The ability to identify nutrient-rich food and avoid toxic substances is essential for an animal's survival. Although olfaction and vision contribute to food detection, the gustatory system acts as a final checkpoint control for food acceptance or rejection. The vinegar fly tastes many of the same stimuli as mammals and provides an excellent model system for comparative studies of taste detection. The relative simplicity of the fly brain and behaviors, along with the molecular genetic and functional approaches available in this system, allow the examination of gustatory neural circuits from sensory input to motor output. This review discusses the molecules and cells that detect taste compounds in the periphery and the circuits that process taste information in the brain. These studies are providing insight into how the detection of taste compounds regulates feeding decisions.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ai M, Min S, Grosjean Y, Leblanc C, Bell R. 1.  et al. 2010. Acid sensing by the Drosophila olfactory system. Nature 468:7324691–95 [Google Scholar]
  2. Aso Y, Grubel K, Busch S, Friedrich AB, Siwanowicz I, Tanimoto H. 2.  2009. The mushroom body of adult Drosophila characterized by GAL4 drivers. J. Neurogenet. 23:1–2156–72 [Google Scholar]
  3. Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA. 3.  et al. 2014. The neuronal architecture of the mushroom body provides a logic for associative learning. eLife 3:e04577 [Google Scholar]
  4. Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB. 4.  2009. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136:1149–62 [Google Scholar]
  5. Burke CJ, Huetteroth W, Owald D, Perisse E, Krashes MJ. 5.  et al. 2012. Layered reward signalling through octopamine and dopamine in Drosophila. Nature 492:7429433–37 [Google Scholar]
  6. Cameron P, Hiroi M, Ngai J, Scott K. 6.  2010. The molecular basis for water taste in Drosophila. Nature 465:729491–95 [Google Scholar]
  7. Caron SJ, Ruta V, Abbott LF, Axel R. 7.  2013. Random convergence of olfactory inputs in the Drosophila mushroom body. Nature 497:7447113–17 [Google Scholar]
  8. Chen Y, Amrein H. 8.  2014. Enhancing perception of contaminated food through acid-mediated modulation of taste neuron responses. Curr. Biol. 24:171969–77 [Google Scholar]
  9. Chen Z, Wang Q, Wang Z. 9.  2010. The amiloride-sensitive epithelial Na+ channel PPK28 is essential for Drosophila gustatory water reception. J. Neurosci. 30:186247–52 [Google Scholar]
  10. Chu B, Chui V, Mann K, Gordon MD. 10.  2014. Presynaptic gain control drives sweet and bitter taste integration in Drosophila. Curr. Biol. 24:171978–84 [Google Scholar]
  11. Clyne PJ, Warr CG, Carlson JR. 11.  2000. Candidate taste receptors in Drosophila. Science 287:54591830–34 [Google Scholar]
  12. Coyne JA, Boussy IA, Prout T, Bryant SH, Jones JS, Moore JA. 12.  1982. Long-distance migration of Drosophila. Am. Nat. 119:4589–95 [Google Scholar]
  13. Croset V, Rytz R, Cummins SF, Budd A, Brawand D. 13.  et al. 2010. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLOS Genet 6:8e1001064 [Google Scholar]
  14. Dahanukar A, Lei YT, Kwon JY, Carlson JR. 14.  2007. Two GR genes underlie sugar reception in Drosophila. Neuron 56:3503–16 [Google Scholar]
  15. Das G, Klappenbach M, Vrontou E, Perisse E, Clark CM. 15.  et al. 2014. Drosophila learn opposing components of a compound food stimulus. Curr. Biol. 24:151723–30 [Google Scholar]
  16. David JR, Capy P. 16.  1988. Genetic variation of Drosophila melanogaster natural populations. Trends Genet 4:4106–11 [Google Scholar]
  17. Demerec M. 17.  1950. Biology of Drosophila New York: John Wiley and Sons [Google Scholar]
  18. Dethier VG. 18.  1976. The Hungry Fly Cambridge, MA: Harvard Univ. Press [Google Scholar]
  19. Dickinson MH. 19.  2014. Death Valley, Drosophila, and the Devonian toolkit. Annu. Rev. Entomol. 59:51–72 [Google Scholar]
  20. Dunipace L, Meister S, McNealy C, Amrein H. 20.  2001. Spatially restricted expression of candidate taste receptors in the Drosophila gustatory system. Curr. Biol. 11:11822–35 [Google Scholar]
  21. Enjin A, Zaharieva EE, Frank DD, Mansourian S, Suh GSB. 21.  et al. 2016. Humidity sensing in Drosophila. Curr. Biol. 26:101352–58 [Google Scholar]
  22. Falk R, Bleiser-Avivi N, Atidia J. 22.  1976. Labellar taste organs of Drosophila melanogaster. J. Morphol. 150:327–41 [Google Scholar]
  23. Flood TF, Iguchi S, Gorczyca M, White B, Ito K, Yoshihara M. 23.  2013. A single pair of interneurons commands the Drosophila feeding motor program. Nature 499:745683–87 [Google Scholar]
  24. French AS, Sellier M, Ali Agha M, Moutaz AA, Guigue A. 24.  et al. 2015. Dual mechanism for bitter avoidance in Drosophila. J. Neurosci. 35:93990–4004 [Google Scholar]
  25. Fujii S, Yavuz A, Slone J, Jagge C, Song X, Amrein H. 25.  2015. Drosophila sugar receptors in sweet taste perception, olfaction, and internal nutrient sensing. Curr. Biol. 25:5621–27 [Google Scholar]
  26. Fujishiro N, Kijima H, Morita H. 26.  1984. Impulse frequency and action potential amplitude in labellar chemosensory neurons of Drosophila melanogaster. J. Insect Physiol. 30:317–25 [Google Scholar]
  27. Ganguly A, Pang L, Duong V-K, Lee A, Schoniger H. 27.  et al. 2017. A molecular and cellular context-dependent role for Ir76b in detection of amino acid taste. Cell Rep 18:3737–50 [Google Scholar]
  28. Gordon MD, Scott K. 28.  2009. Motor control in a Drosophila taste circuit. Neuron 61:3373–84 [Google Scholar]
  29. Gruntman E, Turner GC. 29.  2013. Integration of the olfactory code across dendritic claws of single mushroom body neurons. Nat. Neurosci. 16:121821–29 [Google Scholar]
  30. Guven-Ozkan T, Davis RL. 30.  2014. Functional neuroanatomy of Drosophila olfactory memory formation. Learn. Mem. 21:10519–26 [Google Scholar]
  31. Harris DT, Kallman BR, Mullaney BC, Scott K. 31.  2015. Representations of taste modality in the Drosophila brain. Neuron 86:61449–60 [Google Scholar]
  32. Heisenberg M. 32.  2003. Mushroom body memoir: from maps to models. Nat. Rev. Neurosci. 4:4266–75 [Google Scholar]
  33. Hiroi M, Marion-Poll F, Tanimura T. 33.  2002. Differentiated response to sugars among labellar chemosensilla in Drosophila. Zool. Sci. 19:91009–18 [Google Scholar]
  34. Hussain A, Zhang M, Ucpunar HK, Svensson T, Quillery E. 34.  et al. 2016. Ionotropic chemosensory receptors mediate the taste and smell of polyamines. PLOS Biol 14:5e1002454 [Google Scholar]
  35. Inagaki HK, Jung Y, Hoopfer ED, Wong AM, Mishra N. 35.  et al. 2014. Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat. Methods 11:3325–32 [Google Scholar]
  36. Itskov PM, Moreira J-M, Vinnik E, Lopes G, Safarik S. 36.  et al. 2014. Automated monitoring and quantitative analysis of feeding behaviour in Drosophila. Nat. Commun. 5:4560 [Google Scholar]
  37. Itskov PM, Ribeiro C. 37.  2013. The dilemmas of the gourmet fly: the molecular and neuronal mechanisms of feeding and nutrient decision making in Drosophila. Front. Neurosci. 7:12 [Google Scholar]
  38. Jeong YT, Shim J, Oh SR, Yoon HI, Kim CH. 38.  et al. 2013. An odorant-binding protein required for suppression of sweet taste by bitter chemicals. Neuron 79:4725–37 [Google Scholar]
  39. Jiao Y, Moon SJ, Montell C. 39.  2007. A Drosophila gustatory receptor required for the responses to sucrose, glucose, and maltose identified by mRNA tagging. PNAS 104:3514110–15 [Google Scholar]
  40. Jiao Y, Moon SJ, Wang X, Ren Q, Montell C. 40.  2008. Gr64f is required in combination with other gustatory receptors for sugar detection in Drosophila. Curr. Biol. 18:221797–801 [Google Scholar]
  41. Jones WD, Cayirlioglu P, Kadow IG, Vosshall LB. 41.  2007. Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445:712386–90 [Google Scholar]
  42. Kahsai L, Zars T. 42.  2011. Learning and memory in Drosophila: behavior, genetics, and neural systems. Int. Rev. Neurobiol. 99:139–67 [Google Scholar]
  43. Kain P, Dahanukar A. 43.  2015. Secondary taste neurons that convey sweet taste and starvation in the Drosophila brain. Neuron 85:4819–32 [Google Scholar]
  44. Kang K, Panzano VC, Chang EC, Ni L, Dainis AM. 44.  et al. 2012. Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila. Nature 481:737976–80 [Google Scholar]
  45. Keller A. 45.  2007. Drosophila melanogaster’s history as a human commensal. Curr. Biol. 17:3R77–81 [Google Scholar]
  46. Kim H, Kirkhart C, Scott K. 46.  2017. Long-range projection neurons in the taste circuit of Drosophila. eLife 6:e23386 [Google Scholar]
  47. Kirkhart C, Scott K. 47.  2015. Gustatory learning and processing in the Drosophila mushroom bodies. J. Neurosci. 35:155950–58 [Google Scholar]
  48. Knecht ZA, Silbering AF, Ni L, Klein M, Budelli G. 48.  et al. 2016. Distinct combinations of variant ionotropic glutamate receptors mediate thermosensation and hygrosensation in Drosophila. eLife 5:e17879 [Google Scholar]
  49. Koh TW, He Z, Gorur-Shandilya S, Menuz K, Larter NK. 49.  et al. 2014. The Drosophila IR20a clade of ionotropic receptors are candidate taste and pheromone receptors. Neuron 83:4850–65 [Google Scholar]
  50. Kvello P, Jørgensen K, Mustaparta H. 50.  2010. Central gustatory neurons integrate taste quality information from four appendages in the moth Heliothis virescens. J. Neurophysiol. 103:62965–81 [Google Scholar]
  51. Kwon JY, Dahanukar A, Weiss LA, Carlson JR. 51.  2007. The molecular basis of CO2 reception in Drosophila. PNAS 104:93574–78 [Google Scholar]
  52. Kwon JY, Dahanukar A, Weiss LA, Carlson JR. 52.  2011. Molecular and cellular organization of the taste system in the Drosophila larva. J. Neurosci. 31:4315300–309 [Google Scholar]
  53. Lachaise D, Cariou ML, David JR, Lemeunier F, Tsacas L, Ashburner M. 53.  1988. Historical biogeography of the Drosophila melanogaster species subgroup. Evol. Biol. 22:159–225 [Google Scholar]
  54. LeDue EE, Chen Y-C, Jung AY, Dahanukar A, Gordon MD. 54.  2015. Pharyngeal sense organs drive robust sugar consumption in Drosophila. Nat. Commun. 6:6667 [Google Scholar]
  55. Lee Y, Moon SJ, Montell C. 55.  2009. Multiple gustatory receptors required for the caffeine response in Drosophila. PNAS 106:114495–500 [Google Scholar]
  56. Liu C, Plaçais P-Y, Yamagata N, Pfeiffer BD, Aso Y. 56.  et al. 2012. A subset of dopamine neurons signals reward for odour memory in Drosophila. Nature 488:7412512–16 [Google Scholar]
  57. Liu T, Starostina E, Vijayan V, Pikielny CW. 57.  2012. Two Drosophila DEG/ENaC channel subunits have distinct functions in gustatory neurons that activate male courtship. J. Neurosci. 32:3411879–89 [Google Scholar]
  58. Lu B, LaMora A, Sun Y, Welsh MJ, Ben-Shahar Y. 58.  2012. ppk23-dependent chemosensory functions contribute to courtship behavior in Drosophila melanogaster. PLOS Genet. 83e1002587
  59. Manzo A, Silies M, Gohl DM, Scott K. 59.  2012. Motor neurons controlling fluid ingestion in Drosophila. PNAS 109:166307–12 [Google Scholar]
  60. Marella S, Fischler W, Kong P, Asgarian S, Rueckert E, Scott K. 60.  2006. Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49:2285–95 [Google Scholar]
  61. Masek P, Scott K. 61.  2010. Limited taste discrimination in Drosophila. PNAS 107:3314833–38 [Google Scholar]
  62. Masek P, Worden K, Aso Y, Rubin GM, Keene AC. 62.  2015. A dopamine-modulated neural circuit regulating aversive taste memory in Drosophila. Curr. Biol. 25:111535–41 [Google Scholar]
  63. McBride CS. 63.  2007. Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia. PNAS 104:124996–5001 [Google Scholar]
  64. McBride CS, Arguello JR. 64.  2007. Five Drosophidila genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily. Genetics 177:31395–416 [Google Scholar]
  65. McKellar CE. 65.  2016. Motor control of fly feeding. J. Neurogenet. 30:2101–11 [Google Scholar]
  66. Melcher C, Bader R, Pankratz MJ. 66.  2007. Amino acids, taste circuits, and feeding behavior in Drosophila: towards understanding the psychology of feeding in flies and man. J. Endocrinol. 192:3467–72 [Google Scholar]
  67. Meunier N, Marion-Poll F, Rospars JP, Tanimura T. 67.  2003. Peripheral coding of bitter taste in Drosophila. J. Neurobiol. 56:2139–52 [Google Scholar]
  68. Min S, Ai M, Shin SA, Suh GSB. 68.  2013. Dedicated olfactory neurons mediating attraction behavior to ammonia and amines in Drosophila. PNAS 110:141321–29 [Google Scholar]
  69. Moon SJ, Kottgen M, Jiao Y, Xu H, Montell C. 69.  2006. A taste receptor required for the caffeine response in vivo. Curr. Biol. 16:181812–17 [Google Scholar]
  70. Moon SJ, Lee Y, Jiao Y, Montell C. 70.  2009. A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship. Curr. Biol. 19:191623–27 [Google Scholar]
  71. Murthy M, Fiete I, Laurent G. 71.  2008. Testing odor response stereotypy in the Drosophila mushroom body. Neuron 59:61009–23 [Google Scholar]
  72. Nakagawa T, Pellegrino M, Sato K, Vosshall LB, Touhara K. 72.  2012. Amino acid residues contributing to function of the heteromeric insect olfactory receptor complex. PLOS ONE 7:3e32372 [Google Scholar]
  73. Nayak SV, Singh RN. 73.  1983. Sensilla on the tarsal segments and mouthparts of adult Drosophila melanogaster meigen. Int. J. Insect Morphol. Embryol. 12:5–6273–91 [Google Scholar]
  74. Ngoc PCT, Greenhalgh R, Dermauw W, Rombauts S, Bajda S. 74.  et al. 2016. Complex evolutionary dynamics of massively expanded chemosensory receptor families in an extreme generalist chelicerate herbivore. Genome Biol. Evol. 8:113323–39 [Google Scholar]
  75. Ni L, Klein M, Svec KV, Budelli G, Chang EC. 75.  et al. 2016. The ionotropic receptors IR21a and IR25a mediate cool sensing in Drosophila. eLife 5:e13254 [Google Scholar]
  76. Olsen SR, Wilson RI. 76.  2008. Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452:7190956–60 [Google Scholar]
  77. Owald D, Waddell S. 77.  2015. Olfactory learning skews mushroom body output pathways to steer behavioral choice in Drosophila. Curr. Opin. Neurobiol. 35:178–84 [Google Scholar]
  78. Park SK, Mann KJ, Lin H, Starostina E, Kolski-Andreaco A, Pikielny CW. 78.  2006. A Drosophila protein specific to pheromone-sensing gustatory hairs delays males’ copulation attempts. Curr. Biol. 16:111154–59 [Google Scholar]
  79. Pool AH, Scott K. 79.  2014. Feeding regulation in Drosophila. Curr. Opin. Neurobiol. 29:57–63 [Google Scholar]
  80. Rajashekhar KP, Singh RN. 80.  1994. Neuroarchitecture of the tritocerebrum of Drosophila melanogaster. J. Comp. Neurol. 349:4633–45 [Google Scholar]
  81. Rajashekhar KP, Singh RN. 81.  1994. Organization of motor neurons innervating the proboscis musculature in Drosophila melanogaster meigen. Int. J. Insect Morphol. Embryol. 23:225–42 [Google Scholar]
  82. Reiter S, Campillo Rodriguez C, Sun K, Stopfer M. 82.  2015. Spatiotemporal coding of individual chemicals by the gustatory system. J. Neurosci. 35:3512309–21 [Google Scholar]
  83. Rice MJ. 83.  1970. Cibarial stretch receptors in the tsetse fly (Glossina austeni) and the blowfly (Calliphora erythrocephala). J. Insect Physiol. 16:2277–89 [Google Scholar]
  84. Robertson HM. 84.  2015. The insect chemoreceptor superfamily is ancient in animals. Chem. Senses 40:9609–14 [Google Scholar]
  85. Robertson HM, Wanner KW. 85.  2006. The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 16:111395–403 [Google Scholar]
  86. Robertson HM, Warr CG, Carlson JR. 86.  2003. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. PNAS 100:Suppl.14537–42 [Google Scholar]
  87. Root CM, Masuyama K, Green DS, Enell LE, Nassel DR. 87.  et al. 2008. A presynaptic gain control mechanism fine-tunes olfactory behavior. Neuron 59:2311–21 [Google Scholar]
  88. Saina M, Busengdal H, Sinigaglia C, Petrone L, Oliveri P. 88.  et al. 2015. A cnidarian homologue of an insect gustatory receptor functions in developmental body patterning. Nat. Commun. 6:6243 [Google Scholar]
  89. Sánchez-Gracia A, Vieira FG, Rozas J. 89.  2009. Molecular evolution of the major chemosensory gene families in insects. Heredity 103:3208–16 [Google Scholar]
  90. Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K. 90.  2008. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:71901002–6 [Google Scholar]
  91. Sato K, Tanaka K, Touhara K. 91.  2011. Sugar-regulated cation channel formed by an insect gustatory receptor. PNAS 108:2811680–85 [Google Scholar]
  92. Schwarz O, Bohra A, Liu X, Reichert H, VijayRaghavan K, Pielage J. 92.  2017. Motor control of Drosophila feeding behavior. eLife 6:e19892 [Google Scholar]
  93. Scott K, Brady RJ, Cravchik A, Morozov P, Rzhetsky A. 93.  et al. 2001. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104:5661–73 [Google Scholar]
  94. Sengupta P. 94.  2013. The belly rules the nose: feeding state-dependent modulation of peripheral chemosensory responses. Curr. Opin. Neurobiol. 23:168–75 [Google Scholar]
  95. Siddiqi O, Rodrigues V. 95.  1980. Genetic analysis of a complex chemoreceptor. Development and Neurobiology of Drosophila O Siddiqi, P Babu, LM Hall, JC Hall 347–59 Basic Life Sci. 16 New York: Springer [Google Scholar]
  96. Silbering AF, Rytz R, Grosjean Y, Abuin L, Ramdya P. 96.  et al. 2011. Complementary function and integrated wiring of the evolutionarily distinct Drosophila olfactory subsystems. J. Neurosci. 31:3813357–75 [Google Scholar]
  97. Singh RN. 97.  1997. Neurobiology of the gustatory systems of Drosophila and some terrestrial insects. Microsc. Res. Tech. 39:6547–63 [Google Scholar]
  98. Slone J, Daniels J, Amrein H. 98.  2007. Sugar receptors in Drosophila. Curr. Biol. 17:201809–16 [Google Scholar]
  99. Spector AC, Travers SP. 99.  2005. The representation of taste quality in the mammalian nervous system. Behav. Cogn. Neurosci. Rev. 4:3143–91 [Google Scholar]
  100. Starostina E, Liu T, Vijayan V, Zheng Z, Siwicki KK, Pikielny CW. 100.  2012. A Drosophila DEG/ENaC subunit functions specifically in gustatory neurons required for male courtship behavior. J. Neurosci. 32:134665–74 [Google Scholar]
  101. Stocker RF. 101.  1994. The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res 275:13–26 [Google Scholar]
  102. Stocker RF, Schorderet M. 102.  1981. Cobalt filling of sensory projections from internal and external mouthparts in Drosophila. Cell Tissue Res 216:3513–23 [Google Scholar]
  103. Thistle R, Cameron P, Ghorayshi A, Dennison L, Scott K. 103.  2012. Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell 149:51140–51 [Google Scholar]
  104. Thoma V, Knapek S, Arai S, Hartl M, Kohsaka H. 104.  et al. 2016. Functional dissociation in sweet taste receptor neurons between and within taste organs of Drosophila. Nat. Commun. 7:10678 [Google Scholar]
  105. Thorne N, Chromey C, Bray S, Amrein H. 105.  2004. Taste perception and coding in Drosophila. Curr. Biol. 14:121065–79 [Google Scholar]
  106. Tissot M, Gendre N, Stocker RF. 106.  1998. Drosophila P[Gal4] lines reveal that motor neurons involved in feeding persist through metamorphosis. J. Neurobiol. 37:2237–50 [Google Scholar]
  107. Toda H, Zhao X, Dickson BJ. 107.  2012. The Drosophila female aphrodisiac pheromone activates ppk23+ sensory neurons to elicit male courtship behavior. Cell Rep 1:6599–607 [Google Scholar]
  108. Tsacas L, Bächli G. 108.  1981. Drosophila sechellia. n. sp., huitème espèce du sous-groupe melanogaster des iles séchelles (Diptera, Drosophilidae). Rev. Fr. Entomol. 3:146–50 [Google Scholar]
  109. Wada-Katsumata A, Silverman J, Schal C, Ramdya P, Benton R. 109.  et al. 2013. Changes in taste neurons support the emergence of an adaptive behavior in cockroaches. Science 340:6135972–75 [Google Scholar]
  110. Wang Z, Singhvi A, Kong P, Scott K. 110.  2004. Taste representations in the Drosophila brain. Cell 117:7981–91 [Google Scholar]
  111. Weiss LA, Dahanukar A, Kwon JY, Banerjee D, Carlson JR. 111.  2011. The molecular and cellular basis of bitter taste in Drosophila. Neuron 69:2258–72 [Google Scholar]
  112. Wicher D, Schafer R, Bauernfeind R, Stensmyr MC, Heller R. 112.  et al. 2008. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452:71901007–11 [Google Scholar]
  113. Wieczorek H, Wolff G. 113.  1989. The labellar sugar receptor of Drosophila. J. Comp. Physiol. A 164:6825–34 [Google Scholar]
  114. Wilson RI. 114.  2013. Early olfactory processing in Drosophila: mechanisms and principles. Annu. Rev. Neurosci. 36:217–41 [Google Scholar]
  115. Yapici N, Cohn R, Schusterreiter C, Ruta V, Vosshall LB. 115.  2016. A taste circuit that regulates ingestion by integrating food and hunger signals. Cell 165:3715–29 [Google Scholar]
  116. Zelle KM, Lu B, Pyfrom SC, Ben-Shahar Y. 116.  2013. The genetic architecture of degenerin/epithelial sodium channels in Drosophila. G3 3:3441–50 [Google Scholar]
  117. Zhang YV, Ni J, Montell C. 117.  2013. The molecular basis for attractive salt-taste coding in Drosophila. Science 340:61381334–38 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error