We summarize the status of semiochemical-based management of the major bark beetle species in western North America. The conifer forests of this region have a long history of profound impacts by phloem-feeding bark beetles, and species such as the mountain pine beetle () and the spruce beetle () have recently undergone epic outbreaks linked to changing climate. At the same time, great strides are being made in the application of semiochemicals to the integrated pest management of bark beetles. In this review, we synthesize and interpret these recent advances in applied chemical ecology of bark beetles for scientists and land managers.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Allison JD, Redak RA. 1.  2017. The impact of trap type and design features on survey and detection of bark and woodboring beetles and their associates: a review and meta-analysis. Annu. Rev. Entomol. 62:127–46 [Google Scholar]
  2. Amman GD, Lindgren BS. 2.  1995. Semiochemicals for management of mountain pine beetle: status of research and application. Proc. Annu. Meet. Entomol. Soc. Am. Dec. 12–16, 199314–22 Ogden, UT: USDA, For. Serv., Intermt. Res. Stn. [Google Scholar]
  3. Bedard WD, Tilden PE, Lindahl KQ Jr., Wood DL, Rauch PA. 3.  1980a. Effects of verbenone and trans-verbenol on the response of Dendroctonus brevicomis to natural and synthetic attractant in the field. J. Chem. Ecol. 6:997–1014 [Google Scholar]
  4. Bedard WD, Tilden PE, Wood DL, Silverstein RM, Brownlee RG, Rodin JO. 4.  1969. Western pine beetle: response to its sex pheromone and a synergistic host terpene, myrcene. Science 164:1284–85 [Google Scholar]
  5. Bedard WD, Wood DL. 5.  1981. Suppression of Dendroctonus brevicomis by using a mass-trapping tactic. Management of Insect Pests with Semiochemicals ER Mitchell 103–14 New York: Plenum Press [Google Scholar]
  6. Bedard WD, Wood DL, Tilden PE, Lindahl KQ Jr., Silverstein RM, Rodin JO. 6.  1980b. Field response of the western pine beetle and one of its predators to host- and beetle-produced compounds. J. Chem. Ecol. 6:625–41 [Google Scholar]
  7. Bentz BJ. 7.  2006. Mountain pine beetle population sampling: inferences from Lindgren pheromone traps and tree emergence cages. Can. J. For. Res. 36:351–60 [Google Scholar]
  8. Bentz BJ, Allen CD, Ayres M, Berg E, Carroll A. 8.  et al. 2009. Bark Beetle Outbreaks in Western North America: Causes and Consequences Salt Lake City: Univ. Utah Press [Google Scholar]
  9. Bentz BJ, Kegley S, Gibson K, Thier R. 9.  2005. A test of high-dose verbenone for stand-level protection of lodgepole and whitebark pine from mountain pine beetle (Coleoptera: Curculionidae: Scolytinae) attacks. J. Econ. Entomol. 98:1614–21 [Google Scholar]
  10. Bentz BJ, Lister CK, Schmid JM, Mata SA, Rasmussen LA, Haneman D. 10.  1989. Does verbenone reduce mountain pine beetle attacks in susceptible stands of ponderosa pine?. Res. Note RM-RN-495, USDA, For. Serv., Rocky Mt. For. Range Exp. Stn Fort Collins, CO:
  11. Bentz BJ, Powell JA, Logan JA. 11.  1996. Localized spatial and temporal attack dynamics of the mountain pine beetle Res. Pap, INT-494, USDA, For. Serv. Intermt. Res. Stn Ogden, UT: [Google Scholar]
  12. Bentz BJ, Régnière J, Fettig CJ, Hansen EM, Hayes JL. 12.  et al. 2010. Climate change and bark beetles of the western US and Canada: direct and indirect effects. BioScience 60:602–13 [Google Scholar]
  13. Bentz BJ, Vandygriff J, Jensen C, Coleman T, Maloney P. 13.  et al. 2014. Mountain pine beetle voltinism and life history characteristics across latitudinal and elevational gradients in the western United States. For. Sci. 60:434–49 [Google Scholar]
  14. Berg EE, Henry JD, Fastie CL, De Volder AD Matsuoka SM. 14.  2006. Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory: relationship to summer temperatures and regional differences in disturbance regimes. For. Ecol. Manag. 227:219–32 [Google Scholar]
  15. Bertram SL, Paine TD. 15.  1994. Influence of aggregation inhibitors (verbenone and ipsdienol) on landing and attack behavior of Dendroctonus brevicomis (Coleoptera: Scolytidae). J. Chem. Ecol. 20:1617–29 [Google Scholar]
  16. Birch MC, Wood DL. 16.  1975. Mutual inhibition of the attractant pheromone response by two species of Ips. J. Chem. Ecol. 1:101–13 [Google Scholar]
  17. Borden JH. 17.  1985. Aggregation pheromones. Comprehensive Insect Physiology Biochemistry and Pharmacology 9 GA Kerkut, LI Gilbert 257–85 Oxford, UK: Pergamon Press [Google Scholar]
  18. Borden JH. 18.  1997. Disruption of semiochemical-mediated aggregation in bark beetles. Insect Pheromone Research: New Directions RT Cardé, AK Minks 421–38 New York: Chapman & Hall [Google Scholar]
  19. Borden JH, Birmingham AL, Burleigh JS. 19.  2006. Evaluation of the push-pull tactic against the mountain pine beetle using verbenone and non-host volatiles in combination with pheromone-baited trees. For. Chron. 82:579–90 [Google Scholar]
  20. Borden JH, Chong LJ, Earle TJ, Huber DPW. 20.  2003. Protection of lodgepole pine from attack by the mountain pine beetle, Dendroctonusponderosae (Coleoptera: Scolytidae) using high doses of verbenone in combination with nonhost bark volatiles. For. Chron. 79:685–91 [Google Scholar]
  21. Borden JH, Chong LJ, Lindgren BS. 21.  1990. Redundancy in the semiochemical message required to induce attack on lodgepole pines by the mountain pine beetle. Dendroctonus ponderosae. Can. Entomol. 122:769–77 [Google Scholar]
  22. Borden JH, Devlin DR, Miller DR. 22.  1991. Synomones of two sympatric species deter attack by the pine engraver, Ipspini (Coleoptera: Scolytidae). Can. J. For. Res. 22:381–87 [Google Scholar]
  23. Borden JH, Gries G, Chong LJ, Werner RA, Holsten EH. 23.  et al. 1996. Regionally-specific bioactivity of two new pheromones for Dendroctonus rufipennis (Kirby) (Col., Scolytidae). J. Appl. Entomol. 120:321–26 [Google Scholar]
  24. Borden JH, Pureswaran DS, Lafontaine JP. 24.  2008. Synergistic blends of monoterpenes for aggregation pheromones of the mountain pine beetle (Coleoptera: Curculionidae). J. Econ. Entomol. 101:1266–75 [Google Scholar]
  25. Borden JH, Pureswaran DS, Poirier LM. 25.  2004. Evaluation of two repellent semiochemicals for disruption of attack by the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). J. Entomol. Soc. B. C. 101:117–23 [Google Scholar]
  26. Borden JH, Ryker LC, Chong L, Pierce HD Jr., Johnston BD, Oehlschlager AC. 26.  1987. Response of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae), to five semiochemicals in British Columbia lodgepole pine forests. Can. J. For. Res. 17:118–28 [Google Scholar]
  27. Borden JH, Wilson IM, Gries R, Chong LJ, Pierce HD. 27.  1998. Volatiles from the bark of trembling aspen, Populus tremuloides Michx., disrupt secondary attraction by the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). Chemoecology 8:69–75 [Google Scholar]
  28. Byers JA. 28.  1984. Nearest neighbor analysis and simulation of distribution patterns indicates an attack spacing mechanism in the bark beetle, Ipstypographus (Coleoptera: Scolytidae). Environ. Entomol. 13:1191–200 [Google Scholar]
  29. Byers JA, Wood DL, Craig J, Hendry LB. 29.  1984. Attractive and inhibitory pheromones produced in the bark beetle, Dendroctonus brevicomis, during host colonization: regulation of inter- and intraspecific competition. J. Chem. Ecol. 10:861–77 [Google Scholar]
  30. Chatelain MP, Schenk JA. 30.  1984. Evaluation of frontalin and exo-brevicomin as kairomones to control mountain pine beetle (Coleoptera: Scolytidae) in lodgepole pine. Environ. Entomol. 13:1666–74 [Google Scholar]
  31. Chubaty AM, Roitberg BD, Li C. 31.  2009. A dynamic host selection model for mountain pine beetle, Dendroctonus ponderosae Hopkins. Ecol. Model. 220:1241–50 [Google Scholar]
  32. Cibrián Tovar D, Méndez Montiel JT, Campos Bolaños R, Yates HO III, Flores Lara J. 32.  1995. Forest Insects of Mexico Chapingo, Mex.: Univ. Autónoma Chapingo [Google Scholar]
  33. Clarke SR, Salom SM, Billings RF, Berisford CW, Upton WW. 33.  et al. 1999. A scentsible approach to controlling southern pine beetles: two new tactics using verbenone. J. For. 97:26–31 [Google Scholar]
  34. Cognato AI, Seybold SJ, Sperling FAH. 34.  1999. Incomplete barriers to mitochondrial gene flow between pheromone races of the North American pine engraver, Ips pini (Say) (Coleoptera: Scolytidae). Proc. R. Soc. Lond. B 266:1843–50 [Google Scholar]
  35. Davis RS, Hood S, Bentz BJ. 35.  2012. Fire-injured ponderosa pine provide a pulsed resource for bark beetles. Can. J. For. Res. 42:2022–36 [Google Scholar]
  36. Ding BJ, Hofvander P, Wang HL, Durrett TP, Stymne S, Löfstedt C. 36.  2014. A plant factory for moth pheromone production. Nat. Commun. 5:3353 [Google Scholar]
  37. Dyer EDA, Chapman JA. 37.  1971. Attack by the spruce beetle, induced by frontalin or billets with burrowing females. Bi-Mon. Res. Notes 27:10–11 [Google Scholar]
  38. Dyer EDA, Hall PM. 38.  1977. Effect of anti-aggregative pheromones 3,2-MCH and trans-verbenol on Dendroctonus rufipennis attacks on spruce stumps. J. Entomol. Soc. B. C. 74:32–4 [Google Scholar]
  39. Dyer EDA, Safranyik L. 39.  1977. Assessment of the impact of pheromone-baited trees on a spruce beetle population (Coleoptera: Scolytidae). Can. Entomol. 109:77–80 [Google Scholar]
  40. El-Sayed AM. 40.  2016. The Pherobase: Database of Pheromones and Semiochemicals, accessed Sept. 11, 2017. http://www.pherobase.com
  41. Erbilgin N, Gillette NE, Mori SR, Stein JD, Owen DR, Wood DL. 41.  2007. Acetophenone as an anti-attractant for the western pine beetle, Dendroctonus brevicomis LeConte (Coleoptera: Scolytidae). J. Chem. Ecol. 33:817–23 [Google Scholar]
  42. Fettig CJ, Borys RR, Dabney CP, McKelvey SR, Cluck DR. 42.  et al. 2005. Disruption of red turpentine beetle attraction to baited trees by the addition of California five-spined Ips pheromone components. Can. Entomol. 137:748–52 [Google Scholar]
  43. Fettig CJ, Bulaon BM, Dabney CP, Hayes CJ, McKelvey SR. 43.  2012a. Verbenone Plus reduces levels of tree mortality attributed to mountain pine beetle infestations in whitebark pine, a tree species of concern. J. Biofert. Biopest. 3:1–5 [Google Scholar]
  44. Fettig CJ, Dabney CP, McKelvey SR, Huber DPW. 44.  2008. Nonhost angiosperm volatiles and verbenone protect individual ponderosa pines from attack by western pine beetle and red turpentine beetle (Coleoptera: Curculionidae, Scolytinae). West. J. Appl. For. 23:40–45 [Google Scholar]
  45. Fettig CJ, Grosman DM, Munson AS. 45.  2013. Advances in insecticide tools and tactics for protecting conifers from bark beetle attack in the western United States. Insecticides—Development of Safer and More Effective Technologies S Trdan 472–92 Rijeka, Croat.: InTech [Google Scholar]
  46. Fettig CJ, Hilszczański J. 46.  2015. Management strategies for bark beetles in conifer forests. Bark Beetles: Biology and Ecology of Native and Invasive Species FE Vega, RW Hofstetter 555–84 London: Springer [Google Scholar]
  47. Fettig CJ, Klepzig KD, Billings RF, Munson AS, Nebeker TE. 47.  et al. 2007. The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United States. For. Ecol. Manag. 238:24–53 [Google Scholar]
  48. Fettig CJ, McKelvey SR, Borys RR, Dabney CP, Hamud SM. 48.  et al. 2009a. Efficacy of verbenone for protecting ponderosa pine stands from western pine beetle (Coleoptera: Curculionidae, Scolytinae) attack in California. J. Econ. Entomol. 102:1846–58 [Google Scholar]
  49. Fettig CJ, McKelvey SR, Dabney CP, Borys RR, Huber DPW. 49.  2009b. Response of Dendroctonus brevicomis to different release rates of nonhost angiosperm volatiles and verbenone in trapping and tree protection studies. J. Appl. Entomol. 133:143–54 [Google Scholar]
  50. Fettig CJ, McKelvey SR, Dabney CP, Huber DPW. 50.  2012b. Responses of Dendroctonus brevicomis (Coleoptera: Curculionidae) in behavioral assays: implications to development of a semiochemical-based tool for tree protection. J. Econ. Entomol. 105:149–60 [Google Scholar]
  51. Fettig CJ, McKelvey SR, Dabney CP, Huber DPW, Lait CG. 51.  et al. 2012c. Efficacy of “Verbenone Plus” for protecting ponderosa pine trees and stands from Dendroctonus brevicomis (Coleoptera: Curculionidae) attack in British Columbia and California.. J. Econ. Entomol. 105:1668–80 [Google Scholar]
  52. Fettig CJ, McKelvey SR, Huber DPW. 52.  2005. Nonhost angiosperm volatiles and verbenone disrupt response of western pine beetle, Dendroctonusbrevicomis (Coleoptera: Scolytidae), to attractant-baited traps. J. Econ. Entomol. 98:2041–48 [Google Scholar]
  53. Fettig CJ, McMillin JD, Anhold JA, Hamud SM, Borys RR. 53.  et al. 2006. The effects of mechanical fuel reduction treatments on the activity of bark beetles (Coleoptera: Scolytidae) infesting ponderosa pine. For. Ecol. Manag. 230:55–68 [Google Scholar]
  54. Fettig CJ, Munson AS, Reinke M, Mafra-Neto A. 54.  2015. A novel semiochemical tool for protecting Pinus contorta from mortality attributed to Dendroctonus ponderosae (Coleoptera: Curculionidae). J. Econ. Entomol. 108:173–82 [Google Scholar]
  55. Fettig CJ, Steed BE, Bulaon BM, Mortenson LA, Progar RA. 55.  et al. 2016. The efficacy of SPLAT® Verb for protecting individual Pinus contorta, Pinus ponderosa, and Pinus lambertiana from colonization by Dendroctonus ponderosae. J. Entomol. Soc. B. C. 11311–20 [Google Scholar]
  56. Foote GA, Fettig CJ, Runyon JB, Ross DW, Coleman TW. 56.  et al. 2017. Proceedings of the 2016 Society of American Foresters National Convention. Development of a novel semiochemical tool for tree protection and assessment of ecological risks to pollinators in Douglas-fir forests. J. For. 115:2S109 [Google Scholar]
  57. Francke W, Schulz S. 57.  1999. Pheromones. Comprehensive Natural Products Chemistry 8 Miscellaneous Natural Products Including Marine Natural Products, Pheromones, Plant Hormones and Aspects of Ecology D Barton, K Nakanishi, O Meth-Cohn 197–261 Oxford, UK: Elsevier Sci. Ltd. [Google Scholar]
  58. Furniss MM, Baker BH, Hostetler BB. 58.  1976. Aggregation of spruce beetles (Coleoptera) to seudenol and repression of attraction by methylcyclohexenone in Alaska. Can. Entomol. 108:1297–302 [Google Scholar]
  59. Furniss MM, Clausen RW, Markin GP, McGregor MD, Livingston RL. 59.  1981. Effectiveness of Douglas-fir beetle antiaggregative pheromone applied by helicopter Gen. Tech. Rep. INT-GTR-10, USDA, For. Serv., Intermt. Res. Stn Ogden, UT: [Google Scholar]
  60. Furniss MM, Young JW, McGregor MD, Livingston RL, Hamel DL. 60.  1977. Effectiveness of controlled-release formulations of MCH for preventing Douglas-fir beetle (Coleoptera: Scolytidae) infestation in felled trees. Can. Entomol. 109:1063–69 [Google Scholar]
  61. Furniss RL, Carolin VM. 61.  1977. Western forest insects Misc. Publ. 1339, USDA, For. Serv Washington, DC: [Google Scholar]
  62. Gandhi KJK, Gilmore DW, Katovich SA, Mattson WJ, Spence JR, Seybold SJ. 62.  2007. Physical effects of weather events on the abundance and diversity of insects in North American forests. Environ. Rev. 15:113–52 [Google Scholar]
  63. Gaylord ML, Kolb TE, Wallin KF, Wagner MR. 63.  2006. Seasonality and lure preference of bark beetles (Curculionidae: Scolytinae) and associates in a Northern Arizona ponderosa pine forest. Environ. Entomol. 35:37–47 [Google Scholar]
  64. Geiszler DR, Gara RI. 64.  1978. Mountain pine beetle attack dynamics in lodgepole pine. Theory and Practice of Mountain Pine Beetle Management in Lodgepole Pine Forests: Symposium Proceedings AA Berryman, GD Amman, RW Stark 182–87 Pullman: Wash. State Univ. [Google Scholar]
  65. Gibson KE, Kegley S, Bentz B. 65.  2009. Mountain pine beetle For. Insect Dis. Leafl. 2, USDA, For. Serv., Pac. Northwest Reg Portland, OR: [Google Scholar]
  66. Gibson KE, Schmitz RF, Amman GD, Oakes RD. 66.  1991. Mountain pine beetle response to different verbenone dosages in pine stands of western Montana Res. Pap. INT-RP-444. USDA, For. Serv., Intermt. Res. Stn Ogden, UT: [Google Scholar]
  67. Gillette NE, Erbilgin N, Webster JN, Pederson L, Mori SR. 67.  et al. 2009a. Aerially applied verbenone-releasing laminated flakes protect Pinus contorta stands from attack by Dendroctonus ponderosae in California and Idaho. For. Ecol. Manag. 257:1405–12 [Google Scholar]
  68. Gillette NE, Hansen EM, Mehmel CJ, Mori SR, Webster JN. 68.  et al. 2012a. Area-wide application of verbenone-releasing flakes reduces mortality of whitebark pine Pinus albicaulis caused by the mountain pine beetle Dendroctonus ponderosae. Agric. For. Entomol. 14:367–75 [Google Scholar]
  69. Gillette NE, Kegley SJ, Costello SL, Mori SR, Webster KN. 69.  et al. 2014a. Efficacy of verbenone and green leaf volatiles for protecting whitebark and limber pines from attack by mountain pine beetle (Coleoptera: Curculionidae: Scolytinae). Environ. Entomol. 43:1019–26 [Google Scholar]
  70. Gillette NE, Mehmel CJ, Erbilgin N, Mori SR, Webster JN. 70.  et al. 2009b. Aerially applied methylcyclohexenone-releasing flakes protect Pseudotsuga menziesii stands from attack by Dendroctonus pseudotsugae. For. Ecol. Manag. 257:1231–36 [Google Scholar]
  71. Gillette NE, Mehmel CJ, Mori SR, Webster JN, Wood DL. 71.  et al. 2012b. The push–pull tactic for mitigation of mountain pine beetle (Coleoptera: Curculionidae) damage in lodgepole and whitebark pines. Environ. Entomol. 41:1575–86 [Google Scholar]
  72. Gillette NE, Munson AS. 72.  2009. Semiochemical sabotage: behavioral chemicals for protection of western conifers from bark beetles. Proc. Sympos. 2007 Soc. Am. For. Conf., Oct. 23–28, Portland, OR85–109 Portland, OR: USDA, For. Serv., Pac. Northwest Res. Stn. [Google Scholar]
  73. Gillette NE, Stein JD, Owen DR, Webster JN, Fiddler GO. 73.  et al. 2006. Verbenone-releasing flakes protect individual Pinus contorta trees from attack by Dendroctonus ponderosae and Dendroctonus valens (Coleoptera: Scolytidae). Agric. For. Entomol. 8:243–51 [Google Scholar]
  74. Gillette NE, Wood DL, Hines SJ, Runyon JB, Negrón JF. 74.  2014b. The once and future forest: consequences of mountain pine beetle treatment decisions. J. For. 60:527–38 [Google Scholar]
  75. Graves AD, Holsten EH, Ascerno ME, Zogas KP, Hard JS. 75.  et al. 2008. Protection of spruce from colonization by the bark beetle, Ips perturbatus, in Alaska. For. Ecol. Manag. 256:1825–39 [Google Scholar]
  76. Gray DR, Borden JH. 76.  1989. Containment and concentration of mountain pine beetle (Coleoptera: Scolytidae) infestations with semiochemicals: validation by sampling of baited and surrounding zones. J. Econ. Entomol. 93:1399–405 [Google Scholar]
  77. Gries G, Borden JH, Gries R, Lafontaine JP, Dixon EA. 77.  et al. 1992. 4-Methylene-6,6-dimethylbicyclo[3.1.1]hept-2-ene (verbenene): new aggregation pheromone of the scolytid beetle Dendroctonus rufipennis. Naturwissenschaften 79:367–68 [Google Scholar]
  78. Gries G, Pierce HD Jr., Lindgren BS, Borden JH. 78.  1988. New techniques for capturing and analyzing semiochemicals for scolytid beetles (Coleoptera: Scolytidae). J. Econ. Entomol. 81:1715–20 [Google Scholar]
  79. Hansen EM, Bentz BJ, Munson AS, Vandygriff JC, Turner DL. 79.  2006a. Evaluation of funnel traps for estimating tree mortality and associated population phase of spruce beetle in Utah. Can. J. For. Res. 36:2574–84 [Google Scholar]
  80. Hansen EM, Munson AS, Blackford DC, Graves AD, Coleman TW, Baggett LS. 80.  2017. 3-Methylcyclohex-2-en-1-one for area and individual tree protection against spruce beetle (Coleoptera: Curculionidae: Scolytinae) attack in the southern Rocky Mountains. J. Econ. Entomol. 110:2140–48 [Google Scholar]
  81. Hansen EM, Munson AS, Blackford DC, Wakarchuk D, Baggett LS. 81.  2016. Lethal trap trees and semiochemical repellents as area host protection strategies for spruce beetle (Coleoptera: Curculionidae, Scolytinae) in Utah. J. Econ. Entomol. 109:2137–44 [Google Scholar]
  82. Hansen EM, Vandygriff JC, Cain RJ, Wakarchuk D. 82.  2006b. Comparison of naturally and synthetically baited spruce beetle trapping systems in the central Rocky Mountains. J. Econ. Entomol. 99:373–82 [Google Scholar]
  83. Hart SJ, Schoennagel T, Veblen TT, Chapman TB. 83.  2015. Area burned in the western United States is unaffected by recent mountain pine beetle outbreaks. PNAS 112:4375–80 [Google Scholar]
  84. Hayes JL, Strom BL. 84.  1994. 4-Allylanisole as an inhibitor of bark beetle (Coleoptera: Scolytidae) aggregation. J. Econ. Entomol. 87:1586–94 [Google Scholar]
  85. Hicke JA, Jenkins JC. 85.  2008. Mapping lodgepole pine stand structure susceptibility to mountain pine beetle attack across the western United States. For. Ecol. Manag. 255:1536–47 [Google Scholar]
  86. Hicke JA, Meddens AJ, Kolden CA. 86.  2016. Recent tree mortality in the western United States from bark beetles and forest fires. For. Sci. 62:141–53 [Google Scholar]
  87. Hobson KR, Wood DL, Cool LG, White PR, Ohtsuka T. 87.  et al. 1993. Chiral specificity in responses by the bark beetle Dendroctonus valens to host kairomones. J. Chem. Ecol. 19:1837–47 [Google Scholar]
  88. Holsten EH, Shea PJ, Borys RR. 88.  2003. MCH released in a novel pheromone dispenser prevents spruce beetle, Dendroctonus rufipennis (Coleoptera: Scolytidae), attacks in south-central Alaska. J. Econ. Entomol. 96:31–34 [Google Scholar]
  89. Holsten EH, Their RW, Munson AS, Gibson KE. 89.  1999. The spruce beetle For. Insect Dis. Leafl. 127, USDA, For. Serv., Pac. Northwest For. Range Exp. Stn Portland, OR: [Google Scholar]
  90. Holsten EH, Werner RA. 90.  1984. Evaluation of methylcyclohexenone (MCH) in preventing or suppressing spruce beetle attacks in Alaska Tech. Rep. R10–6, USDA, For. Serv., Alaska Reg Anchorage, AK: [Google Scholar]
  91. Holsten EH, Werner RA. 91.  1987. Use of MCH bubble caps in preventing spruce beetle attacks in Alaska Tech. Rep. R-10–14, USDA, For. Serv Alaska Reg., Anchorage, AK: [Google Scholar]
  92. Hood SM, Bentz B. 92.  2007. Predicting post-fire Douglas-fir beetle attacks and tree mortality in the Northern Rocky Mountains. Can. J. For. Res. 37:1058–69 [Google Scholar]
  93. Huber DPW, Borden JH. 93.  2001a. Angiosperm bark volatiles disrupt response of Douglas-fir beetle, Dendroctonus pseudotsugae, to attractant-baited traps. J. Chem. Ecol. 27:217–33 [Google Scholar]
  94. Huber DPW, Borden JH. 94.  2001b. Protection of lodgepole pines from mass attack by mountain pine beetle, Dendroctonus ponderosae, with nonhost angiosperm volatiles and verbenone. Entomol. Exp. Appl. 99:131–41 [Google Scholar]
  95. Huber DPW, Borden JH, Jeans-Williams NL, Gries R. 95.  2000. Differential bioactivity of conophthorin on four species of North American bark beetles (Coleoptera: Scolytidae). Can. Entomol. 132:649–53 [Google Scholar]
  96. Huber DPW, Borden JH, Stastny M. 96.  2001. Response of the pine engraver, Ipspini (Say) (Coleoptera: Scolytidae), to conophthorin and other angiosperm bark volatiles in the avoidance of nonhosts. Agric. For. Entomol. 3:225–32 [Google Scholar]
  97. Huber DPW, Erickson ML, Leutenegger C, Bohlmann J, Seybold SJ. 97.  2007. Isolation and extreme sex-specific expression of cytochrome P450 genes in the bark beetle, Ips paraconfusus, following feeding on the phloem of host ponderosa pine, Pinus ponderosa. Insect Molec. Biol. 16:335–49 [Google Scholar]
  98. Huber DPW, Gries R, Borden JH, Pierce HD Jr. 98.  1999. Two pheromones of coniferophagous bark beetles (Coleoptera: Scolytidae) found in the bark of nonhost angiosperms. J. Chem. Ecol. 25:805–16 [Google Scholar]
  99. Hunt DWA, Borden JH. 99.  1990. Conversion of verbenols to verbenone by yeasts isolated from Dendroctonus ponderosae (Coleoptera: Scolytidae). J. Chem. Ecol. 16:1385–97 [Google Scholar]
  100. Hunt DWA, Borden JH, Lindgren BS, Gries G. 100.  1989. The role of autoxidation of α-pinene in the production of pheromones of Dendroctonus ponderosae (Coleoptera: Scolytidae). Can. J. For. Res. 19:1275–82 [Google Scholar]
  101. Jenkins MA, Hebertson EG, Munson AS. 101.  2014. Spruce beetle biology, ecology and management in the Rocky Mountains: an addendum to spruce beetle in the Rockies. Forests 5:21–71 [Google Scholar]
  102. Joseph G, Kelsey RG, Peck RW, Niwa CG. 102.  2001. Response of some scolytids and their predators to ethanol and 4-allylanisole in pine forests of central Oregon. J. Chem. Ecol. 27:697–715 [Google Scholar]
  103. Keane RE, Tomback DF, Aubry CA, Bower AD, Campbell EM. 103.  et al. 2012. A range-wide restoration strategy for whitebark pine (Pinus albicaulis). Gen. Tech. Rep. RMRS-GTR-279, USDA, For. Serv., Rocky Mt. Res. Stn Fort Collins, CO:
  104. Kegley S, Gibson K. 104.  2009. Individual-tree tests of verbenone and green-leaf volatiles to protect lodgepole, whitebark and ponderosa pines, 2004–2007 For. Health Protect. Rep. 09-03., USDA, For. Serv., North. Reg Missoula, MT: https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5227239.pdf [Google Scholar]
  105. Kegley S, Gibson K, Gillette NE, Webster J, Pederson L, Mori S. 105.  2010. Individual-tree tests of verbenone flakes, verbenone pouches, and green-leaf volatiles to protect lodgepole pines from mountain pine beetle attack For. Health Protect. Rep 10–02 USDA, For. Serv., North. Reg., Missoula, MT https://www.fs.fed.us/psw/publications/gillette/psw_2010_gillette(kegley)003.pdf [Google Scholar]
  106. Kelsey RG, Joseph G. 106.  2003. Ethanol in ponderosa pine as an indicator of physiological injury from fire and its relationship to secondary beetles. Can. J. For. Res. 33:870–84 [Google Scholar]
  107. Kinzer GW, Fentiman AF Jr., Foltz RL, Rudinsky JA. 107.  1971. Bark beetle attractants: 3-Methyl-2-cyclo-hexen-1-one isolated from Dendroctonus pseudotsugae. J. Econ. Entomol. 64:970–71 [Google Scholar]
  108. Kinzer GW, Fentiman AF Jr., Page TF, Foltz RL, Vité JP, Pitman GB. 108.  1969. Bark beetle attractants: identification, synthesis and field bioassay of a new compound isolated from Dendroctonus. Nature 221:477–78 [Google Scholar]
  109. Kline LN, Schmitz RF, Rudinsky JA, Furniss MM. 109.  1974. Repression of spruce beetle (Coleoptera) attraction by methylcyclohexenone in Idaho. Can. Entomol. 106:485–91 [Google Scholar]
  110. Klutsch JG, Cale JA, Whitehouse C, Kanekar SS, Erbilgin N. 110.  2017. Trap trees: An effective method for monitoring mountain pine beetle activities in novel habitats. Can. J. For. Res. 47:1432–37 [Google Scholar]
  111. Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET. 111.  et al. 2008. Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–90 [Google Scholar]
  112. Langor DW, DeHass LJ, Foottit RG. 112.  2009. Diversity of non-native terrestrial arthropods on woody plants in Canada. Biol. Invasions 11:5–19 [Google Scholar]
  113. Lee JC, Haack RA, Negrón JF, Witcosky JJ, Seybold SJ. 113.  2007. Invasive bark beetles For. Insect Dis. Leafl. 176, USDA, For. Serv., Pac. Northwest Reg Portland, OR: [Google Scholar]
  114. Libbey LM, Oehlschlager AC, Ryker LC. 114.  1983. 1-Methylcyclohex-2-en-1-ol as an aggregation pheromone of Dendroctonus pseudotsugae. J. Chem. Ecol. 9:1533–41 [Google Scholar]
  115. Lindgren BS, Borden JH. 115.  1989. Semiochemicals of the mountain pine beetle (Dendroctonus ponderosae Hopkins). Proc. Sympos. Manag. Lodgepole Pine Min. Losses Mt. Pine Beetle, Kalispell, MT, July 12–14, 198883–88 Ogden, UT: USDA, For. Serv., Intermt. Res. Stn. [Google Scholar]
  116. Lindgren BS, Borden JH. 116.  1993. Displacement and aggregation of mountain pine beetles, Dendroctonus ponderosae (Coleoptera: Scolytidae), in response to their antiaggregation and aggregation pheromones. Can. J. For. Res. 23:286–90 [Google Scholar]
  117. Lindgren BS, McGregor MD, Oakes RD, Meyer HE. 117.  1989. Suppression of spruce beetle attacks by MCH released from bubble caps. West. J. Appl. For. 4:49–52 [Google Scholar]
  118. Lindgren BS, Miller DR, LaFontaine JP. 118.  2012. MCOL, frontalin and ethanol: a potential operational trap lure for Douglas-fir beetle in British Columbia. J. Entomol. Soc. B. C. 108:72–74 [Google Scholar]
  119. Lister CK, Schmid JM, Mata SA, Haneman D, Neil CO. 119.  et al. 1990. Verbenone bubble caps ineffective as a preventive strategy against mountain pine beetle attacks in ponderosa pine Res. Note RM-501, USDA, For. Serv., Rocky Mt. For. Range Exp. Stn Ogden UT: [Google Scholar]
  120. Maclauchlan L. 120.  2016. Quantification of Dryocoetes confusus-caused mortality in subalpine fir forests of southern British Columbia. For. Ecol. Manag. 359:210–20 [Google Scholar]
  121. Mafra-Neto A, de Lame FM, Fettig CJ, Munson AS, Pering TM. 121.  et al. 2013. Manipulation of insect behavior with Specialized Lure Application Technology (SPLAT®). Natural Products for Pest Management J Beck, J Coats, S Duke, M Koivunen 31–58 Washington, DC: ACS Publ. [Google Scholar]
  122. Mayfield AE, Fraedrich SW, Taylor A, Merten P, Myers SW. 122.  2014. Efficacy of heat treatment for the thousand cankers disease vector and pathogen in small black walnut logs. J. Econ. Entomol. 107:174–84 [Google Scholar]
  123. Miller DR. 123.  2002. Short-range horizontal disruption by verbenone in attraction of mountain pine beetle (Coleoptera: Scolytidae) to pheromone-baited funnel traps in stands of lodgepole pine. J. Entomol. Soc. B. C. 99:103–5 [Google Scholar]
  124. Miller DR, LaFontaine JP. 124.  1991. cis-Verbenol: an aggregation pheromone for the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). J. Entomol. Soc. B. C. 88:34–38 [Google Scholar]
  125. Miller JM, Keen FP. 125.  1960. Biology and Control of the Western Pine Beetle Misc. Publ. 800, USDA, For. Serv Washington, DC: [Google Scholar]
  126. Morris JL, Cottrell S, Fettig CJ, Hansen WD, Sherriff RL. 126.  et al. 2017. Managing bark beetle impacts on ecosystems and society: priority questions to motivate future research. J. Appl. Ecol. 54:750–60 [Google Scholar]
  127. Negrón JF, Allen K, McMillin J, Burkwhat H. 127.  2006. Testing verbenone for reducing mountain pine beetle attacks in ponderosa pine in the Black Hills, South Dakota Res. Note RMRS-RN-31. USDA, For. Serv., Rocky Mt. Res. Stn Fort Collins, CO: [Google Scholar]
  128. Nordlund DA, Lewis WJ. 128.  1981. Semiochemicals: a review of the terminology. In Semiochemicals: Their Role in Pest Control DA Nordlund, RL Jones, WJ Lewis 13–28 New York: John Wiley & Sons [Google Scholar]
  129. Paine TD, Hanlon CC. 129.  1991. Response of Dendroctonus brevicomis and Ips paraconfusus (Coleoptera: Scolytidae) to combinations of synthetic pheromone attractants and inhibitors verbenone and ipsdienol. J. Chem. Ecol. 17:2163–76 [Google Scholar]
  130. Pitman GB. 130.  1971. trans-Verbenol and alpha-pinene: their utility in manipulation of the mountain pine beetle. J. Econ. Entomol. 64:426–30 [Google Scholar]
  131. Pitman GB, Vité JP. 131.  1970. Field response of Dendroctonus pseudotsugae (Coleoptera: Scolytidae) to synthetic frontalin. Ann. Entomol. Soc. Am. 63:661–64 [Google Scholar]
  132. Pitman GB, Vité JP, Kinzer GW, Fentiman AF Jr. 132.  1968. Bark beetle attractants: trans-verbenol isolated from Dendroctonus. Nature 218:168 [Google Scholar]
  133. Pitman GB, Vité JP, Kinzer GW, Fentiman AF Jr. 133.  1969. Specificity of population-aggregating pheromones in Dendroctonus. J. Insect Physiol. 15:363–66 [Google Scholar]
  134. Poland TM, Borden JH. 134.  1994. Semiochemical-based communication in interspecific interactions between Ips pini (Say) and Pityogenes knechteli (Swaine) (Coleoptera: Scolytidae) in lodgepole pine. Can. Entomol. 126:269–76 [Google Scholar]
  135. Poland TM, Borden JH. 135.  1998. Competitive exclusion of Dendroctonus rufipennis induced by pheromones of Ips tridens and Dryocoetes affaber (Coleoptera: Scolytidae). J. Econ. Entomol. 91:1150–61 [Google Scholar]
  136. Poland TM, Borden JH, Stock AJ, Chong LJ. 136.  1998. Green leaf volatiles disrupt responses by the spruce beetle, Dendroctonusrufipennis, and the western pine beetle, Dendroctonus brevicomis (Coleoptera: Scolytidae) to attractant-baited traps. J. Entomol. Soc. B. C. 95:17–24 [Google Scholar]
  137. Progar RA. 137.  2003. Verbenone reduces mountain pine beetle attack in lodgepole pine. West. J. Appl. For. 18:229–32 [Google Scholar]
  138. Progar RA. 138.  2005. Five-year operational trial of verbenone to deter mountain pine beetle (Dendroctonus ponderosae; Coleoptera: Scolytidae) attack of lodgepole pine (Pinus contorta). Environ. Entomol. 34:1402–7 [Google Scholar]
  139. Progar RA, Blackford DC, Cluck DR, Costello S, Dunning LB. 139.  et al. 2013. Population densities and tree diameter effects associated with verbenone treatments to reduce mountain pine beetle-caused mortality of lodgepole pine. J. Econ. Entomol. 106:221–28 [Google Scholar]
  140. Progar RA, Gillette NE, Fettig CJ, Hrinkevich K. 140.  2014. Applied chemical ecology of the mountain pine beetle. For. Sci. 60:414–33 [Google Scholar]
  141. Progar RA, Sturdevant N, Rinella MJ. 141.  2010. Trapping Douglas-fir beetle (Dendroctonus pseudotsugae) with pheromone-baited multiple funnel traps does not reduce Douglas-fir (Pseudotsuga menziesii) mortality. Pan-Pac. Entomol. 86:111–18 [Google Scholar]
  142. Pureswaran DS, Borden JH. 142.  2004. New repellent semiochemicals for three species of Dendroctonus (Coleoptera: Scolytidae). Chemoecology 14:67–75 [Google Scholar]
  143. Pureswaran DS, Borden JH. 143.  2005. Primary attraction and kairomonal host discrimination in three species of Dendroctonus (Coleoptera: Scolytidae). Agric. For. Entomol. 7:219–30 [Google Scholar]
  144. Pureswaran DS, Gries R, Borden JH, Pierce HD Jr. 144.  2000. Dynamics of pheromone production and communication in the mountain pine beetle, Dendroctonusponderosae Hopkins, and the pine engraver, Ips pini (Say) (Coleoptera: Scolytidae). Chemoecology 10:153–68 [Google Scholar]
  145. Pureswaran DS, Hofstetter RW, Sullivan BT, Grady AM, Brownie C. 145.  2016. Western pine beetle populations in Arizona and California differ in the composition of their aggregation pheromones. J. Chem. Ecol. 42:404–13 [Google Scholar]
  146. Rabaglia RJ, Duerr D, Acciavatti R, Ragenovich I. 146.  2008. Early detection and rapid response for non-native bark and ambrosia beetles For. Health Prot. Rep., USDA Washington, DC: [Google Scholar]
  147. Raffa KF, Berryman AA. 147.  1983. The role of host plant resistance in the colonization behavior and ecology of bark beetles (Coleoptera: Scolytidae). Ecol. Monogr. 53:27–49 [Google Scholar]
  148. Reich RM, Lundquist JE, Hughes K. 148.  2016. Host-environment mismatches associated with subalpine fir decline in Colorado. J. For. Res. 27:1177–89 [Google Scholar]
  149. Renwick JAA. 149.  1967. Identification of two oxygenated terpenes from the bark beetles Dendroctonus frontalis and Dendroctonus brevicomis. Contrib. Boyce Thompson Inst. 24:355–60 [Google Scholar]
  150. Renwick JAA, Vité JP. 150.  1970. Systems of chemical communication in Dendroctonus. Contrib. Boyce Thompson Inst. 24:283–92 [Google Scholar]
  151. Reynolds KM, Holsten EH. 151.  1994. Relative importance of risk factors for spruce beetle outbreaks. Can. J. For. Res. 24:2089–95 [Google Scholar]
  152. Reynolds KM, Holsten EH. 152.  1996. Classification of spruce beetle hazard in Lutz and Sitka spruce stands on the Kenai Peninsula, Alaska. For. Ecol. Manag. 84:251–62 [Google Scholar]
  153. Ross DW, Daterman GE. 153.  1994. Reduction of Douglas-fir beetle infestation of high risk stands by antiaggregation and aggregation pheromones. Can. J. For. Res. 24:2184–90 [Google Scholar]
  154. Ross DW, Daterman GE. 154.  1995. Response of Dendroctonus pseudotsugae (Coleoptera: Scolytidae) and Thanasimus undatulus (Coleoptera: Cleridae) to traps with different semiochemicals. J. Econ. Entomol. 88:106–11 [Google Scholar]
  155. Ross DW, Daterman GE, Munson AS. 155.  1996. Optimal dose of an antiaggregation pheromone (3-methylcyclohex-2-en-1-one) for protecting live Douglas-fir from attack by Dendroctonus pseudotsugae (Coleoptera: Scolytidae). J. Econ. Entomol. 89:1204–7 [Google Scholar]
  156. Ross DW, Daterman GE, Munson AS. 156.  2002. Elution rate and spacing of antiaggregation pheromone dispensers for protecting live trees from Dendroctonus pseudotsugae (Coleoptera: Scolytidae). J. Econ. Entomol. 95:778–81 [Google Scholar]
  157. Ross DW, Daterman GE, Munson AS. 157.  2004. Evaluation of the antiaggregation pheromone, 3-methylcyclohex-2-en-1-one (MCH), to protect live spruce from spruce beetle (Coleoptera: Scolytidae) infestation in southern Utah. J. Entomol. Soc. B. C. 101:145–46 [Google Scholar]
  158. Ross DW, Daterman GE, Munson AS. 158.  2005. Spruce beetle (Coleoptera: Scolytidae) response to traps baited with selected semiochemicals in Utah. West. N. Am. Natural. 65:123–26 [Google Scholar]
  159. Ross DW, Gibson KE, Daterman GE. 159.  2015. Using MCH to protect trees and stands from Douglas-fir beetle infestation Misc. Publ. FHTET-2001-09, USDA, For. Serv., For. Health Technol. Enterp. Team, Morgantown, WV [Google Scholar]
  160. Ross DW, Hostetler BB, Johansen J. 160.  2006. Douglas-fir beetle response to artificial creation of down wood in the Oregon Coast Range. West. J. Appl. For. 21:117–22 [Google Scholar]
  161. Rudinsky JA. 161.  1973. Multiple functions of the Douglas fir beetle pheromone 3-methyl-2-cyclohexen-1-one. Environ. Entomol. 2:579–85 [Google Scholar]
  162. Rudinsky JA, Morgan ME, Libbey LM, Putnam TB. 162.  1974a. Antiaggregative-rivalry pheromone of the mountain pine beetle, and a new arrestant of the southern pine beetle. Environ. Entomol. 3:90–98 [Google Scholar]
  163. Rudinsky JA, Sartwell C, Graves TM, Morgan ME. 163.  1974b. Granular formulation of methylcyclohexenone: an antiaggregative pheromone of the Douglas-fir and spruce bark beetles (Col., Scolytidae). Z. Angew. Entomol. 75:254–63 [Google Scholar]
  164. Ryall KL, Silk P, Thurston GS, Scarr TA, de Groot P. 164.  2013. Elucidating pheromone and host volatile components attractive to the spruce beetle, Dendroctonusrufipennis (Coleoptera: Curculionidae), in eastern Canada. Can. Entomol. 145:406–15 [Google Scholar]
  165. Ryker LC, Libbey LM. 165.  1982. Frontalin in the male mountain pine beetle. J. Chem. Ecol. 8:1399–409 [Google Scholar]
  166. Ryker LC, Rudinsky JA. 166.  1982. Field bioassay of exo- and endo-brevicomin with Dendroctonus ponderosae in lodgepole pine. J. Chem. Ecol. 8:701–7 [Google Scholar]
  167. Schlyter F, Birgersson G. 167.  1999. Forest beetles. Pheromones of Non-lepidopteran Insects Associated with Agricultural Plants RJ Hardie, AK Minks 113–48 Wallingford, UK: CAB Int. [Google Scholar]
  168. 168. SERA. 1999. 3-methylcyclohexen-1-one (MCH) human health and ecological risk assessment: final report SERA TR 98-21-09-03d, Syracuse Env. Res. Assoc. Inc Fayateville, NY: [Google Scholar]
  169. Seybold SJ. 169.  1993. Role of chirality in olfactory-directed behavior: aggregation of pine engraver beetles in the genus Ips (Coleoptera: Scolytidae). J. Chem. Ecol. 19:1809–31 [Google Scholar]
  170. Seybold SJ, Dallara PL, Hishinuma SM, Flint ML. 170.  2013. Detecting and identifying the walnut twig beetle: monitoring guidelines for the invasive vector of thousand cankers disease of walnut Univ. Calif. Agric. Nat. Res. Statew. Integr. Pest Manag. Progr Oakland, CA: [Google Scholar]
  171. Seybold SJ, Dallara PL, Nelson LJ, Graves AD, Hishinuma SM, Gries R. 171.  2015. Methods of monitoring and controlling the walnut twig beetle Pityophthorus juglandis. US Patent No. 9137990 B2 [Google Scholar]
  172. Seybold SJ, Downing M. 172.  2009. What risk do invasive bark beetles and woodborers pose to forests of the western U.S.? A case study of the Mediterranean pine engraver. Orthotomicus erosus. Proc. Sympos. 2007 Soc. Am. For. Conf., Oct. 23–28, 2007, Portland, OR111–34 [Google Scholar]
  173. Seybold SJ, Huber DPW, Lee JC, Graves AD, Bohlmann J. 173.  2006. Pine monoterpenes and pine bark beetles: a marriage of convenience for defense and chemical communication. Phytochem. Rev. 5:143–78 [Google Scholar]
  174. Seybold SJ, Ohtsuka T, Wood DL, Kubo I. 174.  1995. The enantiomeric composition of ipsdienol: a chemotaxonomic character for North American populations of Ips spp. in the pini subgeneric group (Coleoptera: Scolytidae). J. Chem. Ecol. 21:995–1016 [Google Scholar]
  175. Seybold SJ, Penrose RL, Graves AD. 175.  2016. Invasive bark and ambrosia beetles in California Mediterranean forest ecosystems. Insects and Diseases of Mediterranean Forest Systems TD Paine, F Lieutier 583–662 Cham, Switz.: Springer Int. Publ. AG [Google Scholar]
  176. Seybold SJ, Teale SA, Wood DL, Zhang A, Webster FX. 176.  et al. 1992. The role of lanierone in the chemical ecology of Ips pini (Coleoptera: Scolytidae) in California. J. Chem. Ecol. 18:2305–29 [Google Scholar]
  177. Seybold SJ, Tittiger C. 177.  2003. Biochemistry and molecular biology of de novo isoprenoid pheromone production in the Scolytidae. Annu. Rev. Entomol. 48:425–53 [Google Scholar]
  178. Seybold SJ, Vanderwel D. 178.  2003. Biosynthesis and endocrine regulation of pheromone production in the Coleoptera. In Insect Pheromone Biochemistry and Molecular Biology—The Biosynthesis and Detection of Pheromones and Plant Volatiles. GJ Blomquist, RG Vogt137–200 Amsterdam: Elsevier Acad.
  179. Sharov AA, Leonard D, Liebhold AM, Roberts EA, Dickerson W. 179.  2002. “Slow the spread”: a national program to contain the gypsy moth. J. For. 100:30–35 [Google Scholar]
  180. Shea PJ, Laudenslayer WF Jr, Ferrell G, Borys R. 180.  2002. Girdled versus bark beetle-created ponderosa pine snags: utilization by cavity-dependent species and differences in decay rate and insect diversity. Proc. Sympos. Ecology and Management of Dead Wood in Western Forests145–53 Albany, CA: USDA, For. Serv. [Google Scholar]
  181. Shea PJ, McGregor MD, Daterman GD. 181.  1992. Aerial application of verbenone reduces attack of lodgepole pine by mountain pine beetle. Can. J. For. Res. 22:436–41 [Google Scholar]
  182. Shea PJ, Neustein M. 182.  1995. Protection of a rare stand of Torrey pine from Ips paraconfusus. Proc. Annu. Meet. Entomol. Soc. Am. Dec. 12–16, 199339–43 Ogden, UT: USDA, For. Serv., Intermt. Res. Stn. [Google Scholar]
  183. Shea PJ, Wentz JM. 183.  1994. Bark beetle research in California. Proc. Sympos. Manag. West. Bark Beetles Pheromones: Res. Develop46–52 Berkeley, CA: USDA, For. Serv. [Google Scholar]
  184. Shepherd WP, Huber DPW, Seybold SJ, Fettig CJ. 184.  2007. Antennal responses of the western pine beetle, Dendroctonus brevicomis (Coleoptera: Curculionidae), to stem volatiles of its primary host, Pinus ponderosa, and nine sympatric nonhost angiosperms and conifers. Chemoecology 17:209–21 [Google Scholar]
  185. Shore TL, Safranyik L, Lindgren BS. 185.  1992. The response of mountain pine beetle (Dendroctonus ponderosae) to lodgepole pine trees baited with verbenone and exo-brevicomin. J. Chem. Ecol. 18:533–41 [Google Scholar]
  186. Silverstein RM. 186.  1981. Pheromones: background and potential for use in insect pest control. Science 213:1326–32 [Google Scholar]
  187. Silverstein RM, Brownlee RG, Bellas TE, Wood DL, Browne LE. 187.  1968. Brevicomin: principal sex attractant in the frass of the female western pine beetle. Science 158:889–91 [Google Scholar]
  188. Silverstein RM, Rodin JO, Wood DL. 188.  1966. Sex attractants in frass produced by male Ips confusus in ponderosa pine. Science 154:509–10 [Google Scholar]
  189. Skillen EL, Berisford CW, Camann MA, Reardon RC. 189.  1997. Semiochemicals of forest and shade tree insects in North America, and management implications FHTET-96–15, USDA, For. Serv., For. Health Technol. Enterp Team, Morgantown, WV: [Google Scholar]
  190. Smith RH. 190.  1986. Trapping western pine beetles with baited toxic trees Res. Note PSW-382, USDA, For. Serv., Pac. Southwest For. Range Exp. Stn Berkeley, CA: [Google Scholar]
  191. Smith RH. 191.  1990. Direct control of western pine beetle, Dendroctonus brevicomis: review and assessment Gen. Tech. Rep. PSW-121, USDA, For. Serv., Pac. Southwest For. Range Exp. Stn Berkeley, CA: [Google Scholar]
  192. Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A. 192.  et al. 2010. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–62 [Google Scholar]
  193. Thistle HW, Peterson H, Allwine G, Lamb B, Strand T. 193.  et al. 2004. Surrogate pheromone plumes in three forest trunk spaces: composite statistics and case studies. For. Sci. 50:610–25 [Google Scholar]
  194. Tilden PE, Bedard WD. 194.  1988. Effect of verbenone on response of Dendroctonus brevicomis to exo-brevicomin, frontalin, and myrcene. J. Chem. Ecol. 14:113–22 [Google Scholar]
  195. 195. USDA For. Serv. 2015. Areas with tree mortality from bark beetles in the western US: summary for 2000–2014 USDA, For. Serv Washington, DC: https://www.fs.fed.us/foresthealth/technology/pdfs/MpbWestbb_Summary.pdf [Google Scholar]
  196. Vandygriff JC, Rasmussen LA, Rineholt JF. 196.  2000. A novel approach to managing fuelwood harvest using bark beetle pheromones. West. J. Appl. For. 15:183–88 [Google Scholar]
  197. Vité JP, Gara RI. 197.  1962. Volatile attractants from ponderosa pine attacked by bark beetles (Coleoptera: Scolytidae). Contr. Boyce Thompson Inst. 21:251–73 [Google Scholar]
  198. Vité JP, Pitman GB. 198.  1967. Concepts on research on bark beetle attraction and manipulation. Proc. XIV IUFRO Congr. IUFRO, September 4–7, 1967, Munich, Ger.683–701 [Google Scholar]
  199. Vité JP, Pitman GB, Fentiman AF, Kinzer GW. 199.  1972. 3-Methyl-2-cyclohexen-l-ol, isolated from Dendroctonus pseudotsugae. Naturwissenschaften 59:469 [Google Scholar]
  200. Waters WW, Stark RW, Wood DL. 200. , eds. 1985. Integrated Pest Management in Pine-Bark Beetle Ecosystems New York: John Wiley and Sons [Google Scholar]
  201. Weed AS, Bentz BJ, Ayres MP, Holmes TP. 201.  2015. Geographically variable response of Dendroctonus ponderosae to winter warming in the western United States. Landsc. Ecol. 30:1075–93 [Google Scholar]
  202. Werner RA, Holsten EH. 202.  1995. Current status of research with spruce beetle. Dendroctonus rufipennis. In Application of Semiochemicals for Management of Bark Beetle Infestations-Proceedings of an Informal Conference SM Salom, KR Hobson 23–29 Ogden, UT: USDA, For. Serv., Intermt. Res. Stn. [Google Scholar]
  203. Westfall J, Ebata T. 203.  2016. 2016 Summary of forest health conditions in British Columbia Rep. No. 15, B. C. Min. For. Lands Nat. Res. Oper Victoria, BC: https://www2.gov.bc.ca/assets/gov/environment/research-monitoring-and-reporting/monitoring/aerial-overview-survey-documents/aos_2016.pdf [Google Scholar]
  204. Wilson IM, Borden JH, Gries R, Gries G. 204.  1996. Green leaf volatiles as antiaggregants for the mountain pine beetle, Dendroctonusponderosae Hopkins (Coleoptera: Scolytidae). J. Chem. Ecol. 22:1861–75 [Google Scholar]
  205. Wood DL. 205.  1982. The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles. Annu. Rev. Entomol. 27:411–46 [Google Scholar]
  206. Wood DL, Browne LE, Ewing B, Lindahl K, Bedard WD. 206.  et al. 1976. Western pine beetle: specificity among enantiomers of male and female components of an attractant pheromone. Science 192:896–98 [Google Scholar]
  207. Wood DL, Stark RW, Waters WW, Bedard WD, Cobb FW Jr. 207.  1985. Treatment tactics and strategies. Integrated Pest Management in Pine-Bark Beetle Ecosystems WW Waters, RW Stark, DL Wood 121–40 New York: John Wiley and Sons [Google Scholar]
  208. Wulder MA, Ortlepp SM, White JC, Coops MC, Coggins SB. 208.  2009. Monitoring the impacts of mountain pine beetle mitigation. For. Ecol. Manag. 258:1181–87 [Google Scholar]
  209. Zhang QH, Schlyter F. 209.  2004. Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles. Agric. For. Entomol. 6:1–19 [Google Scholar]
  210. Zogas K. 210.  2001. Summary of thirty years of field testing of MCH: antiaggregation pheromone of the spruce bark beetle and the Douglas-fir beetle Tech. Rep. R10-TP-91, USDA, For. Serv., Pac. Northwest Res. Stn Anchorage, AK: [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error