1932

Abstract

Attract-and-kill has considerable potential as a tactic in integrated management of pests of agricultural crops, but the use of sex pheromones as attractants is limited by male multiple mating and immigration of mated females into treated areas. Attractants for both sexes, and particularly females, would minimize these difficulties. Volatile compounds derived from plants or fermentation of plant products can attract females and have been used in traps for monitoring and control, and in sprayable attract-and-kill formulations or bait stations. Recent advances in fundamental understanding of insect responses to plant volatiles should contribute to the development of products that can help manage a wide range of pests with few impacts on nontarget organisms, but theory must be tempered with pragmatism in the selection of volatiles and toxicants and in defining their roles in formulations. Market requirements and regulatory factors must be considered in parallel with scientific constraints if successful products are to be developed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-031616-035040
2018-01-07
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ento/63/1/annurev-ento-031616-035040.html?itemId=/content/journals/10.1146/annurev-ento-031616-035040&mimeType=html&fmt=ahah

Literature Cited

  1. Addison SJ. 1.  2009. Enhancement of refuges for Helicoverpa armigera (Lepidoptera: Noctuidae) used in the resistance management plan for cotton (Gossypium hirsutum L.) containing Bollgard II traits. Agr. Ecosyst. Environ. 135:328–35 [Google Scholar]
  2. Agelopoulos N, Birkett MA, Hick AJ, Hooper AM, Pickett JA. 2.  et al. 1999. Exploiting semiochemicals in insect control. Pestic. Sci. 55:225–35 [Google Scholar]
  3. Anderson P, Hansson BS, Lofqvist J. 3.  1995. Plant-odour specific receptor neurones on the antennae of female and male Spodoptera littoralis. Physiol. Entomol. 20:189–98 [Google Scholar]
  4. Ballhorn DJ, Kautz S. 4.  2013. How useful are olfactometer experiments in chemical ecology research?. Commun. Integr. Biol. 6:e24787 [Google Scholar]
  5. Barros-Parada W, Knight AL, Basoalto E, Fuentes-Contreras E. 5.  2013. An evaluation of orange and clear traps with pear ester to monitor codling moth (Lepidoptera: Tortricidae) in apple orchards. Crop Prot 40:307–15 [Google Scholar]
  6. Bartelt RJ, Hossain MS. 6.  2006. Development of synthetic food-related attractant for Carpophilus davidsoni and its effectiveness in the stone fruit orchards in southern Australia. J. Chem. Ecol. 32:2145–62 [Google Scholar]
  7. Bengtsson M, Backman AC, Liblikas I, Ramirez MI, Borg-Karlson AK. 7.  et al. 2001. Plant odor analysis of apple: antennal response of codling moth females to apple volatiles during phenological development. J. Agr. Food Chem. 49:3736–41 [Google Scholar]
  8. Bruce TJ. 8.  2000. The olfactory basis of attraction ofthe bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) to host-plant flowers. PhD Thesis, Univ. Greenwich, London
  9. Bruce TJ, Cork A. 9.  2001. Electrophysiological and behavioral responses of female Helicoverpa armigera to compounds identified in flowers of African marigold. Tagetes erecta. J. Chem. Ecol. 27:1119–31 [Google Scholar]
  10. Bruce TJA, Pickett JA. 10.  2011. Perception of plant volatile blends by herbivorous insects—finding the right mix. Phytochemistry 72:1605–11 [Google Scholar]
  11. Bruce TJA, Wadhams LJ, Woodcock CM. 11.  2005. Insect host location: a volatile situation. Trends Plant Sci 10:269–74 [Google Scholar]
  12. Burguiere L, Marion-Poll F, Cork A. 12.  2001. Electrophysiological responses of female Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) to synthetic host odours. J. Insect Physiol. 47:509–14 [Google Scholar]
  13. Camelo LDA, Landolt PJ, Zack RS. 13.  2007. A kairomone based attract-and-kill system effective against alfalfa looper (Lepidoptera: Noctuidae). J. Econ. Entomol. 100:366–74 [Google Scholar]
  14. Cantelo WW, Jacobson M. 14.  1980. Phenylacetaldehyde attracts moths to bladder flower and to blacklight traps. Environ. Entomol. 8:444–47 [Google Scholar]
  15. Cardé RT, Minks AK. 14.  1995. Control of moth pests by mating disruption—successes and constraints. Annu. Rev. Entomol. 40:559–85 [Google Scholar]
  16. Cha DH, Adams T, Werle CT, Sampson BJ, Adamczyk JJ. 16.  et al. 2014. A four-component synthetic attractant for Drosophila suzukii (Diptera: Drosophilidae) isolated from fermented bait headspace. Pest Manag. Sci. 70:324–31 [Google Scholar]
  17. Chaffiol A, Kropf J, Barrozo RB, Gadenne C, Rospars JP, Anton S. 17.  2012. Plant odour stimuli reshape pheromonal representation in neurons of the antennal lobe macroglomerular complex of a male moth. J. Exp. Biol. 215:1670–80 [Google Scholar]
  18. Charmillot PJ, Hofer D, Pasquier D. 18.  2000. Attract and kill: a new method for control of the codling moth Cydia pomonella. Entomol. Exp. Appl. 94:211–16 [Google Scholar]
  19. Cook SM, Khan ZR, Pickett JA. 19.  2007. The use of push-pull strategies in integrated pest management. Annu. Rev. Entomol. 52:375–400 [Google Scholar]
  20. Coracini M, Bengtsson M, Liblikas I, Witzgall P. 20.  2004. Attraction of codling moth males to apple volatiles. Entomol. Exp. Appl. 110:1–10 [Google Scholar]
  21. Couty A, Van Emden H Perry JN, Hardie J, Pickett JA, Wadhams LJ. 21.  2006. The roles of olfaction and vision in host-plant finding by the diamondback moth. Plutella xylostella. Physiol. Entomol. 31:134–45 [Google Scholar]
  22. Cribb BW, Hull CD, Moore CJ, Cunningham JP, Zalucki MP. 22.  2007. Variability in odour reception in the peripheral sensory system of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Aust. J. Entomol. 46:1–6 [Google Scholar]
  23. Cunningham JP, Jallow MFA, Wright DJ, Zalucki MP. 23.  1998. Learning in host selection in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Anim. Behav. 55:227–34 [Google Scholar]
  24. Cunningham JP, Wright DJ. 24.  1998. Learning in the nectar foraging behaviour of Helicoverpa armigera. Ecol. Entomol. 23:363–69 [Google Scholar]
  25. Dai J, Deng J, Du J. 25.  2008. Development of bisexual attractants for diamondback moth, Plutellaxylostella (Lepidoptera: Plutellidae) based on sex pheromone and host volatiles. Appl. Entomol. Zool. 43:631–38 [Google Scholar]
  26. Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK. 26.  2013. Microbial volatile emissions as insect semiochemicals. J. Chem. Ecol. 39:840–59 [Google Scholar]
  27. de Bruyne M, Baker TC. 27.  2008. Odor detection in insects: volatile codes. J. Chem. Ecol. 34:882–97 [Google Scholar]
  28. Deisig N, Giurfa M, Sandoz JC. 28.  2010. Antennal lobe processing increases separability of odor mixture representations in the honeybee. J. Neurophysiol. 103:2185–94 [Google Scholar]
  29. Del Socorro AP, Gregg PC, Hawes AJ. 29.  2010. Development of a synthetic plant volatile-based attracticide for female noctuid moths. III. Insecticides for adult Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Aust. J. Entomol. 49:31–39 [Google Scholar]
  30. Desouza KR, McVeigh LJ, Wright DJ. 30.  1992. Selection of insecticides for lure and kill studies against Spodoptera littoralis (Lepidoptera: Noctuidae). J. Econ. Entomol. 85:2100–6 [Google Scholar]
  31. Dicke M. 31.  2009. Behavioural and community ecology of plants that cry for help. Plant Cell Environ 32:654–65 [Google Scholar]
  32. Dickens JC, Smith JW, Light DM. 32.  1993. Green leaf volatiles enhance sex attractant pheromone of the tobacco budworm, Heliothis virescens (Lep.: Noctuidae). Chemoecology 4:175–77 [Google Scholar]
  33. Ditman LP. 33.  1937. Observations on poison baits for corn earworm control. J. Econ. Entomol. 30:116–18 [Google Scholar]
  34. Downham MCA, McVeigh LJ, Moawad GM. 34.  1995. Field investigation of an attracticide control technique using the sex pheromone of the Egyptian cotton leafworm, Spodoptera littoralis (Lepidoptera: Noctuidae). Bull. Entomol. Res. 85:463–72 [Google Scholar]
  35. Dudareva N, Negre F, Nagegowda DA, Orlova I. 35.  2006. Plant volatiles: recent advances and future perspectives. Crit. Rev. Plant Sci. 25:417–40 [Google Scholar]
  36. Dukas R. 36.  2008. Evolutionary biology of insect learning. Annu. Rev. Entomol. 54:145–60 [Google Scholar]
  37. El-Sayed AM, Suckling DM, Byers JA, Jang EB, Wearing CH. 37.  2009. Potential of “lure and kill” in long-term pest management and eradication of invasive species. J. Econ. Entomol. 102:815–35 [Google Scholar]
  38. Fan R, Anderson P, Hansson BS. 38.  1997. Behavioural analysis of olfactory conditioning in the moth Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). J. Exp. Biol. 200:2969–76 [Google Scholar]
  39. Finch S, Collier RH. 39.  2000. Host-plant selection by insects—a theory based on ‘appropriate/inappropriate landings’ by pest insects of cruciferous plants. Entomol. Exp. Appl. 96:91–102 [Google Scholar]
  40. Forrester NW, Cahill M, Bird LJ, Layland JK. 40.  1993. Management of Pyrethroid and Endosulfan Resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) in Australia Bull. Entomol. Res. Suppl. Ser. 1 Wallingford, UK: CAB Int. [Google Scholar]
  41. Foster SP, Harris MO. 41.  1997. Behavioral manipulation methods for insect pest-management. Annu. Rev. Entomol. 42:123–46 [Google Scholar]
  42. Fraenkel GS. 42.  1959. The raison d'être of secondary plant substances. Science 129:1466–70 [Google Scholar]
  43. Gadenne C, Barrozo RB, Anton S. 43.  2016. Plasticity in insect olfaction: to smell or not to smell?. Annu. Rev. Entomol. 61:317–33 [Google Scholar]
  44. Goyret J. 44.  2010. Look and touch: multimodal sensory control of flower inspection movements in the nocturnal hawkmoth Manduca sexta. J. Exp. Biol. 213:3676–82 [Google Scholar]
  45. Goyret J, Kelber A. 45.  2011. How does a diurnal hawkmoth find nectar? Differences in sensory control with a nocturnal relative. Behav. Ecol. 22:976–84 [Google Scholar]
  46. Gregg PC, Del Socorro AP, Hawes AJ, Binns MR. 46.  2016. Developing bisexual attract-and-kill for polyphagous insects: ecological rationale versus pragmatics. J. Chem. Ecol. 42:666–75 [Google Scholar]
  47. Gregg PC, Del Socorro AP, Hawes AJ, Binns MR. 47.  2016. Non-target impacts of an attract-and-kill formulation based on plant volatiles: responses of some generalist predators. J. Chem. Ecol. 42:676–88 [Google Scholar]
  48. Gregg PC, Del Socorro AP, Henderson GS. 48.  2010. Development of a synthetic plant volatile-based attracticide for female noctuid moths. II. Bioassays of synthetic plant volatiles as attractants for the adults of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Aust. J. Entomol. 49:21–30 [Google Scholar]
  49. Gregg PC, Greive KA, Del Socorro AP, Hawes AJ. 49.  2010. Research to realisation: the challenging path for novel pest management products in Australia. Aust. J. Entomol. 49:1–9 [Google Scholar]
  50. Gregg PC, Wilson AGL. 50.  1991. Trapping methods for adults. Heliothis: Research Methods and Prospects MP Zalucki 30–48 New York: Springer-Verlag [Google Scholar]
  51. Gross HRJ, Carpenter JE, Sparks AN. 51.  1983. Visual acuity of Heliothis zea (Lepidoptera: Noctuidae) males as a factor influencing the efficiency of pheromone traps. Environ. Entomol. 12:844–47 [Google Scholar]
  52. Hare JD. 52.  2011. Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu. Rev. Entomol. 56:161–80 [Google Scholar]
  53. Hartlieb E, Rembold H. 53.  1996. Behavioral response of female Helicoverpa (Heliothis) armigera HB. (Lepidoptera: Noctuidae) moths to synthetic pigeonpea (Cajanuscajan L.) kairomone. J. Chem. Ecol. 22:821–37 [Google Scholar]
  54. Heath RR, Epsky ND, Guzman A, Dueben BD, Manukian A, Meyer WL. 54.  1995. Development of a dry plastic insect trap with a food-based synthetic attractant for the Mediterranean and Mexican fruit flies (Diptera; Tephritidae). J. Econ. Entomol. 88:1307–15 [Google Scholar]
  55. Hossain MS, Hossain MABM, Chandra S, Williams DG. 55.  2009. Reliability of volumetric and gravimetric methods for estimating the number of Carpophilus spp. (Coleoptera: Nitidulidae) in traps. Aust. J. Entomol. 48:287–92 [Google Scholar]
  56. Hossain MS, Hossain MABM, Williams DG, Chandra S. 56.  2010. Potential to reduce the spatial density of attract and kill traps required for effective control of Carpophilus spp. (Coleoptera: Nitidulidae) in stone fruit in Australia. Aust. J. Entomol. 49:170–74 [Google Scholar]
  57. Hossain MS, Hossain MABM, Williams DG, Chandra S. 57.  2013. Management of Carpophilus spp. beetles (Nitidulidae) in stone fruit orchards by reducing the number of attract-and-kill traps in neighbouring areas. Int. J. Pest Manag. 59:135–40 [Google Scholar]
  58. Hull CD, Cunningham JP, Moore CJ, Zalucki MP, Cribb BW. 58.  2004. Discrepancy between antennal and behavioral responses for enantiomers of α-pinene: electrophysiology and behavior of Helicoverpa armigera (Lepidoptera). J. Chem. Ecol. 30:2071–84 [Google Scholar]
  59. Ikeura H, Kobayashi F, Hayata Y. 59.  2010. How do Pieris rapae search for Brassicaceae host plants?. Biochem. Syst. Ecol. 38:1199–203 [Google Scholar]
  60. James DG, Bartelt RJ, Moore CJ. 60.  1996. Mass-trapping of Carpophilus spp. (Coleoptera: Nitidulidae) in stone fruit orchards using synthetic aggregation pheromones and a coattractant: development of a strategy for population suppression. J. Chem. Ecol. 22:1541–56 [Google Scholar]
  61. James DG, Bartelt RJ, Moore CJ. 61.  1996. Trap design effect on capture of Carpophilus spp. (Coleoptera: Nitidulidae) using synthetic aggregation pheromones and a coattractant. J. Econ. Entomol. 89:648–53 [Google Scholar]
  62. Knolhoff LM, Heckel DG. 62.  2014. Behavioral assays for studies of host plant choice and adaptation in herbivorous insects. Annu. Rev. Entomol. 59:263–78 [Google Scholar]
  63. Knudsen JT, Tollsten L, Bergstrom LG. 63.  1993. Floral scents—a checklist of volatile compounds isolated by headspace techniques. Phytochemistry 33:253–80 [Google Scholar]
  64. Kuebler LS, Olsson SB, Weniger R, Hansson BS. 64.  2011. Neuronal processing of complex mixtures establishes a unique odor representation in the moth antennal lobe. Front. Neural Circuits 5:7 [Google Scholar]
  65. Kuebler LS, Schubert M, Karpati Z, Hansson BS, Olsson SB. 65.  2012. Antennal lobe processing correlates to moth olfactory behavior. J. Neurosci. 32:5772–82 [Google Scholar]
  66. Kvedaras OL, Del Socorro AP, Gregg PC. 66.  2007. Effects of phenylacetaldehyde and (Z)-3-hexenyl acetate on male response to synthetic sex pheromone in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Aust. J. Entomol. 46:224–30 [Google Scholar]
  67. Landolt PJ. 67.  1997. Sex attractant and aggregation pheromones of male phytophagous insects. Am. Entomol. 43:12–22 [Google Scholar]
  68. Landolt PJ. 68.  1998. Chemical attractants for trapping yellowjackets Vespula germanica and Vespula pensylvanica (Hymenoptera: Vespidae). Environ. Entomol. 27:1229–34 [Google Scholar]
  69. Landolt PJ. 69.  2000. New chemical attractants for trapping Lacanobia subjuncta, Mamestra configurata, and Xestia c-nigrum (Lepidoptera: Noctuidae). J. Econ. Entomol. 93:101–6 [Google Scholar]
  70. Landolt PJ, Adams T, Reed HC, Zack RS. 70.  2001. Trapping alfalfa looper moths (Lepidoptera: Noctuidae) with single and double component floral chemical lures. Environ. Entomol. 30:667–72 [Google Scholar]
  71. Landolt PJ, Adams T, Rogg H. 71.  2012. Trapping spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), with combinations of vinegar and wine, and acetic acid and ethanol. J. Appl. Entomol. 136:148–54 [Google Scholar]
  72. Landolt PJ, Adams T, Zack RS. 72.  2006. Field response of alfalfa looper and cabbage looper moths (Lepidoptera: Noctuidae, Plusiinae) to single and binary blends of floral odorants. Environ. Entomol. 35:276–81 [Google Scholar]
  73. Landolt PJ, Adams T, Zack RS, Crabo L. 73.  2011. A diversity of moths (Lepidoptera) trapped with two feeding attractants. Ann. Entomol. Soc. Am. 104:498–506 [Google Scholar]
  74. Landolt PJ, Alfaro JF. 74.  2001. Trapping Lacanobia subjuncta, Xestia c-nigrum, and Mamestra configurata (Lepidoptera: Noctuidae) with acetic acid and 3-methyl-1-butanol in controlled release dispensers. Environ. Entomol. 30:656–62 [Google Scholar]
  75. Landolt PJ, Hammond PC. 75.  2001. Species’ composition of moths captured in traps baited with acetic acid and 3-methyl-1-butanol, in Yakima County, Washington. J. Lepidopterists’ Soc. 55:53–58 [Google Scholar]
  76. Landolt PJ, Lenczewski B, Heath RR. 76.  1991. Lure and toxicant system for the cabbage-looper (Lepidoptera: Noctuidae). J. Econ. Entomol. 84:1344–47 [Google Scholar]
  77. Landolt PJ, Molina O. 77.  1996. Host-finding by cabbage looper moths (Lepidoptera: Noctuidae): learning of host odor upon contact with host foliage. J. Insect Behav. 9:899–908 [Google Scholar]
  78. Landolt PJ, Reed HC, Ellis DJ. 78.  2003. Trapping yellowjackets (Hymenoptera: Vespidae) with heptyl butyrate emitted from controlled-release dispensers. Fla. Entomol. 86:323–28 [Google Scholar]
  79. Landolt PJ, Suckling DM, Judd GJR. 79.  2007. Positive interaction of a feeding attractant and a host kairomone for trapping the codling moth, Cydia pomonella (L.). J. Chem. Ecol. 33:2236–44 [Google Scholar]
  80. Landolt PJ, Toth M, Meagher RL, Szarukan I. 80.  2013. Interaction of acetic acid and phenylacetaldehyde as attractants for trapping pest species of moths (Lepidoptera: Noctuidae). Pest Manag. Sci. 69:245–49 [Google Scholar]
  81. Lasa R, Velázguez OE, Ortega R, Acosta E. 81.  2014. Efficacy of commercial traps and food odor attractants for mass trapping of Anastrepha ludens (Diptera: Tephritidae). J. Econ. Entomol. 107:198–205 [Google Scholar]
  82. Leake A. 82.  2000. The development of integrated crop management in agricultural crops: comparisons with conventional methods. Pest Manag. Sci. 56:950–53 [Google Scholar]
  83. Light DM, Beck JJ. 83.  2010. Characterization of microencapsulated pear ester, (2E,4Z)-ethyl-2,4-decadienoate, a kairomonal spray adjuvant against neonate codling moth larvae. J. Agric. Food Chem. 58:7838–45 [Google Scholar]
  84. Light DM, Flath RA, Buttery RG, Zalom FG, Rice RE. 84.  et al. 1993. Host-plant green-leaf volatiles synergise the synthetic sex pheromones of the corn earworm and codling moth (Lepidoptera). Chemoecology 4:145–52 [Google Scholar]
  85. Light DM, Knight AL, Henrick CA, Rajapaska D, Lingren B. 85.  et al. 2001. A pear-derived kairomone with pheromonal potency that attracts male and female codling moth, Cydia pomonella (L.). Naturwissenschaften 88:333–38 [Google Scholar]
  86. Lopez JD Jr., Clemens CG, Meola RW. 86.  1997. Evaluation of some insecticides mixed with a feeding stimulant for adult bollworm. Proc. Beltwide Cotton Conf., Jan. 6–10, New Orleans, La. 2940–41 Cordova, TN: Natl. Cotton Counc. Am. [Google Scholar]
  87. Lopez JD Jr., Latheef MA, Hoffmann WC. 87.  2011. Mortality and reproductive effects of ingested spinosad on adult bollworms. Pest Manag. Sci. 67:220–25 [Google Scholar]
  88. Lopez JD Jr., Shaver TN, Beerwinkle KR, Lingren PD. 88.  2000. Feeding attractant and stimulant for adult control of noctuid and/or other lepidopteran species US Patent No. 6074634 [Google Scholar]
  89. Loreto F, Dicke M, Schnitzler J-P, Turlings TCJ. 89.  2014. Plant volatiles and the environment. Plant Cell Environ 37:1905–8 [Google Scholar]
  90. Martel JW, Alford AR, Dickens JC. 90.  2005. Synthetic host volatiles increase efficacy of trap cropping for management of Colorado potato beetle, Leptinotarsa decemlineata (Say). Agric. For. Entomol. 7:79–86 [Google Scholar]
  91. Matile P, Altenburger R. 91.  1988. Rhythms of fragrance emission in flowers. Planta 174:242–47 [Google Scholar]
  92. Meagher RL. 92.  2001. Collection of fall armyworm (Lepidoptera: Noctuidae) adults and nontarget Hymenoptera in different colored unitraps. Fla. Entomol. 84:77–82 [Google Scholar]
  93. Meagher RL. 93.  2002. Trapping noctuid moths with synthetic floral volatile lures. Entomol. Exp. Appl. 103:219–26 [Google Scholar]
  94. Meagher RL, Landolt PJ. 94.  2008. Attractiveness of binary blends of floral odorant compounds to moths in Florida, USA. Entomol. Exp. Appl. 128:323–29 [Google Scholar]
  95. Meagher RL, Mitchell ER. 95.  1999. Nontarget hymenoptera collected in pheromone- and synthetic floral volatile-baited traps. Environ. Entomol. 28:367–71 [Google Scholar]
  96. Mensah RK, Gregg PC, Del Socorro AP, Moore CJ, Hawes AJ, Watts N. 96.  2013. Integrated pest management in cotton: exploiting behaviour-modifying (semiochemical) compounds for managing cotton pests. Crop Pasture Sci 64:763–73 [Google Scholar]
  97. Mensah RK, Macpherson I. 97.  2010. Lure-and-kill as a reduced-risk strategy for managing Helicoverpa spp. on conventional crops within transgenic cotton fields. J. Biol. Control 24:91–103 [Google Scholar]
  98. Mescher MC, de Moraes CM. 98.  2015. Role of plant sensory perception in plant-animal interactions. J. Exp. Bot. 66:425–33 [Google Scholar]
  99. Mitchell ER, Agee HR, Heath RR. 99.  1989. Influence of pheromone trap color and design on capture of male velvetbean caterpillar and fall armyworm moths (Lepidoptera: Noctuidae). J. Chem. Ecol. 15:1775–84 [Google Scholar]
  100. Navarro-Llopis V, Ayala J, Snachis J, Primo J, Moya P. 100.  2015. Field efficacy of a Metarhizium anisopliae-based attractant-contaminant device to control Ceratitis capitata (Diptera: Tephritidae). J. Econ. Entomol. 108:1570–78 [Google Scholar]
  101. Navarro-Llopis V, Primo J, Vacas S. 101.  2013. Efficacy of attract-and-kill devices for the control of Ceratitis capitata. Pest Manag. Sci. 69:478–82 [Google Scholar]
  102. Navarro-Llopis V, Primo J, Vacas S. 102.  2014. Bait station devices can improve mass trapping performance for the control of the Mediterranean fruit fly. Pest Manag. Sci. 71:923–27 [Google Scholar]
  103. Nottingham SF, Hardie J, Dawson GW, Hick AJ, Pickett JA. 103.  et al. 1991. Behavioural and electrophysiological responses of aphids to host and non-host volatiles. J. Chem. Ecol. 17:1231–42 [Google Scholar]
  104. Omura H, Honda K. 104.  2005. Priority of color over scent during flower visitation by adult Vanessa indica butterflies. Oecologia 142:588–96 [Google Scholar]
  105. Otalora-Luna F, Lapointe SL, Dickens JC. 105.  2013. Olfactory cues are subordinate to visual stimuli in a neotropical generalist weevil. PLOS ONE 8:e53120 [Google Scholar]
  106. Pair SD, Horvat RJ. 106.  1997. Volatiles of Japanese honeysuckle flowers as attractants for adult Lepidopteran insects. US Patent No. 5665344
  107. Pickett JA, Hassanali A, Herren H, Khan ZR, Woodcock CM. 107.  2008. Integrated pest management: the push–pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Philos. Trans. R. Soc. B 363:611–21 [Google Scholar]
  108. Pinero JC, Dorn S. 108.  2007. Synergism between aromatic compounds and green leaf volatiles derived from the host plant underlies female attraction in the oriental fruit moth. Entomol. Exp. Appl. 125:185–94 [Google Scholar]
  109. Pinero JC, Galizia CG, Dorn S. 109.  2008. Synergistic behavioral responses of female oriental fruit moths (Lepidoptera: Tortricidae) to synthetic host plant-derived mixtures are mirrored by odor-evoked calcium activity in their antennal lobes. J. Insect Physiol. 54:333–43 [Google Scholar]
  110. Pivnick KA, Reed DW, Millar JG, Underhill EW. 110.  1991. Attraction of northern false chinch bug Nysiusniger (Heteroptera: Lygaeidae) to mustard oils. J. Chem. Ecol. 17:931–41 [Google Scholar]
  111. Poullot D, Beslay D, Bouvier JC, Sauphanor B. 111.  2001. Is attract-and-kill technology potent against insecticide-resistant Lepidoptera?. Pest Manag. Sci. 57:729–36 [Google Scholar]
  112. Qualley A, Dudareva N. 112.  2010. Plant volatiles. eLS https://doi.org/10.1002/9780470015902.a0000910.pub2 [Crossref] [Google Scholar]
  113. Raguso RA, Agrawal AA, Douglas AE, Jander G, Kessler A. 113.  et al. 2015. The raison d'être of chemical ecology. Ecology 96:617–30 [Google Scholar]
  114. Reddy GVP, Holopainen JK, Guerrero A. 114.  2002. Olfactory responses of Plutella xylostella natural enemies to host pheromone, larval frass, and green leaf cabbage volatiles. J. Chem. Ecol. 28:131–43 [Google Scholar]
  115. Riffell JA, Sclizermnan E, Sanders E, Abrell L, Medina B. 115.  et al. 2014. Flower discrimination by pollinators in a dynamic chemical environment. Science 344:1515–18 [Google Scholar]
  116. Rojas JC, Wyatt TD. 116.  1999. Role of visual cues and interaction with host odour during the host-finding behaviour of the cabbage moth. Entomol. Exp. Appl. 91:59–65 [Google Scholar]
  117. Roy BA, Raguso RA. 117.  1997. Olfactory versus visual cues in a floral mimicry system. Oecologia 109:414–26 [Google Scholar]
  118. Saveer AM, Kromann SH, Birgersson G, Bengtsson M, Lindblom T. 118.  et al. 2012. Floral to green: mating switches moth olfactory coding and preference. Proc. R. Soc. B 279:2314–22 [Google Scholar]
  119. Schröder R, Hilker M. 119.  2008. The relevance of background odor in resource location by insects: a behavioral approach. BioScience 58:308–16 [Google Scholar]
  120. Shaver TN, Lingren PD, Marshall HF. 120.  1997. Nighttime variation in volatile content of flowers of the night blooming plant Gaura drummondii. J. Chem. Ecol. 23:2673–82 [Google Scholar]
  121. Shelton AM, Badenes-Perez E. 121.  2006. Concepts and applications of trap cropping in pest management. Annu. Rev. Entomol. 51:285–308 [Google Scholar]
  122. Stranden M, Røstelien T, Liblikas I, Alamaas T, Borg-Karlson A-K, Mustaparta H. 122.  2003. Receptor neurones in three heliothine moths responding to floral and inducible plant volatiles. Chemoecology 13:143–54 [Google Scholar]
  123. Stringer LD, El-Sayed AM, Cole LM, Manning L-AM, Suckling DM. 123.  2008. Floral attractants for the female soybean looper, Thysanoplusia orichalcea (Lepidoptera: Noctuidae). Pest Manag. Sci. 64:1218–21 [Google Scholar]
  124. Suckling DM. 124.  2000. Issues affecting the use of pheromones and other semiochemicals in orchards. Crop Prot 19:677–83 [Google Scholar]
  125. Szendrei Z, Rodriguez-Saona C. 125.  2010. A meta-analysis of insect pest behavioral manipulation with plant volatiles. Entomol. Exp. Appl. 134:201–10 [Google Scholar]
  126. Tinsworth EF. 126.  1990. Registration of pheromones and other semiochemicals in the United States of America. Behavior Modifying Chemicals for Insect Management RL Ridgway, RM Silverstein 605–18 New York: Marcel Decker Inc. [Google Scholar]
  127. Toth M, Landolt P, Szarukan I, Szollath I, Vitanyi I. 127.  et al. 2012. Female-targeted attractant containing pear ester for Synanthedon myopaeformis. Entomol. Exp. Appl. 142:27–35 [Google Scholar]
  128. Toth M, Nobili P, Tabilio R, Ujvary I. 128.  2004. Interference between male-targeted and female-targeted lures of the Mediterranean fruit fly Ceratitis capitata (Dipt., Tephritidae) in Italy. J. Appl. Entomol. 128:64–69 [Google Scholar]
  129. Trägardh I. 129.  1913. On the chemotropism of insects and its significance for economic entomology. Bull. Entomol. Res. 4:113–17 [Google Scholar]
  130. 130. US Environ. Prot. Agency. 2013. Ethyl-2E,4Z-decadienoate (pear ester); exemption from the requirement of a tolerance. Fed. Regist. 78:53051–54 https://www.federalregister.gov/documents/2013/08/28/2013-21019/ethyl-2e4z-decadienoate-pear-ester-exemption-from-the-requirement-of-a-tolerance [Google Scholar]
  131. 131. US Environ. Prot. Agency. 2017. Pesticide registration manual: chapter 1—overview of requirements for pesticide registration and registrant obligations US Environ. Prot. Agency Washington, DC: https://www.epa.gov/pesticide-registration/pesticide-registration-manual-chapter-1-overview-requirements-pesticide [Google Scholar]
  132. 132. US Environ. Prot. Agency. 2017. Pesticide registration manual: chapter 3—additional considerations for biopesticide products US Environ. Prot. Agency Washington, DC: https://www.epa.gov/pesticide-registration/pesticide-registration-manual-chapter-3-additional-considerations [Google Scholar]
  133. Wang L, Meng Z, Li L. 133.  2003. Trapping cotton boll worm with organic acid and insecticide treated poplar branch bundles. Chin. J. Biol. Control 19:31–33 [Google Scholar]
  134. Warrant E, Dacke M. 134.  2011. Vision and visual navigation in nocturnal insects. Annu. Rev. Entomol. 56:239–54 [Google Scholar]
  135. Way MJ, van Emden HF. 135.  2000. Integrated pest management in practice—pathways towards successful application. Crop Prot 19:81–103 [Google Scholar]
  136. Weatherston I, Minks AK. 136.  1995. Regulation of semiochemicals—global aspects. Integr. Pest Manag. Rev. 1:1–13 [Google Scholar]
  137. Weatherston I, Stewart R. 137.  2002. Regulatory issues in the commercial development of pheromones and other semiochemicals. IOBC WPRS Bull. 25:1–9 [Google Scholar]
  138. Webster B, Qvarfordt E, Olsson U, Glinwood R. 138.  2013. Different roles for innate and learnt behavioral responses to odors in insect host location. Behav. Ecol. 24:366–72 [Google Scholar]
  139. Witzgall P, Kirsch P, Cork A. 139.  2010. Sex pheromones and their impact on pest management. J. Chem. Ecol. 36:80–100 [Google Scholar]
  140. Xiao C, Xiao J, Zhao J, Lei C, Zhang Z. 140.  2002. Attraction of the cotton bollworm, Helicoverpa armigera, to poplar bundles made of Pterocarya stenoptera, in the field. Acta Entomol. Sin. 45:552–55 [Google Scholar]
  141. Yee WL, Landolt PJ, Darnell TJ. 141.  2006. Attraction of Rhagoletis pomonella (Diptera: Tephritidae) and nontarget flies to traps baited with ammonium carbonate and fruit volatile lures in Washington and Oregon. J. Agr. Urban Entomol. 23:133–49 [Google Scholar]
  142. Yasin S, Rempoulakis P, Nemny-Levy E, Levi-Zada A, Tsukada M. 142.  et al. 2014. Assessment of lure and kill and mass trapping methods against the olive fly Bactrocera oleae (Rossi) in desert-like environments in the eastern Meditteranean. Crop Prot 57:63–76 [Google Scholar]
  143. Yu HL, Zhang YJ, Wu KM, Gao XW, Guo YY. 143.  2008. Field-testing of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. Environ. Entomol. 37:1410–15 [Google Scholar]
/content/journals/10.1146/annurev-ento-031616-035040
Loading
/content/journals/10.1146/annurev-ento-031616-035040
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error