MicroRNAs (miRNAs) are involved in the regulation of a number of processes associated with metamorphosis, either in the less modified hemimetabolan mode or in the more modified holometabolan mode. The miR-100/let-7/miR-125 cluster has been studied extensively, especially in relation to wing morphogenesis in both hemimetabolan and holometabolan species. Other miRNAs also participate in wing morphogenesis, as well as in programmed cell and tissue death, neuromaturation, neuromuscular junction formation, and neuron cell fate determination, typically during the pupal stage of holometabolan species. A special case is the control of miR-2 over Kr-h1 transcripts, which determines adult morphogenesis in the hemimetabolan metamorphosis. This is an elegant example of how a single miRNA can control an entire process by acting on a crucial mediator; however, this is a quite exceptional mechanism that was apparently lost during the transition from hemimetaboly to holometaboly.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aparicio R, Simoes Da Silva CJ, Busturia A. 1.  2015. MicroRNA miR-7 contributes to the control of Drosophila wing growth. Dev. Dyn. 244:21–30Control of miR-7 over Dacapo, modulating cell growth, and cell cycle progression during wing development. [Google Scholar]
  2. Asgari S. 2.  2013. MicroRNA functions in insects. Insect Biochem. Mol. Biol. 43:388–97 [Google Scholar]
  3. Bartel DP. 3.  2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–97 [Google Scholar]
  4. Bartel DP. 4.  2009. MicroRNAs: target recognition and regulatory functions. Cell 136:215–33 [Google Scholar]
  5. Becam I, Rafel N, Hong X, Cohen SM, Milan M. 5.  2011. Notch-mediated repression of bantam miRNA contributes to boundary formation in the Drosophila wing. Development 138:3781–89 [Google Scholar]
  6. Belles X. 6.  2011. Origin and evolution of insect metamorphosis. Encyclopedia of Life Sciences (eLS Chichester, UK: Wiley https://doi.org/10.1002/9780470015902.a0022854 [Google Scholar]
  7. Belles X, Cristino AS, Tanaka ED, Rubio M, Piulachs M-D. 7.  2011. Insect microRNAs: from molecular mechanisms to biological roles. Insect Molecular Biology and Biochemistry LI Gilbert 30–56 London: Academic [Google Scholar]
  8. Belles X, Santos CG. 8.  2014. The MEKRE93 (Methoprene tolerant-Krüppel homolog 1-E93) pathway in the regulation of insect metamorphosis, and the homology of the pupal stage. Insect Biochem. Mol. Biol. 52:60–68 [Google Scholar]
  9. Biryukova I, Asmar J, Abdesselem H, Heitzler P. 9.  2009. Drosophila mir-9a regulates wing development via fine-tuning expression of the LIM only factor, dLMO. Dev. Biol. 327:487–96 [Google Scholar]
  10. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. 10.  2003. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36First description of a direct effect of a miRNA (bantam) on apoptosis by controlling hid. [Google Scholar]
  11. Caygill EE, Johnston LA. 11.  2008. Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs. Curr. Biol. 18:943–50First report on the multiple effects of miRNAs (let-7 and miR-125) in Drosophila metamorphosis. [Google Scholar]
  12. Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K. 12.  et al. 2010. Ancient animal microRNAs and the evolution of tissue identity. Nature 463:1084–88 [Google Scholar]
  13. Czech B, Zhou R, Erlich Y, Brennecke J, Binari R. 13.  et al. 2009. Hierarchical rules for Argonaute loading in Drosophila. Mol. Cell 36:445–56 [Google Scholar]
  14. Diaz-Benjumea FJ, Cohen SM. 14.  1995. Serrate signals through Notch to establish a Wingless-dependent organizer at the dorsal/ventral compartment boundary of the Drosophila wing. Development 121:4215–25 [Google Scholar]
  15. Dong L, Li J, Huang H, Yin MX, Xu J. 15.  et al. 2015. Growth suppressor lingerer regulates bantam microRNA to restrict organ size. J. Mol. Cell Biol. 7:415–28 [Google Scholar]
  16. Fernandez-Nicolas A, Belles X. 16.  2016. CREB-binding protein contributes to the regulation of endocrine and developmental pathways in insect hemimetabolan pre-metamorphosis. Biochim. Biophys. Acta 1860:508–15 [Google Scholar]
  17. Fichelson P, Brigui A, Pichaud F. 17.  2012. Orthodenticle and Kruppel homolog 1 regulate Drosophila photoreceptor maturation. PNAS 109:7893–98 [Google Scholar]
  18. Foottit RG, Adler PH. 18.  2009. Insect Biodiversity: Science and Society Oxford, UK: Wiley-Blackwell [Google Scholar]
  19. Fromm B, Billipp T, Peck LE, Johansen M, Tarver JE. 19.  et al. 2015. A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu. Rev. Genet. 49:213–42 [Google Scholar]
  20. Ghildiyal M, Zamore PD. 20.  2009. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10:94–108 [Google Scholar]
  21. Gomez-Orte E, Belles X. 21.  2009. MicroRNA-dependent metamorphosis in hemimetabolan insects. PNAS 106:21678–82Depletion of dicer-1, involving general depletion of miRNAs, completely prevents metamorphosis in a hemimetabolan insect. [Google Scholar]
  22. Herranz H, Hong X, Cohen SM. 22.  2012. Mutual repression by bantam miRNA and Capicua links the EGFR/MAPK and Hippo pathways in growth control. Curr. Biol. 22:651–57 [Google Scholar]
  23. Huang JH, Lozano J, Belles X. 23.  2013. Broad-complex functions in postembryonic development of the cockroach Blattella germanica shed new light on the evolution of insect metamorphosis. Biochim. Biophys. Acta 1830:2178–87 [Google Scholar]
  24. Jindra M, Belles X, Shinoda T. 24.  2015. Molecular basis of juvenile hormone signaling. Curr. Opin. Insect Sci. 11:39–46 [Google Scholar]
  25. Karim FD, Thummel CS. 25.  1992. Temporal coordination of regulatory gene expression by the steroid hormone ecdysone. EMBO J. 11:4083–93 [Google Scholar]
  26. King-Jones K, Thummel CS. 26.  2005. Nuclear receptors—a perspective from Drosophila. Nat. Rev. Genet. 6:311–23 [Google Scholar]
  27. Lee YS, Nakahara K, Pham JW, Kim K, He Z. 27.  et al. 2004. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69–81 [Google Scholar]
  28. Lozano J, Belles X. 28.  2011. Conserved repressive function of Krüppel homolog 1 on insect metamorphosis in hemimetabolous and holometabolous species. Sci. Rep. 1:163 [Google Scholar]
  29. Lozano J, Montañez R, Belles X. 29.  2015. MiR-2 family regulates insect metamorphosis by controlling the juvenile hormone signaling pathway. PNAS 112:3740–45miR-2 regulates metamorphosis by controlling Krüppel homolog 1, a transducer of juvenile hormone antimetamorphic action. [Google Scholar]
  30. Lucas KL, Zhao B, Liu L, Raikhel AS. 30.  2015. Regulation of physiological processes by microRNAs in insects. Curr. Opin. Insect Sci. 11:1–7 [Google Scholar]
  31. Meister G. 31.  2013. Argonaute proteins: functional insights and emerging roles. Nat. Rev. Genet. 14:447–59 [Google Scholar]
  32. Micchelli CA, Blair SS. 32.  1999. Dorsoventral lineage restriction in wing imaginal discs requires Notch. Nature 401:473–76 [Google Scholar]
  33. Misof B, Liu S, Meusemann K, Peters RS, Donath A. 33.  et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–67 [Google Scholar]
  34. Moss EG. 34.  2007. Heterochronic genes and the nature of developmental time. Curr. Biol. 17:R425–34 [Google Scholar]
  35. Nakagawa Y, Henrich VC. 35.  2009. Arthropod nuclear receptors and their role in molting. FEBS J. 276:6128–57 [Google Scholar]
  36. Nelson C, Ambros V, Baehrecke EH. 36.  2014. miR-14 regulates autophagy during developmental cell death by targeting ip3-kinase 2. Mol. Cell 56:376–88Role of miR-14 in salivary gland cell death by targeting ip3-kinase and affecting IP3 signaling. [Google Scholar]
  37. Okamura K, Liu N, Lai EC. 37.  2009. Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. Mol. Cell 36:431–44 [Google Scholar]
  38. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI. 38.  et al. 2000. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89 [Google Scholar]
  39. Rauskolb C, Correia T, Irvine KD. 39.  1999. Fringe-dependent separation of dorsal and ventral cells in the Drosophila wing. Nature 401:476–80 [Google Scholar]
  40. Riddiford LM, Hiruma K, Zhou X, Nelson CA. 40.  2003. Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochem. Mol. Biol. 33:1327–38 [Google Scholar]
  41. Ronshaugen M, Biemar F, Piel J, Levine M, Lai EC. 41.  2005. The Drosophila microRNA iab-4 causes a dominant homeotic transformation of halteres to wings. Genes Dev. 19:2947–52Control of iab-4 over the Hox gene Ultrabithorax, regulating the formation of halteres in Drosophila. [Google Scholar]
  42. Roush S, Slack FJ. 42.  2008. The let-7 family of microRNAs. Trends Cell Biol. 18:505–16 [Google Scholar]
  43. Rubio M, Belles X. 43.  2013. Subtle roles of microRNAs let-7, miR-100 and miR-125 on wing morphogenesis in hemimetabolan metamorphosis. J. Insect Physiol. 59:1089–94 [Google Scholar]
  44. Rubio M, de Horna A, Belles X. 44.  2012. MicroRNAs in metamorphic and non-metamorphic transitions in hemimetabolan insect metamorphosis. BMC Genom. 13:386 [Google Scholar]
  45. Sempere LF, Sokol NS, Dubrovsky EB, Berger EM, Ambros V. 45.  2003. Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and Broad-Complex gene activity. Dev. Biol. 259:9–18 [Google Scholar]
  46. Smykal V, Daimon T, Kayukawa T, Takaki K, Shinoda T, Jindra M. 46.  2014. Importance of juvenile hormone signaling arises with competence of insect larvae to metamorphose. Dev. Biol. 390:221–30 [Google Scholar]
  47. Sokol NS, Xu P, Jan YN, Ambros V. 47.  2008. Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes Dev. 22:1591–96 [Google Scholar]
  48. Stark A, Bushati N, Jan CH, Kheradpour P, Hodges E. 48.  et al. 2008. A single Hox locus in Drosophila produces functional microRNAs from opposite DNA strands. Genes Dev. 22:8–13 [Google Scholar]
  49. Tarver JE, Sperling EA, Nailor A, Heimberg AM, Robinson JM. 49.  et al. 2013. miRNAs: small genes with big potential in metazoan phylogenetics. Mol. Biol. Evol. 30:2369–82 [Google Scholar]
  50. Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G. 50.  2008. Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol. 9:R10 [Google Scholar]
  51. Treiblmayr K, Pascual N, Piulachs MD, Keller T, Belles X. 51.  2006. Juvenile hormone titer versus juvenile hormone synthesis in female nymphs and adults of the German cockroach, Blattella germanica. J. Insect Sci. 6:1–7 [Google Scholar]
  52. Truman JW, Riddiford LM. 52.  2002. Endocrine insights into the evolution of metamorphosis in insects. Annu. Rev. Entomol. 47:467–500 [Google Scholar]
  53. Tyler DM, Okamura K, Chung WJ, Hagen JW, Berezikov E. 53.  et al. 2008. Functionally distinct regulatory RNAs generated by bidirectional transcription and processing of microRNA loci. Genes Dev. 22:26–36 [Google Scholar]
  54. Ureña E, Manjon C, Franch-Marro X, Martin D. 54.  2014. Transcription factor E93 specifies adult metamorphosis in hemimetabolous and holometabolous insects. PNAS 111:7024–29 [Google Scholar]
  55. Varghese J, Cohen SM. 55.  2007. microRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila. Genes Dev. 21:2277–82 [Google Scholar]
  56. Verma P, Cohen SM. 56.  2015. miR-965 controls cell proliferation and migration during tissue morphogenesis in the Drosophila abdomen. eLife 4:e07389 [Google Scholar]
  57. Wang Y, Jiang F, Wang H, Song T, Wei Y. 57.  et al. 2015. Evidence for the expression of abundant microRNAs in the locust genome. Sci. Rep. 5:13608 [Google Scholar]
  58. Wu YC, Chen CH, Mercer A, Sokol NS. 58.  2012. let-7-Complex microRNAs regulate the temporal identity of Drosophila mushroom body neurons via chinmo. Dev. Cell 23:202–9Control of let-7 and miR-125 over Chinmo, regulating cell fate in mushroom body lineages. [Google Scholar]
  59. Zhang W, Cohen SM. 59.  2013. The Hippo pathway acts via p53 and microRNAs to control proliferation and proapoptotic gene expression during tissue growth. Biol. Open 2:822–28 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error