Insects exhibit a fascinating and diverse range of micro- and nanoarchitectures on their cuticle. Beyond the spectacular beauty of such minute structures lie surfaces evolutionarily modified to act as multifunctional interfaces that must contend with a hostile, challenging environment, driving adaption so that these can then become favorable. Numerous cuticular structures have been discovered this century; and of equal importance are the properties, functions, and potential applications that have been a key focus in many recent studies. The vast range of insect structuring, from the most simplistic topographies to the most elegant and geometrically complex forms, affords us with an exhaustive library of natural templates and free technologies to borrow, replicate, and employ for a range of applications. Of particular importance are structures that imbue cuticle with antiwetting properties, self-cleaning abilities, antireflection, enhanced color, adhesion, and antimicrobial and specific cell-attachment properties.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Arzt E, Gorb S, Spolenak R. 1.  2003. From micro to nano contacts in biological attachment devices. PNAS 100:10603–6 [Google Scholar]
  2. Balmert A, Bohn HF, Ditsche-Kuru P, Barthlott W. 2.  2011. Dry under water: comparative morphology and functional aspects of air-retaining insect surfaces. J. Morphol. 272:442–51 [Google Scholar]
  3. Bernhard CG, Miller WH, Móller AR. 3.  1963. Function of corneal nipples in compound eyes of insects. Acta Physiol. Scand. 58:381–82 [Google Scholar]
  4. Blagodatski A, Kryuchkov M, Sergeev A, Klimov AA, Shcherbakov MR et al.4.  2014. Under- and over-water halves of Gyrinidae beetle eyes harbor different corneal nanocoatings providing adaptation to the water and air environments. Sci. Rep. 4:6004 [Google Scholar]
  5. Bullock JMR, Drechsler P, Federle W. 5.  2008. Comparison of smooth and hairy attachment pads in insects: friction, adhesion and mechanisms for direction-dependence. J. Exp. Biol. 211:3333–43 [Google Scholar]
  6. Burrows M, Sutton G. 6.  2013. Interacting gears synchronize propulsive leg movements in a jumping insect. Science 341:1254–56 [Google Scholar]
  7. Celia E, Darmanin T, de Givenchy ET, Amigoni S, Guittard F. 7.  2013. Recent advance in designing superhydrophobic surfaces. J. Colloid Interface Sci. 402:1–18 [Google Scholar]
  8. Chapman RF. 8.  1998. The Insects: Structure and Function Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  9. Chapman RF. 9.  2013. Chemoreception. Revis. updat. BC Cribb, DM Merritt. The Insects: Structure and Function SJ Simpson, AE Douglas 771–92 Cambridge, UK: Cambridge Univ. Press, 5th ed.. [Google Scholar]
  10. Chapman RF. 10.  2013. Integument. Revis. updat. H Merzendorfer. The Insects: Structure and Function SJ Simpson, AE Douglas 463–500 Cambridge, UK: Cambridge Univ. Press, 5th ed.. [Google Scholar]
  11. Chapman RF. 11.  2013. Mechanical communication: producing sound and substrate vibrations. Revis. updat. R Henrich. The Insects: Structure and Function SJ Simpson, AE Douglas 824–56 Cambridge, UK: Cambridge Univ. Press, 5th ed.. [Google Scholar]
  12. Chapman RF. 12.  2013. Mechanoreception. Revis. updat. T Matheson. The Insects: Structure and Function SJ Simpson, AE Douglas 738–70 Cambridge, UK: Cambridge Univ. Press, 5th ed.. [Google Scholar]
  13. Chapman RF. 13.  2013. Visual signals: color and light production. Revis. updat. P Vukusic, L Chittka. The Insects: Structure and Function SJ Simpson, AE Douglas 793–823 Cambridge, UK: Cambridge Univ. Press, 5th ed.. [Google Scholar]
  14. Cong Q, Chen G-H, Fang Y, Ren L-Q. 14.  2004. Study on the super-hydrophobic characteristic of butterfly wing surface. J. Bion. Eng. 1:249–55 [Google Scholar]
  15. Csaderova L, Martines E, Seunarine K, Gadegaard N, Wilkinson CDW, Riehle MO. 15.  2010. A biodegradable and biocompatible regular nanopattern for large-scale selective cell growth. Small 6:232755–61 [Google Scholar]
  16. Darmanin T, Guittard F. 16.  2014. Recent advances in the potential applications of bioinspired superhydrophobic materials. J. Mater. Chem. A 2:16319–59 [Google Scholar]
  17. Darmanin T, Guittard F. 17.  2015. Superhydrophobic and superoleophobic properties in nature. Mater. Today 18:273–85 [Google Scholar]
  18. Deparis O, Mouchet S, Dellieu L, Colomer J-F, Sarrazin M. 18.  2014. Nanostructured surfaces: bioinspiration for transparency, coloration and wettability. Mater. Today 1:Suppl.122–29 [Google Scholar]
  19. Dey S. 19.  1988. Scanning electron microscopic detection of corneal anti-reflection coating in the grasshopper, Epacromia dorsalis and its physiological significance. Vis. Res. 28:975–77 [Google Scholar]
  20. Dickerson AK, Hu DL. 20.  2014. Mosquitoes actively remove drops deposited by fog and dew. Integr. Comp. Biol. 42:1–6 [Google Scholar]
  21. Dickerson AK, Liu X, Zhu T, Hu DL. 21.  2015. Fog spontaneously folds mosquito wings. Phys. Fluids 27:021901 [Google Scholar]
  22. Dupont ST, Zemeitat DS, Lohman DJ, Pierce NE. 22.  2016. The setae of parasitic Liphyra brassolis butterfly larvae form a flexible armour for resisting attack by their ant hosts (Lycaenidae: Lepidoptera). Biol. J. Linn. Soc. 117:607–19 [Google Scholar]
  23. Durak D, Kalender Y. 23.  2009. Fine structure and chemical analysis of the metathoracic scent gland secretion in Graphosoma lineatum (Linnaeus, 1758) (Heteroptera, Pentatomidae). C. R. Biol. 332:34–42 [Google Scholar]
  24. Federle W. 24.  2006. Why are so many adhesive pads hairy?. J. Exp. Biol. 209:2611–21 [Google Scholar]
  25. Federle W, Riehle M, Curtis ASG, Full RJ. 25.  2002. An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants. Integr. Comp. Biol. 42:1100–6 [Google Scholar]
  26. Feng X-Q, Gao X, Wu Z, Jiang L, Zheng Q-S. 26.  2007. Superior water repellency of water strider legs with hierarchical structures: experiments and analysis. Langmuir 23:4892–96 [Google Scholar]
  27. Floreano D, Wood RJ. 27.  2015. Science, technology and the future of small autonomous drones. Nature 521:460–66 [Google Scholar]
  28. Fox JD, Capadona JR, Marasco PD, Rowan SJ. 28.  2013. Bioinspired water-enhanced mechanical gradient nanocomposite films that mimic the architecture and properties of the squid beak. J. Am. Chem. Soc. 135:5167–74 [Google Scholar]
  29. Gao X, Jiang L. 29.  2004. Water-repellent legs of water striders. Nature 432:36 [Google Scholar]
  30. Garrod RP, Harris LG, Schofield WCE, McGettrick J, Ward LJ et al.30.  2007. Mimicking a Stenocara beetle's back for microcondensation using plasmachemical patterned superhydrophobic-superhydrophilic surface. Langmuir 23:689–93 [Google Scholar]
  31. Ghiradella H. 31.  1998. Hairs, bristles, and scales. Microsc. Anat. Invertebr. 11:257–87 [Google Scholar]
  32. Ghiradella H. 32.  2010. Insect cuticular surface modifications: scales and other structural formations. Advances in Insect Physiology: Insect Integument and Colour 38: J Casas, SJ Simpson 135–80 [Google Scholar]
  33. Gibson CT, Watson GS, Myhra S. 33.  1996. Determination of the spring constants of probes for force microscopy/spectroscopy. Nanotechnology 7:259–62 [Google Scholar]
  34. Gorb S. 34.  2001. Attachment Devices of Insect Cuticle Dordrecht, Neth.: Kluwer Acad. Publ. [Google Scholar]
  35. Gorb SN. 35.  2005. Uncovering insect stickiness: structure and properties of hairy attachment devices. Am. Entomol. 51:31–35 [Google Scholar]
  36. Gottardo M, Vallotto D, Beutel RG. 36.  2015. Giant stick insects reveal unique ontogenetic changes in biological attachment devices. Arthropod Struct. Dev. 44:195–99 [Google Scholar]
  37. Grann EB, Moharam MG, Pommet D. 37.  1995. Optimal design for antireflective tapered two-dimensional subwavelength grating structures. J. Opt. Soc. Am. A 12:333–39 [Google Scholar]
  38. Green DW, Watson GS, Watson JA, Abraham SJK. 38.  2012. New biomimetic directions in regenerative ophthalmology. Adv. Healthc. Mater. 1:140–48 [Google Scholar]
  39. Guillermo-Ferreira R, Bispo PC, Appel E, Kovalev A, Gorb SN. 39.  2015. Mechanism of the wing colouration in the dragonfly Zenithoptera lanei (Odonata: Libellulidae) and its role in intraspecific communication. J. Insect Phys. 81:129–36 [Google Scholar]
  40. Gundersen H, Leinaas HP, Thaulow C. 40.  2014. Surface structure and wetting characteristics of Collembola cuticles. PLOS ONE 9:e86783 [Google Scholar]
  41. Guo Z, Liu W, Su B-L. 41.  2011. Superhydrophobic surfaces: from natural to biomimetic to functional. J. Colloid Interface Sci. 353:335–55 [Google Scholar]
  42. Hayes MJ, Levine TP, Wilson RH. 42.  2016. Identification of nanopillars on the cuticle of the aquatic larvae of the drone fly (Diptera: Syrphidae). J. Insect Sci. 16:36 [Google Scholar]
  43. Helbig R, Nickerl J, Neinhuis C, Werner C. 43.  2011. Smart skin patterns protect springtails. PLOS ONE 6:e25105 [Google Scholar]
  44. Hensel R, Finn A, Helbig R, Braun H-G, Neinhuis C et al.44.  2014. Biologically inspired omniphobic surfaces by reverse imprint lithography. Adv. Mater. 26:2029–33 [Google Scholar]
  45. Hensel R, Helbig R, Aland S, Braun HG, Voigt A et al.45.  2013. Wetting resistance at its topographical limit: the benefit of mushroom and serif T structures. Langmuir 29:1100–12 [Google Scholar]
  46. Hepburn HR. 46.  1985. Structure of the integument. Comprehensive Insect Physiology, Biochemistry and Pharmacology: Integument, Respiration and Circulation 3 GA Kerkut, LI Gilbert 1–58 Oxford, UK: Pergamon Press [Google Scholar]
  47. Hu HM, Watson JA, Cribb BW, Watson GS. 47.  2011. Fouling of nanostructured insect cuticle: adhesion of natural and artificial contaminants. Biofouling 27:1125–37 [Google Scholar]
  48. Hu HMS, Watson JA, Cribb BW, Watson GS. 48.  2011. Multi-functional insect cuticles: informative designs for man-made surfaces. World Acad. Sci. Eng. Technol. 59:1370–74 [Google Scholar]
  49. Hu HM, Watson GS, Cribb BW, Watson JA. 49.  2011. Non-wetting wings and legs of the cranefly aided by fine structures of the cuticle. J. Exp. Biol. 214:915–20 [Google Scholar]
  50. Ingram AL, Parker AR. 50.  2008. A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990). Phil. Trans. R. Soc. B 363:2465–80 [Google Scholar]
  51. Ivanova EP, Hasan J, Webb HK, Truong VK, Watson GS. 51.  et al. 2012. Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small 8:2489–94 [Google Scholar]
  52. Jopp J, Grüll H, Yerushalmi-Rozen R. 52.  2004. Wetting behavior of water droplets on hydrophobic microtextures of comparable size. Langmuir 20:10015–19 [Google Scholar]
  53. Kim J-J, Lee Y, Kim HG, Choi K-J, Kweon H-S et al.53.  2012. Biologically inspired LED lens from cuticular nanostructures of firefly lantern. PNAS 109:18674–78 [Google Scholar]
  54. Koch K, Schulte AJ, Fischer A, Gorb SN, Barthlott W. 54.  2008. A fast, precise and low-cost replication technique for nano- and high-aspect-ratio structures of biological and artificial surfaces. Bioinspiration Biomim. 3:046002 [Google Scholar]
  55. Kuitunena K, Gorb SN. 55.  2011. Effects of cuticle structure and crystalline wax coverage on the coloration in young and old males of Calopteryx splendens and Calopteryx virgo. Zoology 114:129–39 [Google Scholar]
  56. Land MF. 56.  1972. The physics and biology of animal reflectors. Prog. Biophys. Mol. Bio. 24:75–106 [Google Scholar]
  57. Langer MG, Ruppersberg JP, Gorb S. 57.  2004. Adhesion forces measured at the level of a terminal plate of the fly's seta. Proc. R. Soc. B 271:2209–15 [Google Scholar]
  58. Lehnert MS, Monaenkova D, Andrukh T, Beard CE, Adler PH, Kornev KG. 58.  2013. Hydrophobic–hydrophilic dichotomy of the butterfly proboscis. J. R. Soc. Interface 10:20130336 [Google Scholar]
  59. Li Y, Zhang J, Yang B. 59.  2010. Antireflective surfaces based on biomimetic nanopillared arrays. Nano Today 5:117–27 [Google Scholar]
  60. Liu C, Ju J, Zheng Y, Jiang L. 60.  2014. Asymmetric ratchet effect for directional transport of fog drops on static and dynamic butterfly wings. ASC Nano 8:1321–29 [Google Scholar]
  61. Ma KY, Chirarattananon P, Fuller SB, Wood RJ. 61.  2013. Controlled flight of a biologically inspired, insect-scale robot. Science 340:603–7 [Google Scholar]
  62. Makarona E, Peter B, Szekacs I, Tsamis C, Horvath R. 62.  2016. ZnO nanostructure templates as a cost-efficient mass-producible route for the development of cellular networks. Materials 9:256 [Google Scholar]
  63. Malshe A, Rajurkar K, Samant A, Hansen HN, Bapat S, Jiang W. 63.  2013. Bio-inspired functional surfaces for advanced applications. CIRP Ann Manuf. Technol. 62:607–28 [Google Scholar]
  64. Mouchet SR, Tabarrant T, Lucas S, Su BL, Vukusic P, Deparis O. 64.  2016. Vapor sensing with a natural photonic cell. Opt. Express 24:2267–80 [Google Scholar]
  65. Nalepa CA, Miller LR, Lenz M. 65.  2001. Flight characteristics of Mastotermes darwiniensis (Isoptera, Mastotermitidae). Insectes Soc. 48:144–48 [Google Scholar]
  66. Naleway SE, Porter MM, McKittrick J, Meyers MA. 66.  2015. Structural design elements in biological materials: application to bioinspiration. Adv. Mater. 27:5455–76 [Google Scholar]
  67. Nickerl J, Helbig R, Schulz HJ, Werner C, Neinhuis C. 67.  2013. Diversity and potential correlations to the function of Collembola cuticle structures. Zoomorphology 132:183–95 [Google Scholar]
  68. Nickerl J, Tsurkan T, Hensel R, Neinhuis C, Werner C. 68.  2014. The multi-layered protective cuticle of Collembola: a chemical analysis. J. R. Soc. Interface 11:20140619 [Google Scholar]
  69. Niu S, Li B, Mu Z, Yang M, Zhang J, Han Z, Ren L. 69.  2015. Excellent structure-based multifunction of Morpho butterfly wings: a review. J. Bion. Eng. 12:170–89 [Google Scholar]
  70. Nixon MR, Orr AG, Vukusic P. 70.  2013. Subtle design changes control the difference in colour reflection from the dorsal and ventral wing-membrane surfaces of the damselfly Matronoides cyaneipennis. Opt. Express 21:1479–88 [Google Scholar]
  71. O'Rorke RD, Steele TWJ, Taylor HK. 71.  2016. Bioinspired fibrillar adhesives: a review of analytical models and experimental evidence for adhesion enhancement by surface patterns. J. Adhes. Sci. Technol. 30:362–91 [Google Scholar]
  72. Pang C, Kwak MK, Lee C, Jeong HE, Bae W-G, Suh KY. 72.  2012. Nano meets beetles from wing to tiptoe: versatile tools for smart and reversible adhesions. Nano Today 7:496–513 [Google Scholar]
  73. Parker AR, Hegedus Z, Watts RA. 73.  1998. Solar–absorber antireflector on the eye of an Eocene fly (45 Ma). Proc. R. Soc. B 256:811–15 [Google Scholar]
  74. Parker AR, Lawrence CR. 74.  2001. Water capture by a desert beetle. Nature 414:33–34 [Google Scholar]
  75. Pearce MJ. 75.  1997. Termites Biology and Pest Management Oxfordshire, UK: CAB Int. [Google Scholar]
  76. Peisker H, Gorb SN. 76.  2010. Always on the bright side of life: anti-adhesive properties of insect ommatidia grating. J. Exp. Biol. 213:3457–62 [Google Scholar]
  77. Perkins LE, Zalucki MP, Perkins NR, Cawdell-Smith AJ, Todhunter KH et al.77.  2016. The urticating setae of Ochrogaster lunifer, an Australian processionary caterpillar of veterinary importance. Med. Vet. Entomol. 30:241–45 [Google Scholar]
  78. Persson BNJ, Gorb S. 78.  2003. The effect of surface roughness on the adhesion of elastic plates with application to biological systems. J. Chem. Phys. 119:11437–44 [Google Scholar]
  79. Plotkin M, Hod I, Zaban A, Boden SA, Bagnall DM et al.79.  2010. Solar energy harvesting in the epicuticle of the oriental hornet (Vespa orientalis). Naturwissenschaften 97:1067–76 [Google Scholar]
  80. Potyrailo RA, Starkey TA, Vukusic P, Ghiradella H, Vasudev M. 80.  et al. 2013. Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapour response. PNAS 110:15567–72 [Google Scholar]
  81. Pris AD, Utturkar Y, Surman C, Morris WG, Vert A. 81.  et al. 2012. Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures. Nat. Photonics 6:195–200 [Google Scholar]
  82. Prum RO, Cole JA, Torres RH. 82.  2004. Blue integumentary structural colours in dragonflies (Odonata) are not produced by incoherent Tyndall scattering. J. Exp. Biol. 207:3999–4009 [Google Scholar]
  83. Rakitov RA. 83.  2004. Powdering of egg nests with brochosomes and related sexual dimorphism in leafhoppers (Hemiptera: Cicadellidae). Zool. J. Linn. Soc. 40:353–81 [Google Scholar]
  84. Rakitov RA, Gorb SN. 84.  2013. Brochosomal coats turn leafhopper (Insecta, Hemiptera, Cicadellidae) integument to superhydrophobic state. Proc. R. Soc. B 280:20122391 [Google Scholar]
  85. Rassart M, Colomer J-F, Tabarrant T, Vigneron JP. 85.  2008. Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules. New J. Phys. 10:033014 [Google Scholar]
  86. Reynolds PM, Pedersen RH, Stormonth-Darling J, Dalby MJ, Riehle MO, Gadegaard N. 86.  2013. Label-free segmentation of co-cultured cells on a nanotopographical gradient. Nano Lett. 13:570–76 [Google Scholar]
  87. Rivers VZ. 87.  1999. The Shining Cloth: Dress and Adornment That Glitters London and New York: Thames and Hudson [Google Scholar]
  88. Saranathan V, Seago AE, Sandy A, Narayanan S, Mochrie SGJ. 88.  et al. 2015. Structural diversity of arthropod biophotonic nanostructures spans amphiphilic phase-space. Nano Lett. 15:3735–42 [Google Scholar]
  89. Scherge M, Gorb SN. 89.  2001. Biological Micro- and Nanotribology: Nature's Solution Heidelberg, Ger: Springer-Verlag [Google Scholar]
  90. Siddique RH, Gomard G, Holscher H. 90.  2015. The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly. Nat. Commun. 6:6909 [Google Scholar]
  91. Stavenga DG, Foletti S, Palasantzas G, Arikawa K. 91.  2006. Light on the moth-eye corneal nipple array of butterflies. Proc. R. Soc. Lond. B 273:661–67 [Google Scholar]
  92. Stavenga DG, Stowe S, Siebke K, Zeil J, Arikawa K. 92.  2004. Butterfly wing colours: Scale beads make white pierid wings brighter. Proc. R. Soc. Lond. B 271:1577–84 [Google Scholar]
  93. Sun J, Bhushan B. 93.  2012. Structure and mechanical properties of beetle wings: a review. RCE Adv. 2:12606–23 [Google Scholar]
  94. Sun M, Liang A, Watson GS, Watson JA, Zheng Y et al.94.  2012. Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings. PLOS ONE 7:e35056 [Google Scholar]
  95. Sun M, Liang A, Zheng Y, Watson GS, Watson JA. 95.  2011. A study of the anti-reflection efficiency of natural nano-arrays of varying sizes. Bioinspir. Biomim. 6:026003 [Google Scholar]
  96. Sutton GP, Clarke D, Morley EL, Robert D. 96.  2016. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields. PNAS 113:7261–65 [Google Scholar]
  97. Vincent JFV. 97.  2002. Arthropod cuticle: a natural composite shell system. Composites Part A 33:1311–15 [Google Scholar]
  98. Vincent JFV, Wegst UGK. 98.  2004. Design and mechanical properties of insect cuticle. Arthropod Struct. Dev. 33:187–99 [Google Scholar]
  99. Vukusic P, Sambles JR. 99.  2003. Photonic structures in biology. Nature 424:852–55 [Google Scholar]
  100. Vukusic P, Sambles JR, Lawrence CR. 100.  2004. Structurally assisted blackness in butterfly scales. Proc. R. Soc. B 271:S237–39 [Google Scholar]
  101. Wagner P, Neinhuis C, Barthlott W. 101.  1996. Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zool. 77:213–25 [Google Scholar]
  102. Watson GS, Cribb BW, Hu HM, Watson JA. 102.  2011. Contrasting micro/nano architecture on termite wings: two divergent strategies for optimising success of colonisation flights. PLOS ONE 6:e24368 [Google Scholar]
  103. Watson GS, Cribb BW, Watson JA. 103.  2010. Experimental determination of the efficiency of nano-structuring on non-wetting legs of the water strider. Acta Biomater. 6:4060–64 [Google Scholar]
  104. Watson GS, Cribb BW, Watson JA. 104.  2010. How micro/nanoarchitecture facilitates anti-wetting: an elegant hierarchical design on the termite wing. ACS Nano 4:129–36 [Google Scholar]
  105. Watson GS, Cribb BW, Watson JA. 105.  2010. The role of micro/nano channel structuring in repelling water on cuticle arrays of the lacewing. J. Struct. Biol. 171:44–51 [Google Scholar]
  106. Watson GS, Green DW, Sun M, Liang A, Xin L et al.106.  2015. The insect (cicada) wing membrane micro/nano structure—nature's templates for control of optics, wetting, adhesion, contamination, bacteria and eukaryotic cells. J. Nanosci. Adv. Tech. 1:6–16 [Google Scholar]
  107. Watson GS, Myhra S, Cribb BW, Watson JA. 107.  2008. Putative functions and functional efficiency of ordered cuticular nanoarrays on insect wings. Biophys. J. 94:3352–60 [Google Scholar]
  108. Watson GS, Watson JA, Hu S, Brown CL, Cribb BW, Myhra S. 108.  2010. Micro and nanostructures found on insect wings—designs for minimising adhesion and friction. Int. J. Nanomanuf. 5:112–28 [Google Scholar]
  109. Watson JA, Cribb BW, Hu H-M, Watson GS. 109.  2011. A dual layer hair array of the brown lacewing: repelling water at different length scales. Biophys. J. 100:1149–55 [Google Scholar]
  110. Watt AJA, Watson JA, Watson GS. 110.  2014. Microwell depth control on a polydimethylsiloxane polymer using a simple colloidal self assembly process. Sci. Adv. Mat. 6:1–5 [Google Scholar]
  111. Wisdom KM, Watson JA, Qu X, Liu F, Watson GS, Chen C-H. 111.  2013. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate. PNAS 110:7992–97 [Google Scholar]
  112. Wu L, Zhang W, Zhang D. 112.  2015. Engineering gyroid-structured functional materials via templates discovered in nature and in the lab. Small 11:5004–22 [Google Scholar]
  113. Xu J, Guo Z. 113.  2013. Biomimetic photonic materials with tunable structural colors. J. Colloid Interface Sci. 406:1–17 [Google Scholar]
  114. Xue F, Liu J, Guo L, Zhang L, Li Q. 114.  2015. Theoretical study on the bactericidal nature of nanopatterned surfaces. J. Theor. Biol. 385:1–7 [Google Scholar]
  115. Yang S-P, Wen H-S, Lee T-M, Lui T-S. 115.  2016. Cell response on the biomimetic scaffold of silicon nano- and micro-topography. J. Mater. Chem. B 4:1891–97 [Google Scholar]
  116. Yoshida A, Motoyama M, Kosaku A, Miyamoto K. 116.  1996. Nanoprotuberance array in the transparent wing of a hawkmoth, Cephonodes hylas. Zool. Sci. 13:525–26 [Google Scholar]
  117. Yoshida A, Motoyama M, Kosaku A, Miyamoto K. 117.  1997. Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, Cephonodes hylas. Zool. Sci. 14:737–41 [Google Scholar]
  118. Zhang D, Zhang W, Gu J, Fan T, Liu Q et al.118.  2015. Inspiration from butterfly and moth wing scales: characterization, modelling, and fabrication. Prog. Mater. Sci. 68:67–96 [Google Scholar]
  119. Zhang J, Zou Q, Tian H. 119.  2013. Photochromic materials: more than meets the eye. Adv. Mater. 25:378–99 [Google Scholar]
  120. Zhang Y, Wang J, Huang Y, Song Y, Jiang L. 120.  2011. Fabrication of functional colloidal photonic crystals based on well-designed latex particles. J. Mater. Chem. 21:14113 [Google Scholar]
  121. Zheng L, Wu X, Lou Z, Wu D. 121.  2004. Superhydrophobicity from microstructured surface. Chin. Sci. Bull. 49:1779–87 [Google Scholar]
  122. Zhu H, Guo Z, Liu W. 122.  2016. Biomimetic water-collecting materials inspired by nature. Chem. Commun. 52:3863–79 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error