1932

Abstract

The evolutionary origins of the three major families of chemoreceptors in arthropods—the odorant receptor (OR), gustatory receptor (GR), and ionotropic receptor (IR) families—occurred at the base of the Insecta, Animalia, and Protostomia, respectively. Comparison of receptor family sizes across arthropods reveals a generally positive correlation with their widely disparate complexity of chemical ecology. Closely related species reveal the ongoing processes of gene family evolution, including gene duplication, divergence, pseudogenization, and loss, that mediate these larger patterns. Sets of paralogous receptors within species reveal positive selection on amino acids in regions likely to contribute to ligand binding and specificity. Ligands of many ORs and some GRs and IRs have been identified; however, ligand identification for many more chemoreceptors is needed, as are structures for the OR/GR superfamily, to improve our understanding of the molecular evolution of these ecologically important receptors in arthropods.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-020117-043322
2019-01-07
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/ento/64/1/annurev-ento-020117-043322.html?itemId=/content/journals/10.1146/annurev-ento-020117-043322&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Almeida FC, Sánchez-Gracia A, Campos JL, Rozas J 2014. Family size evolution in Drosophila chemosensory gene families: a comparative analysis with a critical appraisal of methods. Genome Biol. Evol. 6:1669–82
    [Google Scholar]
  2. 2.  Almeida FC, Sánchez-Gracia A, Walden KK, Robertson HM, Rozas J 2015. Positive selection in extra cellular domains in the diversification of Strigamiamaritima chemoreceptors. Front. Ecol. Evol. 3:e79
    [Google Scholar]
  3. 3.  Arensburger P, Megy K, Waterhouse RM, Abrudan J, Amedeo P et al. 2010. Sequencing of Culexquinquefasciatus establishes a platform for mosquito comparative genomics. Science 330:86–88
    [Google Scholar]
  4. 4.  Benoit JB, Adelman ZN, Reinhardt K, Dolan A, Poelchau M et al. 2016. Unique features of a global human ectoparasite identified through sequencing of the bed bug genome. Nat. Commun. 7:e10165
    [Google Scholar]
  5. 5.  Benton R 2015. Multigene family evolution: perspectives from insect chemoreceptors. Trends Ecol. Evol. 30:590–600
    [Google Scholar]
  6. 6.  Benton R, Sachse S, Michnick SW, Vosshall LB 2006. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLOS Biol 4:e20
    [Google Scholar]
  7. 7.  Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB 2009. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136:149–62
    [Google Scholar]
  8. 8.  Bhatla N, Horvitz HR 2015. Light and hydrogen peroxide inhibit C.elegans feeding through gustatory receptor orthologs and pharyngeal neurons. Neuron 85:804–18
    [Google Scholar]
  9. 9.  Brand P, Ramírez SR, Leese F, Quezada-Euan JJ, Tollrian R, Eltz T 2015. Rapid evolution of chemosensory receptor genes in a pair of sibling species of orchid bees (Apidae: Euglossini). BMC Evol. Biol. 15:e176
    [Google Scholar]
  10. 10.  Brand P, Robertson HM, Lin W, Pothula R, Klingeman WE et al. 2018. The origin of the odorant receptor gene family. eLife 7:e38340
    [Google Scholar]
  11. 11.  Bray S, Amrein H 2003. A putative Drosophila pheromone receptor expressed in male-specific taste neurons is required for efficient courtship. Neuron 39:1019–29
    [Google Scholar]
  12. 12.  Brito NF, Moreira MF, Melo AC 2016. A look inside odorant-binding proteins in insect chemoreception. J. Insect Physiol. 95:51–65
    [Google Scholar]
  13. 13.  Butterwick JA, del Mármol J, Kim KH, Kahlson MA, Rogow JA et al. 2018. Cryo-EM structure of the insect olfactory receptor Orco. Nature 560:447–52
    [Google Scholar]
  14. 14.  Calla B, Noble K, Johnson RM, Walden KK, Schuler MA et al. 2017. Cytochrome P450 diversification and hostplant utilization patterns in specialist and generalist moths: birth, death and adaptation. Mol. Ecol. 26:6021–35
    [Google Scholar]
  15. 15.  Chipman AD, Ferrier DE, Brena C, Qu J, Hughes DS et al. 2014. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamiamaritima. PLOS Biol 12:e1002005
    [Google Scholar]
  16. 16.  Clyne PJ, Warr CG, Carlson JR 2000. Candidate taste receptors in Drosophila. Science 287:1830–34
    [Google Scholar]
  17. 17.  Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR 1999. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22:327–38
    [Google Scholar]
  18. 18.  Croset V, Rytz R, Cummins SF, Budd A, Brawand D et al. 2010. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLOS Genet 6:e1001064
    [Google Scholar]
  19. 19.  Cummins SF, Erpenbeck D, Zou Z, Claudianos C, Moroz LL et al. 2009. Candidate chemoreceptor subfamilies differentially expressed in the chemosensory organs of the mollusc Aplysia. BMC Biol 7:e28
    [Google Scholar]
  20. 20.  de Fouchier A, Walker WB III, Montagné N, Steiner C, Binyameen M et al. 2017. Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire. Nat. Commun. 8:e15709
    [Google Scholar]
  21. 21.  Delventhal R, Carlson JR 2016. Bitter taste receptors confer diverse functions to neurons. eLife 5:e11181
    [Google Scholar]
  22. 22.  Edwards SL, Charlie NK, Milfort MC, Brown BS, Gravlin CN et al. 2008. A novel molecular solution for ultraviolet light detection in Caenorhabditiselegans. PLOS Biol 6:e198
    [Google Scholar]
  23. 23.  Engsontia P, Sanderson AP, Cobb M, Walden KK, Robertson HM, Brown S 2008. The red flour beetle's large nose: an expanded odorant receptor gene family in Triboliumcastaneum. InsectBiochem. Mol. Biol 38:387–97
    [Google Scholar]
  24. 24.  Engsontia P, Sangket U, Chotigeat W, Satasook C 2014. Molecular evolution of the odorant and gustatory receptor genes in lepidopteran insects: implications for their adaptation and speciation. J. Mol. Evol. 79:21–39
    [Google Scholar]
  25. 25.  Engsontia P, Sangket U, Robertson HM, Satasook C 2015. Diversification of the ant odorant receptor gene family and positive selection on candidate cuticular hydrocarbon receptors. BMC Res. Notes 8:e380
    [Google Scholar]
  26. 26.  Enjin A, Zaharieva EE, Frank DD, Mansourian S, Suh GS et al. 2016. Humidity sensing in Drosophila.Curr. Biol 26:1352–58
    [Google Scholar]
  27. 27.  Eyun S-i, Soh HY, Posavi M, Munro JB, Hughes DST et al. 2017. Evolutionary history of chemosensory-related gene families across the Arthropoda. Mol. Biol. Evol. 34:1838–62
    [Google Scholar]
  28. 28.  Faddeeva-Vakhrusheva A, Derks MF, Anvar SY, Agamennone V, Suring W et al. 2016. Gene family evolution reflects adaptation to soil environmental stressors in the genome of the collembolan Orchesellacincta. Genome Biol. Evol 8:2106–17
    [Google Scholar]
  29. 29.  Faddeeva-Vakhrusheva A, Kraaijeveld K, Derks MF, Anvar SY, Agamennone V et al. 2017. Coping with living in the soil: the genome of the parthenogenetic springtail Folsomiacandida. BMC Genom 18:e493
    [Google Scholar]
  30. 30.  Fairclough SR, Chen Z, Kramer E, Zeng Q, Young S et al. 2013. Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoecarosetta. Genome Biol 14:R15
    [Google Scholar]
  31. 31.  Fleischer J, Pregitzer P, Breer H, Krieger J 2017. Access to the odor world: olfactory receptors and their role for signal transduction in insects. Cell. Mol. Life Sci. 2017:1–24
    [Google Scholar]
  32. 32.  Frank DD, Enjin A, Jouandet GC, Zaharieva EE, Para A et al. 2017. Early integration of temperature and humidity stimuli in the Drosophila brain. Current Biol 27:2381–88
    [Google Scholar]
  33. 33.  Fujii S, Yavuz A, Slone J, Jagge C, Song X, Amrein H 2015. Drosophila sugar receptors in sweet taste perception, olfaction, and internal nutrient sensing. Curr. Biol. 25:621–27
    [Google Scholar]
  34. 34.  Gao Q, Chess A 1999. Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60:31–39
    [Google Scholar]
  35. 35.  Gomez-Diaz C, Reina JH, Cambillau C, Benton R 2013. Ligands for pheromone-sensing neurons are not conformationally activated odorant binding proteins. PLOS Biol 11:e1001546
    [Google Scholar]
  36. 36.  Gong J, Yuan Y, Ward A, Kang L, Zhang B et al. 2016. The C.elegans taste receptor homolog LITE-1 is a photoreceptor. Cell 167:1252–63
    [Google Scholar]
  37. 37.  Gouin A, Bretaudeau A, Nam K, Gimenez S, Aury JM et al. 2017. Two genomes of highly polyphagous lepidopteran pests (Spodopterafrugiperda, Noctuidae) with different host-plant ranges. Sci. Rep. 7:e11816
    [Google Scholar]
  38. 38.  Groh-Lunow KC, Getahun MN, Grosse-Wilde E, Hansson BS 2015. Expression of ionotropic receptors in terrestrial hermit crab's olfactory sensory neurons. Front. Cell. Neurosci. 8:e448
    [Google Scholar]
  39. 39.  Gulia-Nuss M, Nuss AB, Meyer JM, Sonenshine DE, Roe RM et al. 2016. Genomic insights into the Ixodesscapularis tick vector of Lyme disease. Nat. Commun. 7:10507
    [Google Scholar]
  40. 40.  Guo S, Kim J 2007. Molecular evolution of Drosophila odorant receptor genes. Mol. Biol. Evol. 24:1198–207
    [Google Scholar]
  41. 41.  Harrison MC, Jongepier E, Robertson HM, Arning N, Bitard-Feildel T et al. 2018. Hemimetabolous genomes reveal molecular basis of termite eusociality. Nat. Ecol. Evol. 2:557–66
    [Google Scholar]
  42. 42.  Haverkamp A, Hansson BS, Knaden M 2018. Combinatorial codes and labeled lines: how insects use olfactory cues to find and judge food, mates and oviposition sites in complex environments. Front. Physiol. 9:e49
    [Google Scholar]
  43. 43.  Hopf TA, Morinaga S, Ihara S, Touhara K, Marks DS, Benton R 2015. Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors. Nat. Commun. 6:e6077
    [Google Scholar]
  44. 44.  Hoy MA, Waterhouse RM, Wu K, Estep AS, Ioannidis P et al. 2016. Genome sequencing of the phytoseiid predatory mite Metaseiulusoccidentalis reveals completely atomized Hox genes and superdynamic intron evolution. Genome Biol. Evol. 8:1762–75
    [Google Scholar]
  45. 45.  Hughes DT, Wang G, Zwiebel LJ, Luetje CW 2014. A determinant of odorant specificity is located at the extracellular loop 2-transmembrane domain 4 interface of an Anophelesgambiae odorant receptor subunit. Chem. Senses 39:761–69
    [Google Scholar]
  46. 46.  Ioannidis P, Simao FA, Waterhouse RM, Manni M, Seppey M et al. 2017. Genomic features of the damselfly Calopteryxsplendens representing a sister clade to most insect orders. Genome Biol. Evol. 9:425–30
    [Google Scholar]
  47. 47.  Jones WD, Cayirlioglu P, Kadow IG, Vosshall LB 2007. Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445:86–90
    [Google Scholar]
  48. 48.  Joseph RM, Carlson JR 2015. Drosophila chemoreceptors: a molecular interface between the chemical world and the brain. Trends Genet 31:683–95
    [Google Scholar]
  49. 49.  Jung JW, Park KW, Ahn Y-J, Kwon HW 2015. Functional characterization of sugar receptors in the western honeybee. Apis mellifera. J. Asia-Pac. Entomol. 18:19–26
    [Google Scholar]
  50. 50.  Jungreis I, Chan CS, Waterhouse RM, Fields G, Lin MF, Kellis M 2016. Evolutionary dynamics of abundant stop codon readthrough. Mol. Biol. Evol. 33:3108–32
    [Google Scholar]
  51. 51.  Kapheim KM, Pan H, Li C, Salzberg SL, Puiu D et al. 2015. Genomic signatures of evolutionary transitions from solitary to group living. Science 348:1139–43
    [Google Scholar]
  52. 52.  Kent LB, Robertson HM 2009. Evolution of the sugar receptors in insects. BMC Evol. Biol. 9:e41
    [Google Scholar]
  53. 53.  Kent LB, Walden KKO, Robertson HM 2008. The Gr family of candidate gustatory and olfactory receptors in the yellow-fever mosquito Aedesaegypti. Chem. Senses 33:79–93
    [Google Scholar]
  54. 54.  King N, Westbrook MJ, Young SL, Kuo A, Abedin M et al. 2008. The genome of the choanoflagellate Monosigabrevicollis and the origin of metazoans. Nature 451:783–88
    [Google Scholar]
  55. 55.  Kirkness EF, Haas BJ, Sun W, Braig HR, Perotti MA et al. 2010. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. PNAS 107:12168–73
    [Google Scholar]
  56. 56.  Knecht ZA, Silbering AF, Cruz J, Yang L, Croset V et al. 2017. Ionotropic Receptor-dependent moist and dry cells control hygrosensation in Drosophila. eLife 6:e26654
    [Google Scholar]
  57. 57.  Knecht ZA, Silbering AF, Ni L, Klein M, Budelli G et al. 2016. Distinct combinations of variant ionotropic glutamate receptors mediate thermosensation and hygrosensation in Drosophila. eLife 5:e17879
    [Google Scholar]
  58. 58.  Koh T-W, He Z, Gorur-Shandilya S, Menuz K, Larter NK et al. 2014. The Drosophila IR20a clade of ionotropic receptors are candidate taste and pheromone receptors. Neuron 83:850–65
    [Google Scholar]
  59. 59.  Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB 2004. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43:703–14
    [Google Scholar]
  60. 60.  Larter NK, Sun JS, Carlson JR 2016. Organization and function of Drosophila odorant binding proteins. eLife 5:e20242
    [Google Scholar]
  61. 61.  Leal WS 2013. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu. Rev. Entomol. 58:373–91
    [Google Scholar]
  62. 62.  Leary GP, Allen JE, Bunger PL, Luginbill JB, Linn CE et al. 2012. Single mutation to a sex pheromone receptor provides adaptive specificity between closely related moth species. PNAS 109:14081–86
    [Google Scholar]
  63. 63.  Lebreton S, Borrero-Echeverry F, Gonzalez F, Solum M, Wallin EA et al. 2017. A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC Biol 15:e88
    [Google Scholar]
  64. 64.  Li S, Zhu S, Jia Q, Yuan D, Ren C et al. 2018. The genomic and functional landscapes of developmental plasticity in the American cockroach. Nat. Commun. 9:e1008
    [Google Scholar]
  65. 65.  Liu J, Ward A, Gao J, Dong Y, Nishio N et al. 2010. C.elegans phototransduction requires a G protein–dependent cGMP pathway and a taste receptor homolog. Nat. Neurosci. 13:715–22
    [Google Scholar]
  66. 66.  Macharia R, Mireji P, Murungi E, Murilla G, Christoffels A et al. 2016. Genome-Wide comparative analysis of chemosensory gene families in five tsetse fly species. PLOS Negl. Trop. Dis. 10:e0004421
    [Google Scholar]
  67. 67.  Matthews BJ, Dudchenko O, Kingan S, Koren S, Antoshechkin I et al. 2018. Improved Aedesaegypti mosquito reference genome assembly enables biological discovery and vector control. Nature In press
    [Google Scholar]
  68. 68.  McBride CS 2007. Rapid evolution of smell and taste receptor genes during host specialization in Drosophilasechellia. PNAS 104:4996–5001
    [Google Scholar]
  69. 69.  McBride CS, Arguello JR 2007. Five Drosophila genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily. Genetics 177:1395–416
    [Google Scholar]
  70. 70.  McKenna DD, Scully ED, Pauchet Y, Hoover K, Kirsch R et al. 2016. Genome of the Asian longhorned beetle (Anoplophoraglabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biol 17:e227
    [Google Scholar]
  71. 71.  McKenzie SK, Fetter-Pruneda I, Ruta V, Kronauer DJ 2016. Transcriptomics and neuroanatomy of the clonal raider ant implicate an expanded clade of odorant receptors in chemical communication. PNAS 113:14091–96
    [Google Scholar]
  72. 72.  McKenzie SK, Oxley PR, Kronauer DJ 2014. Comparative genomics and transcriptomics in ants provide new insights into the evolution and function of odorant binding and chemosensory proteins. BMC Genom 15:e718
    [Google Scholar]
  73. 73.  Mesquita RD, Vionette-Amaral RJ, Lowenberger C, Rivera-Pomar R, Monteiro FA et al. 2015. Genome of Rhodniusprolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. PNAS 112:14936–41
    [Google Scholar]
  74. 74.  Missbach C, Dweck HK, Vogel H, Vilcinskas A, Stensmyr MC et al. 2014. Evolution of insect olfactory receptors. eLife 3:e02115
    [Google Scholar]
  75. 75.  Misof B, Liu S, Meusemann K, Peters RS, Donath A et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–67
    [Google Scholar]
  76. 76.  Miyamoto T, Slone J, Song X, Amrein H 2012. A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell 151:1113–25
    [Google Scholar]
  77. 77.  Moresco JJ, Koelle MR 2004. Activation of EGL-47, a Gα0-coupled receptor, inhibits function of hermaphrodite-specific motor neurons to regulate Caenorhabditiselegans egg-laying behavior. J. Neurosci. 24:8522–30
    [Google Scholar]
  78. 78.  Nakagawa T, Pellegrino M, Sato K, Vosshall LB, Touhara K 2012. Amino acid residues contributing to function of the heteromeric insect olfactory receptor complex. PLOS ONE 7:e32372
    [Google Scholar]
  79. 79.  Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA et al. 2015. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science 347:e1258522
    [Google Scholar]
  80. 80.  Ngoc PC, Greenhalgh R, Dermauw W, Rombauts S, Bajda S et al. 2016. Complex evolutionary dynamics of massively expanded chemosensory receptor families in an extreme generalist chelicerate herbivore. Genome Biol. Evol. 8:3323–39
    [Google Scholar]
  81. 81.  Nichols AS, Luetje CW 2010. Transmembrane segment 3 of Drosophila melanogaster odorant receptor subunit 85b contributes to ligand-receptor interactions. J. Biol. Chem. 285:11854–62
    [Google Scholar]
  82. 82.  Niimura Y 2012. Olfactory receptor multigene family in vertebrates: from the viewpoint of evolutionary genomics. Curr. Genom. 13:103–14
    [Google Scholar]
  83. 83.  Nozawa M, Nei M 2007. Evolutionary dynamics of olfactory receptor genes in Drosophila species. PNAS 104:7122–27
    [Google Scholar]
  84. 84.  Obiero GF, Mireji PO, Nyanjom SR, Christoffels A, Robertson HM, Masiga DK 2014. Odorant and gustatory receptors in the tsetse fly Glossinamorsitansmorsitans. PLOS Negl. Trop. Dis 8:e2663
    [Google Scholar]
  85. 85.  Pask GM, Slone JD, Millar JG, Das P, Moreira JA et al. 2017. Specialized odorant receptors in social insects that detect cuticular hydrocarbon cues and candidate pheromones. Nat. Comm. 8:e297
    [Google Scholar]
  86. 86.  Pellegrino M, Steinbach N, Stensmyr MC, Hansson BS, Vosshall LB 2011. A natural polymorphism alters odour and DEET sensitivity in an insect odorant receptor. Nature 478:511–14
    [Google Scholar]
  87. 87.  Pelosi P, Iovinella I, Felicioli A, Dani FR 2014. Soluble proteins of chemical communication: an overview across arthropods. Front. Physiol. 5:e320
    [Google Scholar]
  88. 88.  Peñalva-Arana DC, Lynch M, Robertson HM 2009. The chemoreceptor genes of the waterflea Daphniapulex: many Grs but no Ors. BMC Evol. Biol. 9:e79
    [Google Scholar]
  89. 89.  Prieto-Godino LL, Rytz R, Bargeton B, Abuin L, Arguello JR et al. 2016. Olfactory receptor pseudo-pseudogenes. Nature 539:93–97
    [Google Scholar]
  90. 90.  Ray A, Van Naters WV, Carlson JR 2014. Molecular determinants of odorant receptor function in insects. J. Biosci. 39:555–63
    [Google Scholar]
  91. 91.  Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R et al. 2008. The genome of the model beetle and pest Triboliumcastaneum. Nature 452:949–55
    [Google Scholar]
  92. 92.  Rimal S, Lee Y 2018. The multidimensional ionotropic receptors of Drosophila melanogaster.Insect Mol. Biol 27:1–7
    [Google Scholar]
  93. 93.  Robertson HM 2009. The insect chemoreceptor superfamily in Drosophilapseudoobscura: molecular evolution of ecologically-relevant genes over 25 million years. J. Insect Sci. 9:e18
    [Google Scholar]
  94. 94.  Robertson HM 2015. The insect chemoreceptor superfamily is ancient in animals. Chem. Senses 40:609–14
    [Google Scholar]
  95. 95.  Robertson HM, Baits RL, Walden KKO, Wada-Katsumata A, Schal C 2018. Enormous expansion of the chemosensory gene repertoire in the omnivorous German cockroach Blattellagermanica. J. Exp. Zool. B 330:5265–78
    [Google Scholar]
  96. 96.  Robertson HM, Gadau J, Wanner KW 2010. The insect chemoreceptor superfamily of the parasitoid jewel wasp Nasoniavitripennis. Insect Mol. Biol 19:121–36
    [Google Scholar]
  97. 97.  Robertson HM, Kent LB 2009. Evolution of the gene lineage encoding the carbon dioxide receptor in insects. J. Insect Sci. 9:1–4
    [Google Scholar]
  98. 98.  Robertson HM, Wanner KW 2006. The chemoreceptor superfamily in the honey bee, Apismellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 16:1395–403
    [Google Scholar]
  99. 99.  Robertson HM, Warr CG, Carlson JR 2003. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. PNAS 100:Suppl. 214537–42
    [Google Scholar]
  100. 100.  Rytz R, Croset V, Benton R 2013. Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond. Insect Biochem. Mol. Biol. 43:888–97
    [Google Scholar]
  101. 101.  Sadd BM, Barribeau SM, Bloch G, de Graaf DC, Dearden P et al. 2015. The genomes of two key bumblebee species with primitive eusocial organization. Genome Biol 16:e76
    [Google Scholar]
  102. 102.  Saina M, Busengdal H, Sinigaglia C, Petrone L, Oliveri P et al. 2015. A cnidarian homologue of an insect gustatory receptor functions in developmental body patterning. Nat. Commun. 6:e6243
    [Google Scholar]
  103. 103.  Sánchez-Gracia A, Vieira FG, Rozas J 2009. Molecular evolution of the major chemosensory gene families in insects. Heredity 103:208–16
    [Google Scholar]
  104. 104.  Scott JG, Warren WC, Beukeboom LW, Bopp D, Clark AG et al. 2014. Genome of the house fly, Muscadomestica L., a global vector of diseases with adaptations to a septic environment. Genome Biol 15:e466
    [Google Scholar]
  105. 105.  Scott K, Brady R, Cravchik A, Morozov P, Rzhetsky A et al. 2001. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104:661–73
    [Google Scholar]
  106. 106.  Shim J, Lee Y, Jeong YT, Kim Y, Lee MG, Montell C, Moon SJ 2015. The full repertoire of Drosophila gustatory receptors for detecting an aversive compound. Nat. Commun. 6:e8867
    [Google Scholar]
  107. 107.  Slone JD, Pask GM, Ferguson ST, Millar JG, Berger SL et al. 2017. Functional characterization of odorant receptors in the ponerine ant, Harpegnathossaltator. PNAS 114:8586–91
    [Google Scholar]
  108. 108.  Smadja C, Shi P, Butlin RK, Robertson HM 2009. Large gene family expansions and adaptive evolution for odorant and gustatory receptors in the pea aphid, Acyrthosiphonpisum. Mol. Biol. Evol. 26:2073–86
    [Google Scholar]
  109. 109.  Smart R, Kiely A, Beale M, Vargas E, Carraher C et al. 2008. Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem. Mol. Biol. 38:770–80
    [Google Scholar]
  110. 110.  Smith CD, Zimin A, Holt C, Abouheif E, Benton R et al. 2011. Draft genome of the globally widespread and invasive Argentine ant (Linepithemahumile). PNAS 108:5673–78
    [Google Scholar]
  111. 111.  Smith CR, Smith CD, Robertson HM, Helmkampf M, Zimin A et al. 2011. Draft genome of the red harvester ant Pogonomyrmexbarbatus. PNAS 108:5667–72
    [Google Scholar]
  112. 112.  Stensmyr MC 2009. Drosophilasechellia as a model in chemosensory neuroecology. Ann. N. Y. Acad. Sci. 1170:468–75
    [Google Scholar]
  113. 113.  Stewart S, Koh TW, Ghosh AC, Carlson JR 2015. Candidate ionotropic taste receptors in the Drosophila larva. PNAS 112:4195–201
    [Google Scholar]
  114. 114.  Terrapon N, Li C, Robertson HM, Ji L, Meng X et al. 2014. Molecular traces of alternative social organization in a termite genome. Nat. Commun. 5:e3636
    [Google Scholar]
  115. 115.  Thomas JH 2007. Rapid birth–death evolution specific to xenobiotic cytochrome P450 genes in vertebrates. PLOS Genet 3:e67
    [Google Scholar]
  116. 116.  Thomas JH, Robertson HM 2008. The Caenorhabditis chemoreceptor gene families. BMC Biol 6:e42
    [Google Scholar]
  117. 117.  Trible W, Olivos-Cisneros L, McKenzie SK, Saragosti J, Chang NC et al. 2017. orco mutagenesis causes loss of antennal lobe glomeruli and impaired social behavior in ants. Cell 170:727–35
    [Google Scholar]
  118. 118.  Vieira FG, Rozas J 2011. Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol. Evol. 3:476–90
    [Google Scholar]
  119. 119.  Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R 1999. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96:725–36
    [Google Scholar]
  120. 120.  Vosshall LB, Wong AM, Axel R 2000. An olfactory sensory map in the fly brain. Cell 102:147–59
    [Google Scholar]
  121. 121.  Wu C, Jordan MD, Newcomb RD, Gemmell NJ, Bank S et al. 2017. Analysis of the genome of the New Zealand giant collembolan (Holacanthelladuospinosa) sheds light on hexapod evolution. BMC Genom 18:e795
    [Google Scholar]
  122. 122.  Xiao J-H, Yue Z, Jia L-Y, Yang X-H, Niu L-H et al. 2013. Obligate mutualism within a host drives the extreme specialization of a fig wasp genome. Genome Biol 14:R141
    [Google Scholar]
  123. 123.  Yang Z 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24:1586–91
    [Google Scholar]
  124. 124.  Zhang HJ, Anderson AR, Trowell SC, Luo AR, Xiang ZH, Xia QY 2011. Topological and functional characterization of an insect gustatory receptor. PLOS ONE 6:e24111
    [Google Scholar]
  125. 125.  Zhou X, Rokas A, Berger SL, Liebig J, Ray A, Zwiebel LJ 2015. Chemoreceptor evolution in hymenoptera and its implications for the evolution of eusociality. Genome Biol. Evol. 7:2407–16
    [Google Scholar]
  126. 126.  Zhou X, Slone JD, Rokas A, Berger SL, Liebig J et al. 2012. Phylogenetic and transcriptomic analysis of chemosensory receptors in a pair of divergent ant species reveals sex-specific signatures of odor coding. PLOS Genet 8:e1002930
    [Google Scholar]
/content/journals/10.1146/annurev-ento-020117-043322
Loading
/content/journals/10.1146/annurev-ento-020117-043322
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error