1932

Abstract

Until recently, deep-level phylogeny in Lepidoptera, the largest single radiation of plant-feeding insects, was very poorly understood. Over the past two decades, building on a preceding era of morphological cladistic studies, molecular data have yielded robust initial estimates of relationships both within and among the ∼43 superfamilies, with unsolved problems now yielding to much larger data sets from high-throughput sequencing. Here we summarize progress on lepidopteran phylogeny since 1975, emphasizing the superfamily level, and discuss some resulting advances in our understanding of lepidopteran evolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-031616-035125
2017-01-31
2025-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ento/62/1/annurev-ento-031616-035125.html?itemId=/content/journals/10.1146/annurev-ento-031616-035125&mimeType=html&fmt=ahah

Literature Cited

  1. Abraham D, Ryrholm N, Wittzell H, Holloway JD, Scoble MJ, Lofstedt C. 1.  2001. Molecular phylogeny of the subfamilies in Geometridae (Geometroidea: Lepidoptera). Mol. Phylogenet. Evol. 20:65–77 [Google Scholar]
  2. Ackery PR, de Jong R, Vane-Wright RI. 2.  1998. The butterflies: Hedyloidea, Hesperioidea, and Papilionoidea. See Ref. 63 264–300
  3. Ackery PR, Vane-Wright RI. 3.  1984. Milkweed Butterflies, Their Cladistics and Biology: Being an Account of the Natural History of the Danainae, Subfamily of the Lepidoptera, Nymphalidae London: Br. Mus. Nat. Hist. [Google Scholar]
  4. Adamski D, Brown RL. 4.  1989. Morphology and systematics of North American Blastobasidae (Lepidoptera: Gelechioidea) Tech. Bull. 165, Miss. Agric. For. Exp. Stn., Miss. State [Google Scholar]
  5. Ando T, Inomata S, Yamamoto M. 5.  2004. Lepidopteran sex pheromones. Top. Curr. Chem. 239:51–96 [Google Scholar]
  6. Baixeras J. 6.  2002. An overview of genus-level taxonomic problems surrounding Argyroploce Hübner (Lepidoptera: Tortricidae), with description of a new species. Ann. Entomol. Soc. Am. 95422–31 [Google Scholar]
  7. Barber J, Leavell BC, Keener AL, Breinholt JW, Chadwell BA. 7.  et al. 2015. Moth tails divert bat attack: evolution of acoustic deflection. PNAS 112:2812–16 [Google Scholar]
  8. Bazinet AL, Cummings MP, Mitter KT, Mitter C. 8.  2013. Can RNA-Seq resolve the rapid radiation of advanced moths and butterflies (Hexapoda: Lepidoptera: Apoditrysia)? An exploratory study. PLOS ONE 8e82615 [Google Scholar]
  9. Bazinet AL, Mitter KT, Davis DR, van Nieukerken EJ, Cummings MP, Mitter C. 9.  2016. Phylotranscriptomics resolves ancient divergences in the Lepidoptera. Syst. Entomol. In press [Google Scholar]
  10. Breinholt JW, Cason CE, Lemmon AR, Lemmon EM, Xiao L, Kawahara AY. 10.  2016. Anchored hybrid enrichment in Lepidoptera: leveraging genomic data for studies on the megadiverse butterflies and moths. Syst. Biol. In press [Google Scholar]
  11. Breinholt JW, Kawahara AY. 11.  2013. Phylotranscriptomics: Saturated third codon positions radically influence the estimation of trees based on next-gen data. Genome Biol. Evol. 52082–92 [Google Scholar]
  12. Brower AVZ. 12.  1994. Phylogeny of Heliconius butterflies inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol. 3159–74 [Google Scholar]
  13. Brower AVZ, DeSalle R. 13.  1998. Mitochondrial versus nuclear DNA sequence evolution among nymphalid butterflies: the utility of Wingless as a source of characters for phylogenetic inference. Insect Mol. Biol. 71–10 [Google Scholar]
  14. Brown JM, Pellmyr O, Thompson JN, Harrison RG. 14.  1994. Mitochondrial DNA phylogeny of the Prodoxidae (Lepidoptera: Incurvarioidea) indicates a rapid ecological diversification of the yucca moths. Ann. Entomol. Soc. Am. 87795–802 [Google Scholar]
  15. Cho S, Mitchell A, Mitter C, Regier J, Matthews M, Robertson R. 15.  2008. Molecular phylogenetics of heliothine moths (Lepidoptera: Noctuidae: Heliothinae), with comments on the evolution of host range and pest status. Syst. Entomol. 49581–94 [Google Scholar]
  16. Cho S, Mitchell A, Regier JC, Mitter C, Poole RW. 16.  et al. 1995. A highly conserved nuclear gene for low-level phylogenetics: elongation factor-1α recovers morphology-based tree for heliothine moths. Mol. Biol. Evol. 12:650–56 [Google Scholar]
  17. Cho S, Zwick A, Regier JC, Mitter C, Cummings MP. 17.  et al. 2011. Can deliberately incomplete gene sample augmentation improve a phylogeny estimate for the advanced moths and butterflies (Hexapoda: Lepidoptera)?. Syst. Biol. 60782–96 [Google Scholar]
  18. Common IFB. 18.  1975. Evolution and classification of the Lepidoptera. Annu. Rev. Entomol. 20:183–203 [Google Scholar]
  19. Condamine FL, Clapham ME, Kergoat GJ. 19.  2016. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence?. Sci. Rep. 619208 [Google Scholar]
  20. Condamine FL, Sperling FAH, Wahlberg N, Rasplus JY, Kergoat GJ. 20.  2012. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecol. Lett. 15:267–77 [Google Scholar]
  21. Davis DR. 21.  1987. Gracillariidae. Immature Insects 1 FW Stehr 372–78 Dubuque, IA: Kendall/Hunt [Google Scholar]
  22. Davis DR. 22.  1998. A world classification of the Harmacloninae, a new subfamily of Tineidae (Lepidoptera: Tineoidea). Smithson. Contrib. Zool. 5971–81 [Google Scholar]
  23. Davis DR, Gentili P. 23.  2003. Andesianidae, a new family of monotrysian moths (Lepidoptera: Andesianoidea) from South America. Invertebr. Syst. 17:15–26 [Google Scholar]
  24. Davis DR, Robinson GS. 24.  1998. The Tineoidea and Gracillarioidea. See Ref. 63 91–117
  25. de Jong R. 25.  2007. Estimating time and space in the evolution of the Lepidoptera. Tijdschr. Entomol. 150:319–46 [Google Scholar]
  26. de Jong R. 26.  2016. Reconstructing a 55-million-year-old butterfly (Lepidoptera: Hesperiidae). Eur. J. Entomol 113:423–28 [Google Scholar]
  27. Doorenweerd C, van Nieukerken EJ, Sohn J-C, Labandeira CC. 27.  2015. A revised checklist of Nepticulidae fossils (Lepidoptera) indicates an Early Cretaceous origin. Zootaxa 3963295–334 [Google Scholar]
  28. dos Reis M, Donoghue PCJ, Yang Z. 28.  2016. Bayesian molecular clock dating of species divergences in the genomics era. Nat. Rev. Genet. 17:71–80 [Google Scholar]
  29. Dugdale JS, Kristensen NP, Robinson GS, Scoble MJ. 29.  1998. The Yponomeutoidea. See Ref. 63 120–30
  30. Duncan IJ. 30.  1997. The taphonomy of insects PhD Thesis, Palaeobiol. Res. Group, Univ. Bristol [Google Scholar]
  31. Edger PP, Heidel-Fischer HM, Bekaert M, Rota J, Glöckner G. 31.  et al. 2015. The butterfly plant arms-race escalated by gene and genome duplications. PNAS 112:8362–66 [Google Scholar]
  32. Edwards ED, Gentili P, Horak M, Kristensen NP, Nielsen ES. 32.  1998. The cossoid/sesioid assemblage. See Ref. 63 181–97
  33. Ehrlich PR, Raven PH. 33.  1964. Butterflies and plants: a study in coevolution. Evolution 18:586–608 [Google Scholar]
  34. Epstein ME. 34.  1996. Revision and phylogeny of the Limacodid-group families, with evolutionary studies on slug caterpillars (Lepidoptera: Zygaenoidea). Smithson. Contrib. Zool. 5821–102 [Google Scholar]
  35. Epstein ME, Geertsema H, Naumann CM, Tarmann GM. 35.  1998. The Zygaenoidea. See Ref. 63 159–80
  36. Espeland M, Hall JPW, DeVries PJ, Lees DC, Cornwall M. 36.  et al. 2015. Ancient Neotropical origin and recent recolonisation: phylogeny, biogeography and diversification of the Riodinidae (Lepidoptera: Papilionoidea). Mol. Phylogenet. Evol. 93296–306 [Google Scholar]
  37. Faircloth BC, Branstetter MG, White ND, Brady SG. 37.  2014. Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera. Mol. Ecol. Res. 15489–501 [Google Scholar]
  38. Fang Q, Cho S, Regier J, Mitter C, Matthews M. 38.  et al. 1997. A new nuclear gene for insect phylogenetics: Dopa decarboxylase is informative of relationships within Heliothinae (Lepidoptera: Noctuidae). Syst. Biol. 46269–83 [Google Scholar]
  39. Fordyce JA. 39.  2010. Host shifts and evolutionary radiations of butterflies. Proc. R. Soc. B 277:3735–43 [Google Scholar]
  40. Garzón-Orduña IJ, Silva-Brandão KL, Willmott KR, Freitas AV, Brower AV. 40.  2015. Incompatible ages for clearwing butterflies based on alternative secondary calibrations. Syst. Biol. 64752–67 [Google Scholar]
  41. Gilligan TM, Baixeras J, Brown JW, Tuck KR. 41.  2014. T@RTS: online world catalogue of the Tortricidae (version 3.0). Tortricid.net: Torticidae Resources on the Web. http://www.tortricid.net/catalogue.asp. Accessed March 26, 2016 [Google Scholar]
  42. Grimaldi DA, Engel MS. 42.  2005. Evolution of the Insects Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  43. Heikkilä M, Mutanen M, Kekkonen M, Kaila L. 43.  2014. Morphology reinforces proposed molecular phylogenetic affinities: a revised classification for Gelechioidea (Lepidoptera). Cladistics 30563–89 [Google Scholar]
  44. Heikkilä M, Kaila L, Mutanen M, Peña C, Wahlberg N. 44.  2011. Cretaceous origin and repeated tertiary diversification of the redefined butterflies. Proc. R. Soc. B 279:1093–99 [Google Scholar]
  45. Heikkilä M, Mutanen M, Wahlberg N, Sihvonen P, Kaila L. 45.  2015. Elusive ditrysian phylogeny: an account of combining systematized morphology with molecular data (Lepidoptera). BMC Evol. Biol. 15260 [Google Scholar]
  46. Hodges RW. 46.  1998. The Gelechioidea. See Ref. 63 131–58
  47. Holloway JD. 47.  1986–2011. Moths of Borneo part 2 Kuala Lumpur: Malays. Nat. Soc./Southdene Sdn. Bhd. [Google Scholar]
  48. Horak M. 48.  1998. The Tortricoidea. See Ref. 63 199–215
  49. Kaila L. 49.  2004. Phylogeny of the superfamily Gelechioidea (Lepidoptera: Ditrysia): an exemplar approach. Cladistics 20303–40 [Google Scholar]
  50. Kaila L, Mutanen M, Nyman T. 50.  2011. Phylogeny of the mega-diverse Gelechioidea (Lepidoptera): adaptations and determinants of success. Mol. Phylogenet. Evol. 61801–9 [Google Scholar]
  51. Kaliszewska ZA, Lohman DJ, Sommer K, Adelson G, Rand DB. 51.  et al. 2015. When caterpillars attack: biogeography and life history evolution of the Miletinae (Lepidoptera: Lycaenidae). Evolution 69571–88 [Google Scholar]
  52. Kawahara AY, Barber JR. 52.  2015. Tempo and mode of anti-bat ultrasound and jamming in the diverse hawkmoth radiation. PNAS 1126407–12 [Google Scholar]
  53. Kawahara AY, Breinholt JW. 53.  2014. Phylogenomics provides strong evidence for relationships of butterflies and moths. Proc. R. Soc. B 28120140970 [Google Scholar]
  54. Kawahara AY, Mignault AA, Regier JC, Kitching IJ, Mitter C. 54.  2009. Phylogeny and biogeography of hawkmoths (Lepidoptera: Sphingidae): evidence from five nuclear genes. PLOS ONE 4e5719 [Google Scholar]
  55. Kawahara AY, Ohshima I, Kawakita A, Regier JC, Mitter C. 55.  et al. 2011. Increased gene sampling provides stronger support for higher-level groups within gracillariid leaf mining moths and relatives (Lepidoptera: Gracillariidae). BMC Evol. Biol. 11182 [Google Scholar]
  56. Kawahara AY, Plotkin D, Ohshima I, Lopez-Vaamonde C, Houlihan PR. 56.  et al. 2016. A molecular phylogeny and revised higher-level classification for the leaf-mining moth family Gracillariidae and its implications for larval host use evolution. Syst. Entomol. In press. https://doi.org/10.1111/syen.12210 [Google Scholar]
  57. Kim MJ, Kang AR, Jeong HC, Kim KG, Kim I. 57.  2011. Reconstructing intraordinal relationships in Lepidoptera using mitochondrial genome data with the description of two newly sequenced lycaenids, Spindasis takanonis and Protantigius superans (Lepidoptera: Lycaenidae). Mol. Phylogenet. Evol. 61436–45 [Google Scholar]
  58. Kitching IJ. 58.  1987. Spectacles and silver Ys: a synthesis of the systematics, cladistics and biology of the Plusiinae (Lepidoptera: Noctuidae). Bull. Br. Mus. Nat. Hist. Entomol. 5475–261 [Google Scholar]
  59. Kitching IJ, Rawlins JE. 59.  1998. Noctuoidea. See Ref. 63 355–401
  60. Kong W, Yang J. 60.  2015. The complete mitochondrial genome of Rondotia menciana (Lepidoptera: Bombycidae). J. Insect Sci. 1548 [Google Scholar]
  61. Kristensen NP. 61.  1976. Remarks on the family-level phylogeny of butterflies (Insecta, Lepidoptera, Rhopalocera). J. Zool. Syst. Evol. Res. 1425–33 [Google Scholar]
  62. Kristensen NP. 62.  1997. Early evolution of the Trichoptera + Lepidoptera lineage: phylogeny and the ecological scenario. Mém. Mus. Natl. Hist. Nat. 173253–71 [Google Scholar]
  63. Kristensen NP. 63.  1998. Lepidoptera: Moths and Butterflies, Vol. 1: Evolution, Systematics, and Biogeography Handb. Zool. 35 Berlin: De Gruyter [Google Scholar]
  64. Kristensen NP, Hilton DJ, Kallies A, Milla L, Rota J. 64.  et al. 2015. A new extant family of primitive moths from Kangaroo Island, Australia, and its significance for understanding early Lepidoptera evolution. Syst. Entomol. 405–16 [Google Scholar]
  65. Kristensen NP, Scoble MJ, Karsholt OK. 65.  2007. Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Zootaxa 1668:699–747 [Google Scholar]
  66. Kristensen NP, Skalski AW. 66.  1998. Phylogeny and palaeontology. See Ref. 63 7–25
  67. Kyrki J. 67.  1984. The Yponomeutoidea: a reassessment of the superfamily and its suprageneric groups (Lepidoptera). Insect Syst. Evol. 1571–84 [Google Scholar]
  68. Kyrki J. 68.  1990. Tentative reclassification of holarctic Yponomeutoidea (Lepidoptera). Nota Lepidopterol 1328–42 [Google Scholar]
  69. Labandeira CC, Dilcher DL, Davis DR, Wagner DL. 69.  1994. Ninety-seven million years of angiosperm-insect association: paleobiological insights into the meaning of coevolution. PNAS 9112278–82 [Google Scholar]
  70. Lafontaine JD. 70.  1993. Cutworm systematics: confusions and solutions. Mem. Entomol. Soc. Can. 165189–96 [Google Scholar]
  71. Lees DC, Kawahara AY, Rougerie R, Ohshima I, Kawakita A. 71.  et al. 2014. DNA barcoding reveals a largely unknown fauna of Gracillariidae leaf-mining moths in the Neotropics. Mol. Ecol. Resour. 14286–96 [Google Scholar]
  72. Lees DC, Smith NG. 72.  1991. Foodplant associations of the Uraniinae and their systematic, evolutionary and ecological significance. J. Lepidopterists Soc. 45296–347 [Google Scholar]
  73. Lemmon AR, Emme S, Lemmon EC. 73.  2012. Anchored hybrid enrichment for massively high-throughput phylogenetics. Syst. Biol. 61721–74 [Google Scholar]
  74. Löfstedt C, Wahlberg N, Miller JG. 74.  2016. Evolutionary patterns of pheromone diversity in Lepidoptera. Pheromone Communication in Moths: Evolution, Behavior, and Application JD Allison, RT Cardé 43–78 Oakland, CA: Univ. California Press [Google Scholar]
  75. Lohman D. 75.  2015. Collaborative research: ButterflyNet—an interactive framework for comparative biology NSF Award Abstr. 1541557, Nat. Sci. Found., Arlington, VA. https://www.nsf.gov/awardsearch/showAward?AWD_ID=1541557 [Google Scholar]
  76. Lopez-Vaamonde C, Wikström N, Labandeira C, Godfray HCJ, Goodman SJ, Cook JM. 76.  2006. Fossil-calibrated molecular phylogenies reveal that leaf-mining moths radiated millions of years after their host plants. J. Evol. Biol. 191314–26 [Google Scholar]
  77. Menken SBJ, Boomsma JJ, van Nieukerken EJ. 77.  2010. Large-scale evolutionary patterns of host plant associations in the Lepidoptera. Evolution 641098–119 [Google Scholar]
  78. Millar JG. 78.  2000. Polyene hydrocarbons and epoxides: a second major class of lepidopteran sex attractant pheromones. Annu. Rev. Entomol. 45575–604 [Google Scholar]
  79. Miller JS. 79.  1987. Phylogenetic studies in the Papilioninae (Lepidoptera: Papilionidae). Bull. Am. Mus. Nat. Hist. 186365–512 [Google Scholar]
  80. Miller JS. 80.  1991. Cladistics and classification of the Notodontidae (Lepidoptera: Noctuoidea) based on larval and adult morphology. Bull. Am. Mus. Nat. Hist. 2041–230 [Google Scholar]
  81. Minet J. 81.  1982. Les Pyraloidea et leurs principales divisions systématiques. Bull. Soc. Entomol. Fr. 86262–80 [Google Scholar]
  82. Minet J. 82.  1985. Ètude morphologique et phylogénétique des organs tympaniques des Pyraloidea. 2—Pyralidae, Crambidae, premiere partie (Lepidoptera Glossata). Ann. Soc. Entomol. Fr. 2169–86 [Google Scholar]
  83. Minet J. 83.  1986. Ebauche d'une classification modern de l'ordre des Lepidopteres. Alexanor 14291–313 [Google Scholar]
  84. Minet J. 84.  1991. Tentative reconstruction of the ditrysian phylogeny (Lepidoptera: Glossata). Entomol. Scand. 2269–95 [Google Scholar]
  85. Minet J. 85.  1994. The Bombycoidea: phylogeny and higher classification (Lepidoptera: Glossata). Entomol. Scand. 2563–88 [Google Scholar]
  86. Minet J, Scoble MJ. 86.  1998. The drepanoid/geometroid assemblage. See Ref. 63 301–20
  87. Minet J, Surlykke A. 87.  2003. Auditory and sound producing organs. Lepidoptera: Moths and Butterflies, Vol. 2: Morphology and Physiology NP Kristensen 289–323 Berlin: De Gruyter [Google Scholar]
  88. Misof B, Liu S, Meusemann K, Peters RS, Donath A. 88.  et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346763–67 [Google Scholar]
  89. Mitchell A, Mitter C, Regier JC. 89.  2006. Systematics and evolution of the cutworm moths (Lepidoptera: Noctuidae): evidence from two protein-coding nuclear genes. Syst. Entomol. 3121–46 [Google Scholar]
  90. Mitter C, Silverfine E. 90.  1988. On the systematic position of Catocala Schrank. Syst. Entomol. 1367–84 [Google Scholar]
  91. Monteiro A. 91.  2015. The origin, development, and evolution of butterfly eyespots. Annu. Rev. Entomol. 60253–71 [Google Scholar]
  92. Munroe EG, Solis MA. 92.  1998. The Pyraloidea. See Ref. 63 233–56
  93. Mutanen M, Wahlberg N, Kaila L. 93.  2010. Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proc. R. Soc. B 2772839–48 [Google Scholar]
  94. Nazari V, Zakharov EV, Sperling FAH. 94.  2007. Phylogeny, historical biogeography, and taxonomic ranking of Parnassiinae (Lepidoptera, Papilionidae) based on morphology and seven genes. Mol. Phylogenet. Evol. 42131–56 [Google Scholar]
  95. Niehuis O, Yen S-H, Naumann CM, Misof B. 95.  2006. Higher phylogeny of zygaenid moths (Insecta: Lepidoptera) inferred from nuclear and mitochondrial sequence data and the evolution of larval cuticular cavities for chemical defence. Mol. Phylogenet. Evol. 39812–29 [Google Scholar]
  96. Nuss M, Landry B, Vegliante F, Tränkner A, Mally R. 96.  et al. 2015. GlobIZ: global information system on Pyraloidea accessed on March 15, 2016. http://www.pyraloidea.org [Google Scholar]
  97. Nylin S, Slove J, Janz N. 97.  2014. Host plant utilization, host range oscillations and diversification in nymphalid butterflies: a phylogenetic investigation. Evolution 68105–24 [Google Scholar]
  98. Parham JF, Donoghue PCJ, Bell CJ, Calway TD, Head JJ. 98.  et al. 2012. Best practices for justifying fossil calibrations. Syst. Biol. 61346–59 [Google Scholar]
  99. Peña C, Wahlberg N. 99.  Prehistorical climate change increased diversification of a group of butterflies. Biol. Lett. 2008:274–78 [Google Scholar]
  100. Penz CM, Freitas AVL, Kaminski LA, Casagrande MM, DeVries PJ. 100.  2013. Adult and early-stage characters of Brassolini contain conflicting phylogenetic signal (Lepidoptera, Nymphalidae). Syst. Entomol. 38316–33 [Google Scholar]
  101. Pitkin LM. 101.  1988. The Holarctic genus Teleiopsis: host-plants, biogeography and cladistics (Lepidoptera: Gelechiidae). Entomol. Scand. 19143–91 [Google Scholar]
  102. Poole RW. 102.  1995. Noctuoidea. Noctuidae (part). Cuculliinae, Stiriinae, Psaphidinae Moths Am. North Mex. Ser. Fascicle 26.1 Washington, DC: Wedge Entomol. Res. Found. [Google Scholar]
  103. Powell JA, Mitter C, Farrell BD. 103.  1998. Evolution of larval feeding habits in Lepidoptera. See Ref. 63 403–22
  104. Rajaei HS, Greve C, Letsch H, Stüning D, Wahlberg N. 104.  et al. 2015. Advances in Geometroidea phylogeny, with characterization of a new family based on Pseudobiston pinratanai (Lepidoptera, Glossata). Zool. Scr. 44418–36 [Google Scholar]
  105. Regier JC, Brown JW, Mitter C, Baixeras J, Cho S. 105.  et al. 2012. A molecular phylogeny for the leaf-roller moths (Lepidoptera: Tortricidae) and its implications for classification and life history evolution. PLOS ONE 7e35574 [Google Scholar]
  106. Regier JC, Cook CP, Mitter C, Hussey A. 106.  2008. A phylogenetic study of the “bombycoid complex” (Lepidoptera) using five protein-coding nuclear genes, with comments on the problem of macrolepidopteran phylogeny. Syst. Entomol. 33:175–89 [Google Scholar]
  107. Regier JC, Grant MC, Peigler RS, Mitter C, Cook CP, Rougerie R. 107.  2008. Phylogenetic relationships of wild silkmoths (Lepidoptera: Saturniidae) inferred from four protein-coding nuclear genes. Syst. Entomol. 33219–28 [Google Scholar]
  108. Regier JC, Mitter C, Davis DR, Harrison TL, Sohn J-C. 108.  et al. 2015. A molecular phylogeny and revised classification for the oldest ditrysian moth lineages (Lepidoptera: Tineoidea), with implications for ancestral feeding habits of the mega-diverse Ditrysia. Syst. Entomol. 40409–32 [Google Scholar]
  109. Regier JC, Mitter C, Kristensen NP, Davis DR, van Nieukerken EJ. 109.  et al. 2015. A molecular phylogeny for the oldest (non-ditrysian) lineages of extant Lepidoptera, with implications for classification, comparative morphology and life history evolution. Syst. Entomol. 40671–704 [Google Scholar]
  110. Regier JC, Mitter C, Solis MA, Hayden JE, Landry B. 110.  et al. 2012. A molecular phylogeny for the pyraloid moths (Lepidoptera: Pyraloidea) and its implications for higher-level classification. Syst. Entomol. 37635–56 [Google Scholar]
  111. Regier JC, Mitter C, Zwick A, Bazinet AL, Cummings MP. 111.  et al. 2013. A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLOS ONE 8e58568 [Google Scholar]
  112. Regier JC, Zwick A, Cummings MP, Kawahara AY, Cho S. 112.  et al. 2009. Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study. BMC Evol. Biol. 9280 [Google Scholar]
  113. Rhainds M, Davis DR, Price PW. 113.  2009. Bionomics of bagworms (Lepidoptera: Psychidae). Annu. Rev. Entomol 54209–26 [Google Scholar]
  114. Rota J, Peña C, Miller SE. 114.  2016. The importance of long-distance dispersal and establishment events in small insects: historical biogeography of metalmark moths (Lepidoptera, Choreutidae). J. Biogeogr. 43:1254–65 [Google Scholar]
  115. Schachat SR, Brown RL. 115.  2015. Color pattern on the forewing of Micropterix (Lepidoptera: Micropterigidae): insights into the evolution of wing pattern and wing venation in moths. PLOS ONE 10e0139972 [Google Scholar]
  116. Scoble MJ. 116.  1986. The structure and affinities of the Hedyloidea: a new concept of the butterflies. Bull. Br. Mus. Nat. Hist. Entomol. 53251–86 [Google Scholar]
  117. Scott JA. 117.  1986. On the monophyly of the Macrolepidoptera, including a reassessment of their relationship to Cossoidea and Castnioidea, and a reassignment of Mimallonidae to Pyraloidea. J. Res. Lepidoptera 25:30–38 [Google Scholar]
  118. Sihvonen P, Mutanen M, Kaila L, Brehm G, Hausmann A. 118.  et al. 2011. Comprehensive molecular sampling yields a robust phylogeny for geometrid moths (Lepidoptera: Geometridae). PLOS ONE 6e20356 [Google Scholar]
  119. Simonsen TJ, Zakharov EV, Djernaes M, Cotton A, Vane-Wright RI, Sperling FAH. 119.  2011. Phylogeny, host plant associations and divergence time of Papilioninae (Lepidoptera: Papilionidae) inferred from morphology and seven genes with special focus on the enigmatic genera Teinopalpus and Meandrusa. Cladistics 27:113–37 [Google Scholar]
  120. Sohn J-C, Labandeira C, Davis DR. 120.  2015. The fossil record and taphonomy of butterflies and moths (Insecta, Lepidoptera): implications for evolutionary diversity and divergence-time estimates. BMC Evol. Biol. 1512 [Google Scholar]
  121. Sohn J-C, Labandeira C, Davis DR, Mitter C. 121.  2012. An annotated catalog of fossil and subfossil Lepidoptera (Insecta: Holometabola) of the world. Zootaxa 32861–132 [Google Scholar]
  122. Sohn J-C, Regier JC, Mitter C, Adamski D, Landry JF. 122.  et al. 2013. A molecular phylogeny for Yponomeutoidea (Insecta, Lepidoptera, Ditrysia) and its implications for classification, biogeography and the evolution of host plant use. PLOS ONE 8e55066 [Google Scholar]
  123. Sohn JC, Regier JC, Mitter C, Adamski D, Landry JF. 123.  et al. 2015. Phylogeny and feeding trait evolution of the mega-diverse Gelechioidea (Lepidoptera: Obtectomera): new insight from 19 nuclear genes. Syst. Entomol. 41112–32 [Google Scholar]
  124. Solis MA, Mitter C. 124.  1992. Review and phylogenetic analysis of the Pyralidae (sensu stricto) (Lepidoptera: Pyralidae) and placement of the Epipaschiinae. Syst. Entomol. 17:79–90 [Google Scholar]
  125. Sperling FAH. 125.  1993. Mitochondrial DNA phylogeny of the Papilio machaon species group (Lepidoptera: Papilionidae). Mem. Entomol. Soc. Can. 165:233–42 [Google Scholar]
  126. Timmermans MJTN, Lees DC, Simonsen TJ. 126.  2014. Towards a mitogenomic phylogeny of Lepidoptera using next generation sequence technology. Mol. Phylogenet. Evol. 79169–78 [Google Scholar]
  127. van Nieukerken EJ, Kaila L, Kitching IJ, Kristensen NP, Lees DC. 127.  et al. 2011. Order Lepidoptera Linnaeus, 1758. Zootaxa 3148:212–21 [Google Scholar]
  128. Wahlberg N, Leneveu J, Kodandaramaiah U, Peña C, Nylin S. 128.  et al. 2009. Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proc. R. Soc. B 276:4295–302 [Google Scholar]
  129. Wahlberg N, Rota J, Braby MF, Pierce NP, Wheat CW. 129.  2014. Revised systematics and higher classification of pierid butterflies (Lepidoptera: Pieridae) based on molecular data. Zool. Scr. 43641–50 [Google Scholar]
  130. Wahlberg N, Wheat CW. 130.  2008. Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of Lepidoptera. Syst. Biol. 57231–42 [Google Scholar]
  131. Wahlberg N, Wheat CW, Peña C. 131.  2013. Timing and patterns in the taxonomic diversification of Lepidoptera (butterflies and moths). PLOS ONE 8e80875 [Google Scholar]
  132. Warren AD, Ogawa JR, Brower AVZ. 132.  2008. Phylogenetic relationships of subfamilies and circumscription of tribes in the family Hesperiidae (Lepidoptera: Hesperioidea). Cladistics 24:1–35 [Google Scholar]
  133. Weller SJ, Pashley DP, Martin JA, Constable JL. 133.  1994. Phylogeny of noctuoid moths and the utility of combining independent nuclear and mitochondrial genes. Syst. Biol. 43194–211 [Google Scholar]
  134. Weller SJ, Friedlander TP, Martin JA, Pashley DP. 134.  1992. Phylogenetic studies of ribosomal RNA variation in higher moths and butterflies (Lepidoptera: Ditrysia). Mol. Phylogenet. Evol. 1312–37 [Google Scholar]
  135. Whalley PES. 135.  1978. New taxa of fossil and recent Micropterigidae with a discussion of their evolution and a comment on the evolution of the Lepidoptera (Insecta). Ann. Transvaal Mus. 3172–86 [Google Scholar]
  136. Whalley PES. 136.  1985. The systematics and paleogeography of the Lower Jurassic insects of Dorset, England. Bull. Br. Mus. Nat. Hist. Geol. 39107–89 [Google Scholar]
  137. Wheat CW, Wahlberg N. 137.  2013. Critiquing blind dating: the dangers of over-confident date estimates in comparative genomics. Trends Ecol. Evol. 28:636–42 [Google Scholar]
  138. Wiegmann BM, Mitter C, Regier JC, Friedlander TP, Wagner DM, Nielsen ES. 138.  2000. Nuclear genes resolve Mesozoic-aged divergences in the insect order Lepidoptera. Mol. Phylogenet. Evol. 15:242–59 [Google Scholar]
  139. Yamamoto S, Sota T. 139.  2007. Phylogeny of the Geometridae and the evolution of winter moths inferred from a simultaneous analysis of mitochondrial and nuclear genes. Mol. Phylogenet. Evol. 44711–23 [Google Scholar]
  140. Yang X, Cameron SL, Lees DC, Xue D, Han H. 140.  2015. A mitochondrial genome phylogeny of owlet moths (Lepidoptera: Noctuoidea), and examination of the utility of mitochondrial genomes for lepidopteran phylogenetics. Mol. Phylogenet. Evol. 85230–37 [Google Scholar]
  141. Ye F, Shi Y, Xing L, Yu H, You P. 141.  2013. The complete mitochondrial genome of Paracymoriza prodigalis (Leech, 1889) (Lepidoptera), with a preliminary phylogenetic analysis of Pyraloidea. Aquat. Insects 3571–88 [Google Scholar]
  142. Yen S-H, Robinson GS, Quicke DLJ. 142.  2005. The phylogenetic relationships of Chalcosiinae (Lepidoptera, Zygaenoidea, Zygaenidae). Zool. J. Linn. Soc. 143:161–341 [Google Scholar]
  143. You M, Yue Z, He W, Yang X, Yang G. 143.  et al. 2013. A heterozygous moth genome provides insights into herbivory and detoxification. Nat. Genet. 45220–22 [Google Scholar]
  144. Young CJ. 144.  2006. Molecular relationships of the Australian Ennominae (Lepidoptera: Geometridae) and implications for the phylogeny of the Geometridae from molecular and morphological data. Zootaxa 1264:1–147 [Google Scholar]
  145. Zahiri R, Holloway JD, Kitching IJ, Lafontaine D, Mutanen M, Wahlberg N. 145.  2012. Molecular phylogenetics of Erebidae (Lepidoptera, Noctuoidea). Syst. Entomol. 37102–24 [Google Scholar]
  146. Zahiri R, Kitching IJ, Lafontaine JD, Mutanen M, Kaila L. 146.  2011. A new molecular phylogeny offers hope for a stable family level classification of the Noctuoidea (Lepidoptera). Zool. Scr. 40158–73 [Google Scholar]
  147. Zahiri R, Lafontaine JD, Holloway JD, Kitching IJ, Schmidt BC. 147.  et al. 2013. Major lineages of Nolidae (Lepidoptera, Noctuoidea) elucidated by molecular phylogenetics. Cladistics 29:337–59 [Google Scholar]
  148. Zahiri R, Lafontaine JD, Schmidt BC, Holloway JD, Kitching IJ. 148.  et al. 2013. Relationships among the basal lineages of Noctuidae (Lepidoptera, Noctuoidea) based on eight gene regions. Zool. Scr. 42488–507 [Google Scholar]
  149. Zaspel JM, Weller SJ, Wardwell CT, Zahiri R, Wahlberg N. 149.  2014. Phylogeny and evolution of pharmacophagy in tiger moths (Lepidoptera: Erebidae: Arctiinae). PLOS ONE 9e101975 [Google Scholar]
  150. Zwick A. 150.  2008. Molecular phylogeny of Anthelidae and other bombycoid taxa (Lepidoptera: Bombycoidea). Syst. Entomol. 33190–209 [Google Scholar]
  151. Zwick A, Regier JC, Mitter C, Cummings MP. 151.  2011. Increased gene sampling yields robust support for higher-level clades within Bombycoidea (Lepidoptera). Syst. Entomol. 3631–43 [Google Scholar]
/content/journals/10.1146/annurev-ento-031616-035125
Loading
/content/journals/10.1146/annurev-ento-031616-035125
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error