Neuronal correlates of a perceptual decision. Nature 341:52–54 [Google Scholar]
  74. Nicolis SC, Deneubourg J-L. 74.  1999. Emerging patterns and food recruitment in ants: an analytical study. J. Theor. Biol. 198:4575–92 [Google Scholar]
  75. Nicolis SC, Dussutour A. 75.  2008. Self-organization, collective decision making and resource exploitation strategies in social insects. Eur. Phys. J. B. 65:3379–85 [Google Scholar]
  76. Nicolis SC, Zabzina N, Latty T, Sumpter DJT. 76.  2011. Collective irrationality and positive feedback. PLOS ONE 6:4e18901 [Google Scholar]
  77. Passino KM, Seeley TD, Visscher PK. 77.  2008. Swarm cognition in honey bees. Behav. Ecol. Sociobiol. 62:3401–14 [Google Scholar]
  78. Pelé M, Sueur C. 78.  2013. Decision-making theories: linking the disparate research areas of individual and collective cognition. Anim. Cogn. 16:4543–56 [Google Scholar]
  79. Pratt SC. 79.  2005. Behavioral mechanisms of collective nest-site choice by the ant Temnothorax curvispinosus. Insectes Sociaux 52:4383–92 [Google Scholar]
  80. Pratt SC. 80.  2005. Quorum sensing by encounter rates in the ant Temnothorax albipennis. Behav. Ecol. 16:2488–96 [Google Scholar]
  81. Pratt SC. 81.  2010. Collective intelligence. See Ref. 16 303–9
  82. Pratt SC. 82.  2010. Nest site choice in social insects. See Ref. 16 534–40
  83. Pratt SC, Mallon EB, Sumpter DJT, Franks NR. 83.  2002. Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis. Behav. Ecol. Sociobiol. 52:2117–27 [Google Scholar]
  84. Pratt SC, Pierce NE. 84.  2001. The cavity-dwelling ant Leptothorax curvispinosus uses nest geometry to discriminate between potential homes. Anim. Behav. 62:2281–87 [Google Scholar]
  85. Pratt SC, Sumpter DJT. 85.  2006. A tunable algorithm for collective decision-making. PNAS 103:4315906–10 [Google Scholar]
  86. Pratt SC, Sumpter DJT, Mallon EB, Franks NR. 86.  2005. An agent-based model of collective nest choice by the ant Temnothorax albipennis. Anim. Behav. 70:1023–36 [Google Scholar]
  87. Ratcliff R, Rouder JN. 87.  1998. Modeling response times for two-choice decisions. Psychol. Sci. 9:5347–56 [Google Scholar]
  88. Ratcliff R, Smith PL. 88.  2004. A comparison of sequential sampling models for two-choice reaction time. Psychol. Rev. 111:2333–67 [Google Scholar]
  89. Reeve HK, Hölldobler B. 89.  2007. The emergence of a superorganism through intergroup competition. PNAS 104:239736–40 [Google Scholar]
  90. Reid CR, MacDonald H, Mann RP, Marshall JAR, Latty T, Garnier S. 90.  2016. Decision-making without a brain: how an amoeboid organism solves the two-armed bandit. J. R. Soc. Interface 13:11920160030 [Google Scholar]
  91. Rieskamp J, Busemeyer JR, Mellers BA. 91.  2006. Extending the bounds of rationality: evidence and theories of preferential choice. J. Econ. Lit. 44:3631–61 [Google Scholar]
  92. Robinson EJH, Feinerman O, Franks NR. 92.  2014. How collective comparisons emerge without individual comparisons of the options. Proc. R. Soc. B 281:178720140737 [Google Scholar]
  93. Robinson EJH, Smith FD, Sullivan KME, Franks NR. 93.  2009. Do ants make direct comparisons?. Proc. R. Soc. B 276:16672635–41 [Google Scholar]
  94. Saffre F, Furey R, Krafft B, Deneubourg J-L. 94.  1999. Collective decision-making in social spiders: dragline-mediated amplification process acts as a recruitment mechanism. J. Theor. Biol. 198:4507–17 [Google Scholar]
  95. Sasaki T, Granovskiy B, Mann RP, Sumpter DJT, Pratt SC. 95.  2013. Ant colonies outperform individuals when a sensory discrimination task is difficult but not when it is easy. PNAS 110:3413769–73 [Google Scholar]
  96. Sasaki T, Hölldobler B, Millar JG, Pratt SC. 96.  2014. A context-dependent alarm signal in the ant Temnothorax rugatulus. J. Exp. Biol. 217:183229–36 [Google Scholar]
  97. Sasaki T, Pratt SC. 97.  2011. Emergence of group rationality from irrational individuals. Behav. Ecol. 22:2276–81 [Google Scholar]
  98. Sasaki T, Pratt SC. 98.  2012. Groups have a larger cognitive capacity than individuals. Curr. Biol. 22:19R827–29 [Google Scholar]
  99. Sasaki T, Pratt SC. 99.  2013. Ants learn to rely on more informative attributes during decision-making. Biol. Lett. 9:620130667 [Google Scholar]
  100. Schall JD. 100.  2003. Neural correlates of decision processes: neural and mental chronometry. Curr. Opin. Neurobiol. 13:2182–86 [Google Scholar]
  101. Schuck-Paim C, Pompilio L, Kacelnik A. 101.  2004. State-dependent decisions cause apparent violations of rationality in animal choice. PLOS Biol 2:12e402 [Google Scholar]
  102. Schwartz B. 102.  2016. The Paradox of Choice: Why More Is Less New York: HarperCollins [Google Scholar]
  103. Seeley TD. 103.  1996. Wisdom of the Hive Cambridge, MA: Harvard Univ. Press [Google Scholar]
  104. Seeley TD. 104.  2003. Consensus building during nest-site selection in honey bee swarms: the expiration of dissent. Behav. Ecol. Sociobiol. 53:6417–24 [Google Scholar]
  105. Seeley TD. 105.  2010. Honeybee Democracy Princeton, NJ: Princeton Univ. Press [Google Scholar]
  106. Seeley TD, Buhrman SC. 106.  1999. Group decision making in swarms of honey bees. Behav. Ecol. Sociobiol. 45:119–31 [Google Scholar]
  107. Seeley TD, Buhrman SC. 107.  2001. Nest-site selection in honey bees: How well do swarms implement the “best-of-N” decision rule?. Behav. Ecol. Sociobiol. 49:5416–27 [Google Scholar]
  108. Seeley TD, Visscher PK. 108.  2004. Group decision making in nest-site selection by honey bees. Apidologie 35:2101–16 [Google Scholar]
  109. Seeley TD, Visscher PK. 109.  2004. Quorum sensing during nest-site selection by honeybee swarms. Behav. Ecol. Sociobiol. 56:6594–601 [Google Scholar]
  110. Seeley TD, Visscher PK. 110.  2008. Sensory coding of nest-site value in honeybee swarms. J. Exp. Biol. 211:233691–97 [Google Scholar]
  111. Seeley TD, Visscher PK, Schlegel T, Hogan PM, Franks NR, Marshall JAR. 111.  2012. Stop signals provide cross inhibition in collective decision-making by honeybee swarms. Science 335:6064108–11 [Google Scholar]
  112. Shadlen MN, Newsome WT. 112.  1996. Motion perception: seeing and deciding. PNAS 93:2628–33 [Google Scholar]
  113. Shafir S. 113.  1994. Intransitivity of preferences in honey bees: support for ‘comparative’ evaluation of foraging options. Anim. Behav. 48:155–67 [Google Scholar]
  114. Shafir S, Waite TA, Smith BH. 114.  2002. Context-dependent violations of rational choice in honeybees (Apis mellifera) and gray jays (Perisoreus canadensis). Behav. Ecol. Sociobiol. 51:2180–87 [Google Scholar]
  115. Shafir S, Yehonatan L. 115.  2013. Comparative evaluations of reward dimensions in honey bees: evidence from two-alternative forced choice proboscis-extension conditioning. Anim. Cogn. 17:3633–44 [Google Scholar]
  116. Shettleworth SJ. 116.  2010. Cognition, Evolution, and Behavior New York: Oxford Univ. Press [Google Scholar]
  117. Simon HA. 117.  1996. The Sciences of the Artificial Cambridge, MA: MIT Press. , 3rd ed.. [Google Scholar]
  118. Simons AM. 118.  2004. Many wrongs: the advantage of group navigation. Trends Ecol. Evol. 19:9453–55 [Google Scholar]
  119. Smith PL, Ratcliff R. 119.  2004. Psychology and neurobiology of simple decisions. Trends Neurosci 27:3161–68 [Google Scholar]
  120. Srinivasan MV. 120.  2010. Honey bees as a model for vision, perception, and cognition. Annu. Rev. Entomol. 55:267–84 [Google Scholar]
  121. Stephens DW, Kerr B, Fernández-Juricic E. 121.  2004. Impulsiveness without discounting: the ecological rationality hypothesis. Proc. R. Soc. B 271:15562459–65 [Google Scholar]
  122. Stroeymeyt N, Giurfa M, Franks NR. 122.  2010. Improving decision speed, accuracy and group cohesion through early information gathering in house-hunting ants. PLOS ONE 5:9e13059 [Google Scholar]
  123. Stroeymeyt N, Jordan C, Mayer G, Hovsepian S, Giurfa M, Franks NR. 123.  2014. Seasonality in communication and collective decision-making in ants. Proc. R. Soc. B 281:178020133108 [Google Scholar]
  124. Stroeymeyt N, Robinson EJH, Hogan PM, Marshall JAR, Giurfa M, Franks NR. 124.  2011. Experience-dependent flexibility in collective decision making by house-hunting ants. Behav. Ecol. 22:3535–42 [Google Scholar]
  125. Sumpter DJT. 125.  2006. The principles of collective animal behaviour. Philos. Trans. R. Soc. B 361:14655–22 [Google Scholar]
  126. Sumpter DJT. 126.  2010. Collective Animal Behavior Princeton, NJ: Princeton Univ. Press [Google Scholar]
  127. Sumpter DJT, Krause J, James R, Couzin ID, Ward AJW. 127.  2008. Consensus decision making by fish. Curr. Biol. 18:221773–77 [Google Scholar]
  128. Sumpter DJT, Pratt SC. 128.  2009. Quorum responses and consensus decision making. Philos. Trans. R. Soc. B 364:1518743–53 [Google Scholar]
  129. Theiner G, Allen C, Goldstone RL. 129.  2010. Recognizing group cognition. Cogn. Syst. Res. 11:4378–95 [Google Scholar]
  130. Todd PM, Gigerenzer G. 130.  2000. Précis of simple heuristics that make us smart. Behav. Brain Sci. 23:5727–41 [Google Scholar]
  131. Trianni V, Tuci E, Passino KM, Marshall JAR. 131.  2011. Swarm cognition: an interdisciplinary approach to the study of self-organising biological collectives. Swarm Intell 5:13–18 [Google Scholar]
  132. Trimmer PC. 132.  2013. Optimal behaviour can violate the principle of regularity. Proc. R. Soc. B 280:176320130858 [Google Scholar]
  133. Tversky A. 133.  1969. Intransitivity of preferences. Psychol. Rev. 76:131–48 [Google Scholar]
  134. Tversky A. 134.  1972. Elimination by aspects: a theory of choice. Psychol. Rev. 79:4281 [Google Scholar]
  135. Tversky A, Gati I. 135.  1978. Studies of similarity. Cognition and Categorization E Rosch, B Lloyd 79–98 Mahwah, NJ: Erlbaum [Google Scholar]
  136. Tversky A, Simonson I. 136.  1993. Context-dependent preferences. Manag. Sci. 39:101179–89 [Google Scholar]
  137. Von Neumann J, Morgenstern O. 137.  1944. Theory of Games and Economic Behavior Princeton, NJ: Princeton Univ. Press [Google Scholar]
  138. Waite T. 138.  2001. Intransitive preferences in hoarding gray jays (Perisoreus canadensis). Behav. Ecol. Sociobiol. 50:2116–21 [Google Scholar]
  139. Waksberg AJ, Smith AB, Burd M. 139.  2008. Can irrational behaviour maximise fitness?. Behav. Ecol. Sociobiol. 63:3461–71 [Google Scholar]
  140. Ward AJW, Herbert-Read JE, Sumpter DJT, Krause J. 140.  2011. Fast and accurate decisions through collective vigilance in fish shoals. PNAS 108:62312–15 [Google Scholar]
  141. Ward AJW, Sumpter DJT, Couzin ID, Hart PJB, Krause J. 141.  2008. Quorum decision-making facilitates information transfer in fish shoals. PNAS 105:196948–53 [Google Scholar]
  142. Wiegmann DD, Real LA, Capone TA, Ellner S. 142.  1996. Some distinguishing features of models of search behavior and mate choice. Am. Nat. 147:2188–204 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error