The South American tomato pinworm, (Meyrick), is native to the western Neotropics. After invading Spain in 2006, it spread rapidly throughout Afro-Eurasia and has become a major threat to world tomato production. Integrated pest management (IPM) strategies have been developed, but widespread insecticide use has caused selection for insecticide resistance as well as undesirable effects on key beneficial arthropods. Augmentation and conservation biological control relying on omnivorous mirid predators has proved successful for management of where implementation is dependent on abiotic, biotic (e.g., alternative prey), and anthropogenic factors (e.g., pesticides). Research has been carried out on larval parasitoids, showing potential for further development of sustainable control. The development of resistant tomato varieties is ongoing, but they are not commercially available yet. Knowledge gaps remain to be filled to optimize IPM packages on tomato crops and to help prevent further spread worldwide.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abbas S, Pérez-Hedo M, Colazza S, Urbaneja A. 1.  2014. The predatory mirid Dicyphus maroccanus as a new potential biological control agent in tomato crops. BioControl 59:565–74 [Google Scholar]
  2. Abbes K, Biondi A, Kurtulus A, Ricupero M, Russo A. 2.  et al. 2015. Combined non-target effects of insecticide and high temperature on the parasitoid Bracon nigricans. PLOS ONE 10:e0138411 [Google Scholar]
  3. Abbes K, Chermiti B. 3.  2014. Propensity of three Tunisian populations of the tomato leafminer Tuta absoluta (Lepidoptera: Gelechiidae) for deuterotokous parthenogenetic reproduction. Afr. Entomol. 22:538–44 [Google Scholar]
  4. Abbes K, Harbi A, Elimem M, Hafsi A, Chermiti B. 4.  2016. Bioassay of three solanaceous weeds as alternative hosts for the invasive tomato leafminer Tuta absoluta (Lepidoptera: Gelechiidae) and insights on their carryover potential. Afr. Entomol. 24:334–42 [Google Scholar]
  5. Arnó J, Gabarra R. 5.  2011. Side effects of selected insecticides on the Tuta absoluta (Lepidoptera: Gelechiidae) predators Macrolophus pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae). J. Pest Sci. 84:513–20 [Google Scholar]
  6. Asplen MK, Anfora G, Biondi A, Choi D-S, Chu D. 6.  et al. 2015. Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J. Pest Sci. 88:469–94 [Google Scholar]
  7. Bajonero JG, Parra JR. 7.  2017. Selection and suitability of an artificial diet for Tuta absoluta (Lepidoptera: Gelechiidae) based on physical and chemical characteristics. J. Insect Sci. 17:13 [Google Scholar]
  8. Balzan MV, Wäckers FL. 8.  2013. Flowers to selectively enhance the fitness of a host-feeding parasitoid: adult feeding by Tuta absoluta and its parasitoid Necremnus artynes. Biol. Control 67:21–31 [Google Scholar]
  9. Barros EC, Bacci L, Picanco MC, Martins JC, Rosado JF, Silva GA. 9.  2015. Physiological selectivity and activity reduction of insecticides by rainfall to predatory wasps of Tuta absoluta. J. Environ. Sci. Health B 50:45–54 [Google Scholar]
  10. Batalla-Carrera L, Morton A, García-del-Pino F. 10.  2010. Efficacy of entomopathogenic nematodes against the tomato leafminer Tuta absoluta in laboratory and greenhouse conditions. BioControl 55:523–30 [Google Scholar]
  11. Bawin T, Dujeu D, De Backer L, Francis F, Verheggen FJ. 11.  2016. Ability of Tuta absoluta (Lepidoptera: Gelechiidae) to develop on alternative host plant species. Can. Entomol. 148:434–42 [Google Scholar]
  12. Benvenga SR, Fernandes OA, Gravena S. 12.  2007. Decision making for integrated pest management of the South American tomato pinworm based on sexual pheromone traps. Hortic. Bras. 25:164–69 [Google Scholar]
  13. Bergougnoux V. 13.  2014. The history of tomato: from domestication to biopharming. Biotechnol. Adv. 32:170–89 [Google Scholar]
  14. Biondi A, Desneux N, Amiens-Desneux E, Siscaro G, Zappalà L. 14.  2013. Biology and developmental strategies of the Palaearctic parasitoid Bracon nigricans (Hymenoptera: Braconidae) on the neotropical moth Tuta absoluta (Lepidoptera: Gelechiidae). J. Econ. Entomol. 106:1638–47 [Google Scholar]
  15. Biondi A, Desneux N, Siscaro G, Zappalà L. 15.  2012. Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87:803–12Labeling of biopesticides used in organic farming does not match with potential hazard toward biocontrol agents. [Google Scholar]
  16. Biondi A, Mommaerts V, Smagghe G, Viñuela E, Zappalà L, Desneux N. 16.  2012. The non-target impact of spinosyns on beneficial arthropods. Pest Manag. Sci. 68:1523–36 [Google Scholar]
  17. Biondi A, Zappalà L, Di Mauro A, Tropea Garzia G, Russo A. 17.  et al. 2016. Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis?. BioControl 61:79–90 [Google Scholar]
  18. Biondi A, Zappalà L, Stark JD, Desneux N. 18.  2013. Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects?. PLOS ONE 8:e76548 [Google Scholar]
  19. Bleeker PM, Mirabella R, Diergaarde PJ, VanDoorn A, Tissier A. 19.  et al. 2012. Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. PNAS 109:20124–29 [Google Scholar]
  20. Bompard A, Jaworski CC, Bearez P, Desneux N. 20.  2013. Sharing a predator: Can an invasive alien pest affect the predation on a local pest?. Popul. Ecol 55:433–40Invasive pests can promote biocontrol service toward a native pest owing to predator-mediated indirect interactions. [Google Scholar]
  21. Borgi I, Dupuy JW, Blibech I, Lapaillerie D, Lomenech AM. 21.  et al. 2016. Hyper-proteolytic mutant of Beauveria bassiana, a new biological control agent against the tomato borer. Agron. Sustain. Dev. 4:1–9 [Google Scholar]
  22. Cáceres S. 22.  1992. La polilla del tomate en Corrientes. Biología y control Boletín EEA INTA Bella Vista Corrientes, Argent.:
  23. Cagnotti CL, Andorno AV, Hernández CM, Paladino LC, Botto EN, López SN. 23.  2016. Inherited sterility in Tuta absoluta (Lepidoptera: Gelechiidae): pest population suppression and potential for combined use with a generalist predator. Fla. Entomol. 99:87–94 [Google Scholar]
  24. Calvo FJ, Lorente MJ, Stansly PA, Belda JE. 24.  2012. Preplant release of Nesidiocoris tenuis and supplementary tactics for control of Tuta absoluta and Bemisa tabaci in greenhouse tomato. Entomol. Exp. Appl. 143:111–19 [Google Scholar]
  25. Cameron PJ, Walker GP, Hodson AJ, Kale AJ, Herman TJB. 25.  2009. Trends in IPM and insecticide use in processing tomatoes in New Zealand. Crop Prot 28:421–27 [Google Scholar]
  26. Campos MR, Picanço MC, Martins JC, Tomaz AC, Guedes RNC. 26.  2011. Insecticide selectivity and behavioral response of the earwig Doru luteipes. Crop Prot 30:1535–40 [Google Scholar]
  27. Campos MR, Silva TBM, Silva WM, Silva JE, Siqueira HA. 27.  2015. Spinosyn resistance in the tomato borer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). J. Pest Sci. 88:405–12 [Google Scholar]
  28. Campos MR, Silva TBM, Silva WM, Silva JE, Siqueira HA. 28.  2015. Susceptibility of Tuta absoluta (Lepidoptera: Gelechiidae) Brazilian populations to ryanodine receptor modulators. Pest Manag. Sci. 71:537–44 [Google Scholar]
  29. Campos MR, Biondi A, Adiga A, Guedes RNC, Desneux N. 29.  2017. From the Western Palaearctic region to beyond: Tuta absoluta ten years after invading Europe. J. Pest Sci. 90:787–96 [Google Scholar]
  30. Caparros Megido R, Haubruge E, Verheggen FJ. 30.  2012. First evidence of deuterotokous parthenogenesis in the tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). J. Pest Sci 85:409–12The invasive strain of Tuta absoluta exhibits deuterotoky parthenogenesis, although this has never been reported in South America. [Google Scholar]
  31. Caparros Megido R, Haubruge E, Verheggen FJ. 31.  2013. Pheromone-based management strategies to control the tomato leafminer, Tutaabsoluta (Lepidoptera: Gelechiidae). A review. Biotechnol. Agron. Soc. Environ. 17:475–82 [Google Scholar]
  32. Castañé C, Arnó J, Gabarra R, Alomar O. 32.  2011. Plant damage to vegetable crops by zoophytophagous mirid predators. Biol. Control 59:22–29 [Google Scholar]
  33. Celestino D, Braoios GI, Ramos RS, Gontijo LM, Guedes RNC. 33.  2014. Azadirachtin-mediated reproductive response of the predatory pirate bug Blaptostethus pallescens. BioControl 59:697–705 [Google Scholar]
  34. 34. CFIA (Can. Food Insp. Agency). 2010. New requirements for tomatoes originating from countries infested with tomato leafminer News Release, Feb. 16, accessed May 2, 2016. https://www.canada.ca/en/news/archive/2010/02/new-requirements-tomatoes-originating-countries-infested-tomato-leafminer.html
  35. Chailleux A, Bearez P, Pizzol J, Amiens-Desneux E, Ramirez-Romero R, Desneux N. 35.  2013. Potential for combined use of parasitoids and generalist predators for biological control of the key invasive tomato pest Tuta absoluta. J. Pest Sci. 86:533–41 [Google Scholar]
  36. Chailleux A, Biondi A, Han P, Tabone E, Desneux N. 36.  2013. Suitability of the pest–plant system Tuta absoluta (Lepidoptera: Gelechiidae)–tomato for Trichogramma (Hymenoptera: Trichogrammatidae) parasitoids and insights for biological control. J. Econ. Entomol. 106:2310–21 [Google Scholar]
  37. Chailleux A, Desneux N, Seguret J, Do Thi Khanh H, Maignet P, Tabone E. 37.  2012. Assessing European egg parasitoids as a mean of controlling the invasive South American tomato pinworm Tuta absoluta. PLOS ONE 7:e48068 [Google Scholar]
  38. Chailleux A, Droui A, Bearez P, Desneux N. 38.  2017. Survival of a specialist natural enemy experiencing resource competition with an omnivorous predator when sharing the invasive prey Tuta absoluta. Ecol. Evol 7:8329–37 [Google Scholar]
  39. Chailleux A, Wajnberg E, Zhou Y, Amiens-Desneux E, Desneux N. 39.  2014. New parasitoid-predator associations: Female parasitoids do not avoid competition with generalist predators when sharing invasive prey. Naturwissenschaften 101:1075–83 [Google Scholar]
  40. Clavero M, García-Berthou E. 40.  2005. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20:110 [Google Scholar]
  41. Cocco A, Deliperi S, Delrio G. 41.  2013. Control of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in greenhouse tomato crops using the mating disruption technique. J. Appl. Entomol. 137:16–28 [Google Scholar]
  42. Cocco A, Deliperi S, Lentini A, Mannu R, Delrio G. 42.  2015. Seasonal phenology of Tuta absoluta (Lepidoptera: Gelechiidae) in protected and open-field crops under Mediterranean climatic conditions. Phytoparasitica 43:713–24 [Google Scholar]
  43. Cocco A, Serra G, Lentini A, Deliperi S, Delrio G. 43.  2015. Spatial distribution and sequential sampling plans for Tuta absoluta (Lepidoptera: Gelechiidae) in greenhouse tomato crops. Pest Manag. Sci. 71:1311–23 [Google Scholar]
  44. Cônsoli FL, Parra JRP, Hassan SA. 44.  1998. Side-effects of insecticides used in tomato fields on the egg parasitoid Trichogramma pretiosum Riley (Hym., Trichogrammatidae), a natural enemy of Tuta absoluta (Meyrick) (Lep., Gelechiidae). J. Appl. Entomol. 122:43–47 [Google Scholar]
  45. Contreras J, Mendoza JE, Martínez-Aguirre MR, García-Vidal L, Izquierdo J, Bielza P. 45.  2014. Efficacy of enthomopathogenic fungus Metarhizium anisopliae against Tuta absoluta (Lepidoptera: Gelechiidae). J. Econ. Entomol. 107:121–24 [Google Scholar]
  46. Coqueret V, Le Bot J, Larbat R, Desneux N, Robin C, Adamowicz S. 46.  2017. Nitrogen nutrition of tomato plant alters leafminer dietary intake dynamics. J. Insect Physiol. 99:130–38 [Google Scholar]
  47. Crespo-Pérez V, Régnière J, Chuine I, Rebaudo F, Dangles O. 47.  2015. Changes in the distribution of multispecies pest assemblages affect levels of crop damage in warming tropical Andes. Glob. Change Biol. 21:82–96 [Google Scholar]
  48. Cuthbertson AGS, Mathers JJ, Blackburn LF, Korycinska A, Luo W. 48.  et al. 2013. Population development of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) under simulated UK glasshouse conditions. Insects 4:185–97 [Google Scholar]
  49. de Azevedo SM, Ventura Faria M, Maluf WR, Barneche de Oliveira AC, de Freitas JA. 49.  2003. Zingiberene-mediated resistance to the South American tomato pinworm derived from Lycopersicon hirsutum var. hirsutum. Euphytica 134:347–51 [Google Scholar]
  50. De Backer L, Megido RC, Fauconnier M-L, Brostaux Y, Francis F, Verheggen F. 50.  2015. Tuta absoluta-induced plant volatiles: attractiveness towards the generalist predator Macrolophus pygmaeus. Arthropod Plant Interact 9:465–76 [Google Scholar]
  51. De Castro AA, Corrêa AS, Legaspi JC, Guedes RNC, Serrão JE, Zanuncio JC. 51.  2013. Survival and behavior of the insecticide-exposed predators Podisus nigrispinus and Supputius cincticeps (Heteroptera: Pentatomidae). Chemosphere 93:1043–50 [Google Scholar]
  52. Desneux N, Decourtye A, Delpuech J-M. 52.  2007. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52:81–106 [Google Scholar]
  53. Desneux N, Luna MG, Guillemaud T, Urbaneja A. 53.  2011. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J. Pest Sci. 84:403–8 [Google Scholar]
  54. Desneux N, Wajnberg E, Wyckhuys KAG, Burgio G, Arpaia S. 54.  et al. 2010. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J. Pest Sci 83:197–215Describes invasion of Europe by Tuta absoluta and lists South American natural enemies for classical biocontrol. [Google Scholar]
  55. Dias DM, Resende JTV, Faria MV, Camargo LKP, Chagas RR, Lima IP. 55.  2013. Selection of processing tomato genotypes with high acyl sugar content that are resistant to the tomato pinworm. Genet. Mol. Res. 12:381–89 [Google Scholar]
  56. Ecole CC, Picanço MC, Guedes RNC, Brommonschenkel SH. 56.  2001. Effect of cropping season and possible compounds involved in the resistance of Lycopersicon hirsutum f. typicum to Tuta absoluta (Meyrick) (Lep., Gelechiidae). J. Appl. Entomol. 125:193–200 [Google Scholar]
  57. El-Arnaouty SA, Pizzol J, Galal HH, Kortam MN, Afifi AI. 57.  et al. 2014. Assessment of two Trichogramma species for the control of Tuta absoluta in North African tomato greenhouses. Afr. Entomol. 22:801–9 [Google Scholar]
  58. 58. FAOSTAT (Food Agric. Org. U. N.). 2017. FAOSTAT statistics database Rome, Italy: updated May 17, 2017, accessed April 24, 2017. http://www.fao.org/faostat
  59. Ferracini C, Ingegno BL, Navone P, Ferrari E, Mosti M. 59.  et al. 2012. Adaptation of indigenous larval parasitoids to Tuta absoluta (Lepidoptera: Gelechiidae) in Italy. J. Econ. Entomol. 105:1311–19 [Google Scholar]
  60. Gebiola M, Bernardo U, Ribes A, Gibson GAP. 60.  2015. An integrative study of Necremnus Thomson (Hymenoptera: Eulophidae) associated with invasive pests in Europe and North America: taxonomic and ecological implications. Zoolog. J. Linn. Soc. 173:352–423 [Google Scholar]
  61. Gharekhani GH, Salek-Ebrahimi H. 61.  2014. Life table parameters of Tuta absoluta (Lepidoptera: Gelechiidae) on different varieties of tomato. J. Econ. Entomol. 107:1765–70 [Google Scholar]
  62. Gontijo LM, Celestino D, Queiroz OS, Guedes RNC, Picanço MC. 62.  2015. Impacts of azadirachtin and chlorantraniliprole on the developmental stages of pirate bug predators (Hemiptera: Anthocoridae) of the tomato pinworm Tuta absoluta (Lepidoptera: Gelechiidae). Fla. Entomol. 98:59–64 [Google Scholar]
  63. Gontijo PC, Picanço MC, Pereira EJG, Martins JC, Chediak M, Guedes RNC. 63.  2013. Spatial and temporal variation in the control failure likelihood of the tomato leaf miner, Tuta absoluta. Ann. Appl. Biol. 162:50–59Decouples insecticide resistance and control failure likelihood in the case of Tuta absoluta. [Google Scholar]
  64. González-Cabrera J, Mollá O, Montón H, Urbaneja A. 64.  2011. Efficacy of Bacillus thuringiensis (Berliner) in controlling the tomato borer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). BioControl 56:71–80 [Google Scholar]
  65. Guedes RNC. 65.  2017. Insecticide resistance, control failure likelihood and the First Law of Geography. Pest Manag. Sci. 73:479–84 [Google Scholar]
  66. Guedes RNC, Picanço MC. 66.  2012. The tomato borer Tuta absoluta in South America: pest status, management and insecticide resistance. EPPO Bull 42:211–16 [Google Scholar]
  67. Guedes RNC, Siqueira HAA. 67.  2012. The tomato borer Tuta absoluta: insecticide resistance and control failure. CAB Rev 7:1–7 [Google Scholar]
  68. Guedes RNC, Smagghe G, Stark JD, Desneux N. 68.  2016. Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Annu. Rev. Entomol. 61:43–62 [Google Scholar]
  69. Guillemaud T, Blin A, Le Goff I, Desneux N, Reyes M. 69.  et al. 2015. The tomato borer, Tuta absoluta, invading the Mediterranean Basin, originates from a single introduction from Central Chile. Sci. Rep 5:8371Invasion of Tuta absoluta into Europe and Africa stems from a single initial Chilean population. [Google Scholar]
  70. Haddi K, Berger M, Bielza P, Cifuentes D, Field LM. 70.  et al. 2012. Identification of mutations associated with pyrethroid resistance in the voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta). Insect Biochem. Mol. Biol. 42:506–13 [Google Scholar]
  71. Han P, Desneux N, Michel T, Le Bot J Seassau A. 71.  et al. 2016. Does plant cultivar difference modify the bottom-up effects of resource limitation on plant-insect herbivore interactions?. J. Chem. Ecol. 42:1293–303 [Google Scholar]
  72. Han P, Dong Y, Lavoir AV, Adamowicz S, Bearez P. 72.  et al. 2015. Effect of plant nitrogen and water status on the foraging behavior and fitness of an omnivorous arthropod. Ecol. Evol. 5:5468–77 [Google Scholar]
  73. Han P, Lavoir AV, Le Bot J, Amiens-Desneux E, Desneux N. 73.  2014. Nitrogen and water availability to tomato plants triggers bottom-up effects on the leafminer Tuta absoluta. Sci. Rep. 4:4455 [Google Scholar]
  74. Haye T, Gariepy T, Hoelmer K, Rossi JP, Streito JC. 74.  et al. 2015. Range expansion of the invasive brown marmorated stinkbug, Halyomorpha halys: an increasing threat to field, fruit and vegetable crops worldwide. J. Pest Sci. 88:665–73 [Google Scholar]
  75. Heimpel GE, Frelich LE, Landis DA, Hopper KR, Hoelmer KA. 75.  et al. 2010. European buckthorn and Asian soybean aphid as components of an extensive invasional meltdown in North America. Biol. Invasions 12:2913–31 [Google Scholar]
  76. Hulme PE. 76.  2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46:10–18 [Google Scholar]
  77. Ingegno BL, Candian V, Psomadelis I, Bodino N, Tavella L. 77.  2017. The potential of host plants for biological control of Tuta absoluta by the predator Dicyphus errans. Bull. Entomol. Res. 107:340–48 [Google Scholar]
  78. Ingegno BL, Ferracini C, Gallinotti D, Alma A, Tavella L. 78.  2013. Evaluation of the effectiveness of Dicyphus errans (Wolff) as predator of Tuta absoluta (Meyrick). Biol. Control 67:246–52 [Google Scholar]
  79. Jaworski CC, Bompard A, Genies L, Amiens-Desneux E, Desneux N. 79.  2013. Preference and prey switching in a generalist predator attacking local and invasive alien pests. PLOS ONE 8:e82231 [Google Scholar]
  80. Jaworski CC, Chailleux A, Bearez P, Desneux N. 80.  2015. Apparent competition between major pests reduces pest population densities on tomato crop, but not yield loss. J. Pest Sci 88:793–803Effective apparent competition between agricultural pests does not prevent yield loss despite decreased pest densities. [Google Scholar]
  81. Konuş M. 81.  2014. Analysing resistance of different Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) strains to abamectin insecticide. Turk. J. Biochem. 39:291–97 [Google Scholar]
  82. Krechemer FS, Foerster LA. 82.  2015. Tuta absoluta (Lepidoptera: Gelechiidae): thermal requirements and effect of temperature on development, survival, reproduction and longevity. Eur. J. Entomol. 112:658–63 [Google Scholar]
  83. Kumar P, Whitten M, Thoeming G, Borgemeister C, Poehling H-M. 83.  2008. Effects of bio-pesticides on Eretmocerus warrae (Hym., Aphelinidae), a parasitoid of Bemisia tabaci (Hom., Aleyrodidae). J. Appl. Entomol. 132:605–13 [Google Scholar]
  84. Larbat R, Adamowicz S, Robin C, Han P, Desneux N, Le Bot J. 84.  2016. Interrelated responses of tomato plants and the leaf miner Tuta absoluta to nitrogen supply. Plant Biol 18:495–504 [Google Scholar]
  85. Leckie BM, Halitschke R, De Jong DM, Smeda JR, Kessler A, Mutschler MA. 85.  2014. Quantitative trait loci regulating the fatty acid profile of acylsugars in tomato. Mol. Breeding 34:1201–13 [Google Scholar]
  86. Lee MS, Albajes R, Eizaguirre M. 86.  2014. Mating behaviour of female Tuta absoluta (Lepidoptera: Gelechiidae): Polyandry increases reproductive output. J. Pest Sci. 87:429–39 [Google Scholar]
  87. Leite GLD, Picanço M, Guedes RNC, Zanuncio JC. 87.  2001. Role of plant age in the resistance of Lycopersicon hirsutum f. glabratum to the tomato leafminer Tutaabsoluta (Lepidoptera: Gelechiidae). Sci. Hortic. 89:103–13 [Google Scholar]
  88. Lobos E, Occhionero M, Werenitzky D, Fernandez J, Gonzalez LM. 88.  et al. 2013. Optimization of a trap for Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) and trials to determine the effectiveness of mass trapping. Neotropical Entomol 42:448–57 [Google Scholar]
  89. Lu Y, Wu K, Jiang Y, Guo Y, Desneux N. 89.  2012. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–65 [Google Scholar]
  90. Maluf WR, de Fátima Silva V, das Graça Cardoso M, Gomes LAA, Neto ACG. 90.  et al. 2010. Resistance to the South American tomato pinworm Tuta absoluta in high acylsugar and/or high zingiberene tomato genotypes. Euphytica 176:113–23 [Google Scholar]
  91. Martinou AF, Seraphides N, Stavrinides MC. 91.  2014. Lethal and behavioral effects of pesticides on the insect predator Macrolophus pygmaeus. Chemosphere 96:167–73 [Google Scholar]
  92. Martins JC, Picanço MC, Bacci L, Guedes RNC, Santana PA Jr.. 92.  et al. 2016. Life table determination of thermal requirements of the tomato borer Tuta absoluta. J. Pest Sci. 89:897–908 [Google Scholar]
  93. Mollá O, Biondi A, Alonso-Valiente M, Urbaneja A. 93.  2014. A comparative life history study of two mirid bugs preying on Tuta absoluta and Ephestia kuehniella eggs on tomato crops: implications for biological control. BioControl 59:175–83 [Google Scholar]
  94. Mollá O, González-Cabrera J, Urbaneja A. 94.  2011. The combined use of Bacillus thuringiensis and Nesidiocoris tenuis against the tomato borer Tuta absoluta. BioControl 56:883–91 [Google Scholar]
  95. Mouttet R, Bearez P, Thomas C, Desneux N. 95.  2011. Phytophagous arthropods and a pathogen sharing a host plant: evidence for indirect plant-mediated interactions. PLOS ONE 6:e18840 [Google Scholar]
  96. Mouttet R, Kaplan I, Bearez P, Amiens-Desneux E, Desneux N. 96.  2013. Spatiotemporal patterns of induced resistance and susceptibility linking diverse plant parasites. Oecologia 173:1379–86Tuta absoluta is involved in multiple plant-mediated indirect interactions with other arthropod pests and pathogens. [Google Scholar]
  97. Muruvanda DA, Holden D, Juarez M, Ramos C, Figueroa-Cano T, Lee R. 97.  2012. Surveillance protocol for the tomato leaf miner, Tuta absoluta, for NAPPO member countries N. Am. Plant Prot. Org. Raleigh, NC: accessed July 5, 2017. https://www.aphis.usda.gov/import_export/plants/plant_exports/downloads/Tuta_absoluta_surveillanceprotocol_08-06-2012-e.pdf [Google Scholar]
  98. Naselli M, Biondi A, Tropea Garzia G, Desneux N, Russo A. 98.  et al. 2017. Insights into food webs associated with the South American tomato pinworm. Pest Manag. Sci. 73:1352–57 [Google Scholar]
  99. Naselli M, Zappalà L, Gugliuzzo A, Tropea Garzia G, Biondi A. 99.  et al. 2017. Olfactory response of the zoophytophagous mirid Nesidiocoris tenuis to tomato and alternative host plants. Arthropod Plant Interact 11:121–31 [Google Scholar]
  100. Palumbo JC, Perring TM, Millar JG, Reed DA. 100.  2016. Biology, ecology, and management of an invasive stink bug, Bagrada hilaris, in North America. Annu. Rev. Entomol. 61:453–73 [Google Scholar]
  101. Parra JR, Zucchi RA. 101.  2004. Trichogramma in Brazil: feasibility of use after twenty years of research. Neotropical Entomol 33:271–81 [Google Scholar]
  102. Pereira GVN, Maluf WR, Gonçalves LD, do Nascimento IR, Gomes LAA, Licursi V. 102.  2008. Selection towards high acylsugar levels in tomato genotypes and its relationship with resistance to spider mite (Tetranychus evansi) and to the South American pinworm (Tuta absoluta). Cienc. Agrotecnologia 32:996–1004 [Google Scholar]
  103. Pereira RR, Picanço MC, Santana PA, Moreira SS, Guedes RNC, Corrêa AS. 103.  2014. Insecticide toxicity and walking response of three pirate bug predators of the tomato leaf miner Tuta absoluta. Agric. Forest Entomol. 16:293–301 [Google Scholar]
  104. Picanço MC, Bacci L, Queiroz RB, Silva GA, Miranda MMM. 104.  et al. 2011. Social wasp predators of Tuta absoluta. Sociobiology 58:621–33 [Google Scholar]
  105. Picanço MC, Leite GLD, Guedes RNC, Silva EA. 105.  1998. Yield loss in trellised tomato affected by insecticidal sprays and plant spacing. Crop Prot 17:447–52Quantifies main causes of tomato yield loss under different plant-spacing and spraying regimes. [Google Scholar]
  106. Pimentel D, Lach L, Zuniga R, Morrison D. 106.  2000. Environmental and economic costs of nonindigenous species in the United States. BioScience 50:53–65 [Google Scholar]
  107. Ponti L, Gilioli G, Biondi A, Desneux N, Gutierrez AP. 107.  2015. Physiologically based demographic models streamline identification and collection of data in evidence-based pest risk assessment. EPPO Bull 45:317–22 [Google Scholar]
  108. Povolny D. 108.  1975. On three neotropical species of Gnorimoschemini (Lepidoptera, Gelechiidae) mining Solanaceae. Acta Univers. Agricola 23:379–93 [Google Scholar]
  109. Povolný D.109.  1994. Gnorimoschemini of southern South America VI: identification keys, checklist of Neotropical taxa and general considerations (Insecta, Lepidoptera, Gelechiidae). Steenstrupia 20:1–42 [Google Scholar]
  110. Proffit M, Birgersson G, Bengtsson M, Reis R Jr., Witzgall P, Lima E. 110.  2011. Attraction and oviposition of Tuta absoluta females in response to tomato leaf volatiles. J. Chem. Ecol. 37:565–74 [Google Scholar]
  111. Ragsdale DW, Landis DA, Brodeur J, Heimpel GE, Desneux N. 111.  2011. Ecology and management of the soybean aphid in North America. Annu. Rev. Entomol. 56:375–99 [Google Scholar]
  112. Roditakis E, Skarmoutsou C, Staurakaki M. 112.  2013. Toxicity of insecticides to populations of tomato borer Tuta absoluta (Meyrick) from Greece. Pest Manag. Sci. 69:834–40 [Google Scholar]
  113. Roditakis E, Steinbach D, Moritz G, Vasakis E, Stavrakaki M. 113.  et al. 2017. Ryanodine receptor point mutations confer diamide insecticide resistance in tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae). Insect Biochem. Mol. Biol. 80:11–20 [Google Scholar]
  114. Roditakis E, Vasakis E, Grispou M, Stavrakaki M, Nauen R. 114.  et al. 2015. First report of Tuta absoluta resistance to diamide insecticides. J. Pest Sci. 88:9–16 [Google Scholar]
  115. Roques A, Rabitsch W, Rasplus J-Y, Lopez-Vaamonde C, Nentwig W, Kenis M. 115.  2009. Alien terrestrial invertebrates of Europe. Handbook of Alien Species in Europe W Nentwig 63–79 Dordrecht: Springer Neth. [Google Scholar]
  116. Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffee BA. 116.  1995. Intraguild predation among biological-control agents: theory and evidence. Biol. Control 5:303–35 [Google Scholar]
  117. Saker MM, Salama HS, Salama M, El-Banna A, Abdel Ghany NM. 117.  2011. Production of transgenic tomato plants expressing Cry 2Ab gene for the control of some lepidopterous insects endemic in Egypt. J. Genet. Eng. Biotechnol. 9:149–55 [Google Scholar]
  118. Salazar ER, Araya JE. 118.  2001. Tomato moth, Tutaabsoluta (Meyrick) response to insecticides in Arica, Chile. Agricult. Tec. 6:4 [Google Scholar]
  119. Sánchez JA, Lacasa A. 119.  2008. Impact of the zoophytophagous plant bug Nesidiocoris tenuis (Heteroptera: Miridae) on tomato yield. J. Econ. Entomol. 101:1864–70 [Google Scholar]
  120. Sankarganesh E, Firake DM, Sharma B, Verma VK, Behere GT. 120.  2017. Invasion of South American tomato pinworm, Tutaabsoluta (Meyrick) (Lepidoptera: Gelechidae) in northeastern India: a new challenge and biosecurity concerns. Entomol. Gen. In press
  121. Silva GA, Picanço MC, Bacci L, Crespo ALB, Rosado JF, Guedes RNC. 121.  2011. Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm. Tuta absoluta. Pest Manag. Sci. 67:913–20 [Google Scholar]
  122. Silva JE, Assis CPO, Ribeiro LMS, Siqueira HAA. 122.  2016. Field-evolved resistance and cross-resistance of Brazilian Tuta absoluta (Lepidoptera: Gelechiidae) populations to diamide insecticides. J. Econ. Entomol. 109:2190–95 [Google Scholar]
  123. Silva WM, Berger M, Bass C, Balbino VQ, Amaral MHP. 123.  et al. 2015. Status of pyrethroid resistance and mechanisms in Brazilian populations of Tuta absoluta. Pestic. Biochem. Physiol. 122:8–14 [Google Scholar]
  124. Silva WM, Berger M, Bass C, Williamson M, Moura DMN. 124.  et al. 2016. Mutation (G275E) of the nicotinic acetylcholine receptor α6 subunit is associated with high levels of resistance to spinosyns in Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Pestic. Biochem. Physiol. 131:1–8 [Google Scholar]
  125. Siqueira HAA, Guedes RNC, Fragoso DB, Magalhaes LC. 125.  2001. Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Int. J. Pest Manag. 47:247–51 [Google Scholar]
  126. Siqueira HÁA, Guedes RNC, Picanço MC. 126.  2000. Insecticide resistance in populations of Tuta absoluta (Lepidoptera: Gelechiidae). Agric. Forest Entomol. 2:147–53 [Google Scholar]
  127. Škaljac M, Kostanjšek R, Žanić K. 127.  2012. The presence of Wolbachia in Tuta absoluta (Lepidoptera: Gelechiidae) populations from coastal Croatia and Montenegro. Afr. Entomol. 20:191–94 [Google Scholar]
  128. Sohrabi F, Nooryazdan H, Gharati B, Saeidi Z. 128.  2016. Evaluation of ten tomato cultivars for resistance against tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) under field infestation conditions. Entomol. Gen. 36:163–175 [Google Scholar]
  129. Son D, Bonzi S, Somda I, Bawin T, Boukraa S. 129.  et al. 2017. First record of Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) in Burkina Faso. Afr. Entomol. 25:259–63 [Google Scholar]
  130. Stout MJ, Thaler JS, Thomma BPHJ. 130.  2006. Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annu. Rev. Entomol. 51:663–89 [Google Scholar]
  131. Strapasson P, Pinto-Zevallos DM, Paudel S, Rajotte EG, Felton GW, Zarbin PHG. 131.  2014. Enhancing plant resistance at the seed stage: low concentrations of methyl jasmonate reduce the performance of the leaf miner Tuta absoluta but do not alter the behavior of its predator Chrysoperla externa. J. Chem. Ecol. 40:1090–98 [Google Scholar]
  132. Sylla S, Brévault T, Bocar Bal A, Chailleux A, Diatte M. 132.  et al. 2017. Rapid spread of the tomato leafminer, Tutaabsoluta (Lepidoptera, Gelechiidae), an invasive pest in sub-Saharan Africa. Entomol. Gen. 36:269–83 [Google Scholar]
  133. Sylla S, Brévault T, Diarra K, Bearez P, Desneux N. 133.  2016. Life-history traits of Macrolophus pygmaeus with different prey foods. PLOS ONE 11:e0166610 [Google Scholar]
  134. Thaler JS, Fidantsef AL, Duffey SS, Bostock RM. 134.  1999. Trade-offs in plant defense against pathogens and herbivores: a field demonstration of chemical elicitors of induced resistance. J. Chem. Ecol. 25:1597–609 [Google Scholar]
  135. Tomé HVV, Martins JC, Corrêa AS, Galdino TVS, Picanço MC, Guedes RNC. 135.  2013. Azadirachtin avoidance by larvae and adult females of the tomato leafminer Tuta absoluta. Crop Prot 46:63–69 [Google Scholar]
  136. Tonnang HEZ, Mohamed SF, Khamis F, Ekesi S. 136.  2015. Identification and risk assessment for worldwide invasion and spread of Tuta absoluta with a focus on sub-Saharan Africa: implications for phytosanitary measures and management. PLOS ONE 10:e0135283 [Google Scholar]
  137. Uchoa-Fernandes M, Della Lucia T, Vilela E. 137.  1995. Mating, oviposition and pupation of Scrobipalpuloides absoluta (Meyr.) (Lepidoptera: Gelechiidae). An. Soc. Entomol. Bras. 24:159–64 [Google Scholar]
  138. Urbaneja A, Vercher R, Navarro V, García Marí F, Porcuna JL. 138.  2007. La polilla del tomate. Tuta absoluta. Phytoma Esp. 194:16–23 [Google Scholar]
  139. 139. USDA-APHIS (U.S. Dept. Agric. Anim. Plant Health Insp. Serv.). 2011. New pest response guidelines: tomato leafminer (Tuta absoluta) USDA Washington, DC: accessed April 24, 2017. https://www.aphis.usda.gov/import_export/plants/manuals/emergency/downloads/Tuta-absoluta.pdf [Google Scholar]
  140. 140. USDA-APHIS (U.S. Dept. Agric. Anim. Plant Health Insp. Serv.). 2014. Federal Order for U.S. imports of host materials of tomato leaf miner (Tuta absoluta) USDA Washington, DC: accessed April 14, 2017. https://www.aphis.usda.gov/aphis/ourfocus/planthealth/import-information/federal-import-orders [Google Scholar]
  141. 141. USDA (U.S. Dept. Agric.) Econ. Stat. Mark. Info. Syst. 2010. U.S. tomato statistics (92010). USDA Washington, DC: accessed July 25, 2017. http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1210
  142. Vacas S, Alfaro C, Primo J, Navarro-Llopis V. 142.  2011. Studies on the development of a mating disruption system to control the tomato leafminer, Tuta absoluta Povolny (Lepidoptera: Gelechiidae). Pest Manag. Sci. 67:1473–80 [Google Scholar]
  143. Van Damme V, Berkvens N, Moerkens R, Berckmoes E, Wittemans L. 143.  et al. 2014. Overwintering potential of the invasive leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) as a pest in greenhouse tomato production in Western Europe. J. Pest Sci. 88:533–41 [Google Scholar]
  144. Vilela De Resende JT, Maluf WR, Faria MV, Pfann AZ, Rodrigues Do Nascimento I. 144.  2006. Acylsugars in tomato leaflets confer resistance to the South American tomato pinworm, Tutaabsoluta Meyr. Sci. Agricola 63:20–25 [Google Scholar]
  145. Wan F-H, Yang N-W. 145.  2016. Invasion and management of agricultural alien insects in China. Annu. Rev. Entomol. 61:77–98 [Google Scholar]
  146. Wang K, Ferguson G, Shipp JL. 146.  1998. Incidence of tomato pinworm, Keiferialycopersicella (Walsingham), (Lepidoptera: Gelechiidae) on greenhouse tomatoes in southern Ontario and its control using mating disruption. Proc. Entomol. Soc. Ont. 128:93–98 [Google Scholar]
  147. Wanumen AC, Carvalho GA, Medina P, Viñuela E, Adán A. 147.  2016. Residual acute toxicity of some modern insecticides toward two mirid predators of tomato pests. J. Econ. Entomol. 109:1079–85 [Google Scholar]
  148. 148. WTO (World Trade Org.). 2009. World Trade Organization banner. Supporting documentation for the notification to amend the importation conditions for hosts and likely hosts of tomato leafminer, Tuta absoluta. Regulatory notices database, notification no. SPS-AUS-236–09. Issuing country: Aust. [Google Scholar]
  149. Xian XQ, Han P, Wang S, Zhang GF, Liu WX. 149.  et al. 2017. The potential invasion risk and preventive measures against the tomato leafminer Tuta absoluta in China. Entomol. Gen. In press
  150. Yan L, Zhai Q, Wei J, Li S, Wang B. 150.  et al. 2013. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLOS Genet 9:e1003964 [Google Scholar]
  151. Yu N, Christiaens O, Liu J, Niu J, Cappelle K. 151.  et al. 2013. Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Sci 20:4–14 [Google Scholar]
  152. Zappalà L, Biondi A, Alma A, Al-Jboory IJ, Arnò J. 152.  et al. 2013. Natural enemies of the South American moth, Tuta absoluta, in Europe, North Africa and Middle East, and their potential use in pest control strategies. J. Pest Sci 86:635–47Current use of biocontrol agents in invaded areas and needs for upcoming invaded ones. [Google Scholar]
  153. Zhang G-F, Liu W-X, Guo J-Y, Zhang Y-B, Wan F-H. 153.  2013. Species-specific COI primers for rapid identification of Tuta absoluta (Meyrick), a significant, potential alien species. J. Biosafety 22:80–85 [Google Scholar]

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error