The displacement of a species from a habitat by actions of another is the most severe outcome of interspecific interactions. This review focuses on recent developments in the understanding of () ecological mechanisms that lead to displacements, () how outcomes of interspecific interactions are affected by the context of where and when they occur, and () impacts of displacements. Displacements are likely to escalate as their primary initiating factors—the spread of non-native species and environmental change—continue at unprecedented rates. Displacements typically result from interactions of multiple mechanisms, not all of which involve direct competition. Various biotic and abiotic factors mediate these mechanisms, so variable outcomes occur when the same species interact in different environments. Though replacement of one species by another has particular relevance to pest management and conservation biology, the cascading effects that displacements have in managed and natural systems are critical to understand.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abbott KL, Greaves SN, Ritchie PA, Lester PJ. 1.  2007. Behaviourally and genetically distinct populations of an invasive ant provide insight into invasion history and impacts on a tropical ant community. Biol. Invasions 9453–63 [Google Scholar]
  2. Abe Y, Tokumaru S. 2.  2007. Displacement in two invasive species of leafminer fly in different localities. Biol. Invasions 10:951–53 [Google Scholar]
  3. Aliabadi BW, Juliano SA. 3.  2002. Escape from gregarine parasites affects the competitive interactions of an invasive mosquito. Biol. Invasions 4283–97 [Google Scholar]
  4. Amarasekare P. 4.  2002. Interference competition and species coexistence. Proc. R. Soc. B 269:2541–50 [Google Scholar]
  5. Anderson RC, Dhillion SS, Kelley TM. 5.  1996. Aspects of the ecology of an invasive plant, garlic mustard (Alliaria petiolata), in central Illinois. Restor. Ecol. 4181–91 [Google Scholar]
  6. Baez I, Reitz SR, Funderburk JE. 6.  2004. Predation by Orius insidiosus (Heteroptera: Anthocoridae) on species and life stages of Frankliniella flower thrips (Thysanoptera: Thripidae) in pepper flowers. Environ. Entomol 33662–70 [Google Scholar]
  7. Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM. 7.  et al. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 81–16 [Google Scholar]
  8. Balfour NJ, Gandy S, Ratnieks FLW. 8.  2015. Exploitative competition alters bee foraging and flower choice. Behav. Ecol. Sociobiol. 691731–38 [Google Scholar]
  9. Bargielowski IE, Lounibos LP. 9.  2016. Satyrization and satyrization-resistance in competitive displacements of invasive mosquito species. Insect Sci 23:162–74 [Google Scholar]
  10. Bargielowski IE, Lounibos LP, Carrasquilla MC. 10.  2013. Evolution of resistance to satyrization through reproductive character displacement in populations of invasive dengue vectors. PNAS 110:2888–92 [Google Scholar]
  11. Bednarski J, Ginsberg H, Jakob EM. 11.  2010. Competitive interactions between a native spider (Frontinella communis, Araneae: Linyphiidae) and an invasive spider (Linyphia triangularis, Araneae: Linyphiidae). Biol. Invasions 12:905–12 [Google Scholar]
  12. Berdegué M, Trumble JT, Hare JD, Redak RA. 12.  1996. Is it enemy-free space? The evidence for terrestrial insects and freshwater arthropods. Ecol. Entomol. 21:203–17 [Google Scholar]
  13. Blossey B, Notzold R. 13.  1995. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J. Ecol. 83887–89 [Google Scholar]
  14. Brooks ML, D'Antonio CM, Richardson DM, Grace JB, Keeley JE. 14.  et al. 2004. Effects of invasive alien plants on fire regimes. BioScience 54677–88 [Google Scholar]
  15. Connell JH. 15.  1980. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35131–38 [Google Scholar]
  16. Crawley MJ, Brown SL, Heard MS, Edwards GR. 16.  1999. Invasion-resistance in experimental grassland communities: species richness or species identity?. Ecol. Lett. 2140–48 [Google Scholar]
  17. Crowder DW, Horowitz AR, Breslauer H, Rippa M, Kontsedalov S. 17.  et al. 2011. Niche partitioning and stochastic processes shape community structure following whitefly invasions. Basic Appl. Ecol. 12:685–94 [Google Scholar]
  18. Crowder DW, Horowitz AR, De Barro PJ, Liu S-S, Showalter AM. 18.  et al. 2010. Mating behaviour, life history and adaptation to insecticides determine species exclusion between whiteflies. J. Anim. Ecol. 79563–70 [Google Scholar]
  19. Dame EA, Petren K. 19.  2006. Behavioural mechanisms of invasion and displacement in Pacific island geckos (Hemidactylus). Anim. Behav. 711165–73 [Google Scholar]
  20. Dangremond EM, Pardini EA, Knight TM. 20.  2010. Apparent competition with an invasive plant hastens the extinction of an endangered lupine. Ecology 912261–71 [Google Scholar]
  21. De Barro PJ, Bourne A. 21.  2010. Ovipositional host choice by an invader accelerates displacement of its indigenous competitor. Biol. Invasions 12:3013–23 [Google Scholar]
  22. De Barro PJ, Liu S-S, Bourne A. 22.  2010. Age-based differential host acceptability and human mediated disturbance prevent establishment of an invasive species and displacement of a native competitor. Biol. Invasions 12:3429–38 [Google Scholar]
  23. De Barro PJ, Liu S-S, Boykin LM, Dinsdale AB. 23.  2011. Bemisia tabaci: a statement of species status. Annu. Rev. Entomol. 561–19 [Google Scholar]
  24. DeBach P. 24.  1966. The competitive displacement and coexistence principles. Annu. Rev. Entomol. 11:183–212 [Google Scholar]
  25. Delatte H, Bagny L, Brengue C, Bouetard A, Paupy C, Fontenille D. 25.  2011. The invaders: phylogeography of dengue and chikungunya viruses Aedes vectors, on the South West islands of the Indian Ocean. Infect. Genet. Evol. 11:1769–81 [Google Scholar]
  26. Demirozer O, Tyler-Julian K, Funderburk J, Leppla N, Reitz S. 26.  2012. Frankliniella occidentalis (Pergande) integrated pest management programs for fruiting vegetables in Florida. Pest Manag. Sci. 681537–45 [Google Scholar]
  27. Dinsdale A, Cook L, Riginos C, Buckley YM, De Barro P. 27.  2010. Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann. Entomol. Soc. Am. 103:196–208 [Google Scholar]
  28. Ekesi S, Billah MK, Nderitu PW, Lux SA, Rwomushana I. 28.  2009. Evidence for competitive displacement of Ceratitis cosyra by the invasive fruit fly Bactrocera invadens (Diptera: Tephritidae) on mango and mechanisms contributing to the displacement. J. Econ. Entomol 102:981–91 [Google Scholar]
  29. Elliott N, Kieckhefer R, Kauffman W. 29.  1996. Effects of an invading coccinellid on native coccinellids in an agricultural landscape. Oecologia 105:537–44 [Google Scholar]
  30. Fang Y, Jiao X, Xie W, Wang S, Wu Q. 30.  et al. 2013. Tomato yellow leaf curl virus alters the host preferences of its vector Bemisia tabaci. Sci. Rep. 32876 [Google Scholar]
  31. Ferragut F, Garzon-Luque E, Pekas A. 31.  2013. The invasive spider mite Tetranychus evansi (Acari: Tetranychidae) alters community composition and host-plant use of native relatives. Exp. Appl. Acarol. 60321–41 [Google Scholar]
  32. Fischer MJ, Havill NP, Brewster CC, Davis GA, Salom SM, Kok LT. 32.  2015. Field assessment of hybridization between Laricobius nigrinus and L. rubidus, predators of Adelgidae. Biol. Control 821–6 [Google Scholar]
  33. Fitzpatrick MC, Weltzin JF, Sanders NJ, Dunn RR. 33.  2007. The biogeography of prediction error: Why does the introduced range of the fire ant over-predict its native range?. Glob. Ecol. Biogeogr. 16:24–33 [Google Scholar]
  34. Gao Y, Lei Z, Abe Y, Reitz SR. 34.  2011. Species displacements are common to two invasive species of leafminer fly in China, Japan, and the United States. J. Econ. Entomol. 104:1771–73 [Google Scholar]
  35. Gao Y, Reitz SR, Wei Q, Yu W, Lei Z. 35.  2012. Insecticide-mediated apparent displacement between two invasive species of leafminer fly. PLOS ONE 7e36622 [Google Scholar]
  36. Gao Y, Reitz SR, Wei Q, Yu W, Zhang Z, Lei Z. 36.  2014. Local crop planting systems enhance insecticide-mediated displacement of rwo invasive leafminer fly. PLOS ONE 9e92625 [Google Scholar]
  37. Gotoh T, Hanawa M, Shimazaki S, Yokoyama N, Fu C-Q. 37.  et al. 2014. Factors determining species displacement of related predatory mite species (Acari: Phytoseiidae). Exp. Appl. Acarol. 63205–15 [Google Scholar]
  38. Griswold MW, Lounibos LP. 38.  2005. Does differential predation permit invasive and native mosquito larvae to coexist in Florida?. Ecol. Entomol. 30122–27 [Google Scholar]
  39. Groening J, Hochkirch A. 39.  2008. Reproductive interference between animal species. Q. Rev. Biol. 83257–82 [Google Scholar]
  40. Gurevitch J, Padilla DK. 40.  2004. Are invasive species a major cause of extinctions?. Trends Ecol. Evol. 19:470–74 [Google Scholar]
  41. Harmon JP, Stephens E, Losey J. 41.  2007. The decline of native coccinellids (Coleoptera: Coccinellidae) in the United States and Canada. J. Insect Conserv. 11:85–94 [Google Scholar]
  42. Harwood JD, Obrycki JJ. 42.  2005. Web-construction behavior of linyphiid spiders (Araneae, Linyphiidae): competition and co-existence within a generalist predator guild. J. Insect Behav. 18:593–607 [Google Scholar]
  43. Herlihy MV, Van Driesche RG, Abney MR, Brodeur J, Bryant AB. 43.  et al. 2012. Distribution of Cotesia rubecula (Hymenoptera: Braconidae) and its displacement of Cotesia glomerata in eastern North America. Fla. Entomol 95461–67 [Google Scholar]
  44. Hoki E, Losey J, Ugine TA. 44.  2014. Comparing the consumptive and non-consumptive effects of a native and introduced lady beetle on pea aphids (Acyrthosiphon pisum). Biol. Control 7078–84 [Google Scholar]
  45. Hölldobler B, Wilson EO. 45.  1977. The number of queens: an important trait in ant evolution. Naturwissenschaften 648–15 [Google Scholar]
  46. Holway DA, Lach L, Suarez AV, Tsutsui ND, Case TJ. 46.  2002. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 33181–233 [Google Scholar]
  47. Holway DA, Suarez AV. 47.  2006. Homogenization of ant communities in mediterranean California: the effects of urbanization and invasion. Biol. Conserv. 127:319–26 [Google Scholar]
  48. Huxel GR. 48.  1999. Rapid displacement of native species by invasive species: effects of hybridization. Biol. Conserv. 89143–52 [Google Scholar]
  49. Iannone BV III, Potter KM, Hamil K-AD, Huang W, Zhang H. 49.  et al. 2016. Evidence of biotic resistance to invasions in forests of the Eastern USA. Landsc. Ecol. 3185–99 [Google Scholar]
  50. Inoue MN, Yokoyama J, Washitani I. 50.  2008. Displacement of Japanese native bumblebees by the recently introduced Bombus terrestris (L.) (Hymenoptera: Apidae). J. Insect Conserv. 12:135–46 [Google Scholar]
  51. Inouye BD. 51.  2001. Response surface experimental designs for investigating interspecific competition. Ecology 822696–706 [Google Scholar]
  52. Jakob EM, Porter AH, Ginsberg H, Bednarski JV, Houser J. 52.  2011. A 4-year study of invasive and native spider populations in Maine. Can. J. Zool. 89668–77 [Google Scholar]
  53. Jiu M, Zhou X-P, Tong L, Xu J, Yang X. 53.  et al. 2007. Vector-virus mutualism accelerates population increase of an invasive whitefly. PLOS ONE 2e182 [Google Scholar]
  54. Johnson BJ, Sukhdeo MVK. 54.  2013. Successional mosquito dynamics in surrogate treehole and ground-container habitats in the northeastern United States: Where does Aedes albopictus fit in?. J. Vector Ecol. 38168–74 [Google Scholar]
  55. Juliano SA. 55.  2009. Species interactions among larval mosquitoes: context dependence across habitat gradients. Annu. Rev. Entomol. 5437–56 [Google Scholar]
  56. Kajita Y, Evans EW. 56.  2010. Alfalfa fields promote high reproductive rate of an invasive predatory lady beetle. Biol. Invasions 12:2293–302 [Google Scholar]
  57. Kaplan L, Kendell D, Robertson D, Livdahl T, Khatchikian C. 57.  2010. Aedes aegypti and Aedes albopictus in Bermuda: extinction, invasion, invasion and extinction. Biol. Invasions 12:3277–88 [Google Scholar]
  58. Keeler MS, Chew FS, Goodale BC, Reed JM. 58.  2006. Modelling the impacts of two exotic invasive species on a native butterfly: top-down versus bottom-up effects. J. Anim. Ecol. 75777–88 [Google Scholar]
  59. Kenis M, Auger-Rozenberg M-A, Roques A, Timms L, Péré C. 59.  et al. 2009. Ecological effects of invasive alien insects. Biol. Invasions 11:21–45 [Google Scholar]
  60. Kenta T, Inari N, Nagamitsu T, Goka K, Hiura T. 60.  2007. Commercialized European bumblebee can cause pollination disturbance: an experiment on seven native plant species in Japan. Biol. Conserv. 134:298–309 [Google Scholar]
  61. Kesavaraju B, Juliano SA. 61.  2009. No evolutionary response to four generations of laboratory selection on antipredator behavior of Aedes albopictus: potential implications for biotic resistance to invasion. J. Med. Entomol. 46772–81 [Google Scholar]
  62. King JR. 62.  2007. Patterns of co-occurrence and body size overlap among ants in Florida's upland ecosystems. Ann. Zool. Fenn. 44189–201 [Google Scholar]
  63. King JR, Tschinkel WR. 63.  2006. Experimental evidence that the introduced fire ant, Solenopsis invicta, does not competitively suppress co-occurring ants in a disturbed habitat. J. Anim. Ecol. 751370–78 [Google Scholar]
  64. King JR, Tschinkel WR. 64.  2013. Experimental evidence for weak effects of fire ants in a naturally invaded pine-savanna ecosystem in north Florida. Ecol. Entomol. 3868–75 [Google Scholar]
  65. Kiritani K. 65.  2011. Impacts of global warming on Nezara viridula and its native congeneric species. J. Asia-Pac. Entomol. 14:221–26 [Google Scholar]
  66. Kuno E. 66.  1992. Competitive exclusion through reproductive interference. Res. Popul. Ecol. 34275–84 [Google Scholar]
  67. Labrie G, Lucas E, Coderre D. 67.  2006. Can developmental and behavioral characteristics of the multicolored Asian lady beetle Harmonia axyridis explain its invasive success?. Biol. Invasions 8743–54 [Google Scholar]
  68. Lach L. 68.  2007. A mutualism with a native membracid facilitates pollinator displacement by Argentine ants. Ecology 881994–2004 [Google Scholar]
  69. Lach L. 69.  2008. Argentine ants displace floral arthropods in a biodiversity hotspot. Divers. Distrib. 14:281–90 [Google Scholar]
  70. Lach L. 70.  2013. A comparison of floral resource exploitation by native and invasive Argentine ants. Arthropod-Plant Interact 7177–90 [Google Scholar]
  71. LeBrun EG, Plowes RM, Gilbert LE. 71.  2009. Indirect competition facilitates widespread displacement of one naturalized parasitoid of imported fire ants by another. Ecology 901184–94 [Google Scholar]
  72. Lee JC, Seybold SJ. 72.  2010. Host acceptance and larval competition in the banded and European elm bark beetles, Scolytus schevyrewi and S. multistriatus (Coleoptera: Scolytidae): potential mechanisms for competitive displacement between invasive species. J. Insect Behav 23:19–34 [Google Scholar]
  73. Levine JM, Adler PB, Yelenik SG. 73.  2004. A meta-analysis of biotic resistance to exotic plant invasions. Ecol. Lett. 7975–89 [Google Scholar]
  74. Liu H, Stiling P. 74.  2006. Testing the enemy release hypothesis: a review and meta-analysis. Biol. Invasions 81535–45 [Google Scholar]
  75. Liu M, Zhao R, Chen Y, Zhang J, Compton SG, Chen XY. 75.  2014. Competitive exclusion among fig wasps achieved via entrainment of host plant flowering phenology. PLOS ONE 9e97783 [Google Scholar]
  76. Liu S-S, De Barro PJ, Xu J, Luan J-B, Zang L-S. 76.  et al. 2007. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science 318:1769–72 [Google Scholar]
  77. Lounibos LP. 77.  2007. Competitive displacement and reduction. J. Am. Mosq. Control Assoc. 23:276–82 [Google Scholar]
  78. Lounibos LP, O'Meara GF, Escher RL, Nishimura N, Cutwa M. 78.  et al. 2001. Testing predictions of displacement of native Aedes by the invasive Asian tiger mosquito Aedes albopictus in Florida, USA. Biol. Invasions 3151–66 [Google Scholar]
  79. Luan J, Liu S. 79.  2012. Differences in mating behavior lead to asymmetric mating interactions and consequential changes in sex ratio between an invasive and an indigenous whitefly. Integr. Zool. 71–15 [Google Scholar]
  80. Luan J-B, De Barro PJ, Ruan Y-M, Liu S-S. 80.  2013. Distinct behavioural strategies underlying asymmetric mating interactions between invasive and indigenous whiteflies. Entomol. Exp. Appl. 146:186–94 [Google Scholar]
  81. Madjidian JA, Morales CL, Smith HG. 81.  2008. Displacement of a native by an alien bumblebee: lower pollinator efficiency overcome by overwhelmingly higher visitation frequency. Oecologia 156:835–45 [Google Scholar]
  82. Martins CBC, Almeida LM, Zonta-de-Carvalho RC, Castro CF, Pereira RA. 82.  2009. Harmonia axyridis: a threat to Brazilian Coccinellidae?. Rev. Bras. Entomol. 53663–71 [Google Scholar]
  83. Matsumura C, Yokoyama J, Washitani I. 83.  2004. Invasion status and potential ecological impacts of an invasive alien bumblebee, Bombus terrestris L. (Hymenoptera: Apidae) naturalized in southern Hokkaido, Japan. Glob. Environ. Res. 851–66 [Google Scholar]
  84. McKenzie CL, Bethke JA, Byrne FJ, Chamberlin JR, Dennehy TJ. 84.  et al. 2012. Distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) biotypes in North America after the Q invasion. J. Econ. Entomol. 105:753–66 [Google Scholar]
  85. Michaud JP. 85.  2002. Invasion of the Florida citrus ecosystem by Harmonia axyridis (Coleoptera: Coccinellidae) and asymmetric competition with a native species, Cycloneda sanguinea. Environ. Entomol 31827–35 [Google Scholar]
  86. Miller TEX, Rudolf VHW. 86.  2011. Thinking inside the box: community-level consequences of stage-structured populations. Trends Ecol. Evol. 26:457–66 [Google Scholar]
  87. Moll JD, Brown JS. 87.  2008. Competition and coexistence with multiple life-history stages. Am. Nat. 171:839–43 [Google Scholar]
  88. Morrison LW. 88.  2012. Biological control of Solenopsis fire ants by Pseudacteon parasitoids: theory and practice. Psyche 2012:11 [Google Scholar]
  89. Murdoch WW, Briggs CJ, Nisbet RM. 89.  1996. Competitive displacement and biological control in parasitoids: a model. Am. Nat. 148:807–26 [Google Scholar]
  90. Ntiri ES, Calatayud P-A, Van den Berg J, Schulthess F, Le Ru BP. 90.  2016. Influence of temperature on intra- and interspecific resource utilization within a community of lepidopteran maize stemborers. PLOS ONE 11:e0148735 [Google Scholar]
  91. O'Dowd DJ, Green PT, Lake PS. 91.  2003. Invasional ‘meltdown’ on an oceanic island. Ecol. Lett. 6812–17 [Google Scholar]
  92. Oliver TH, Isaac NJB, August TA, Woodcock BA, Roy DB, Bullock JM. 92.  2015. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6:10122 [Google Scholar]
  93. Osakabe M, Hongo K, Funayama K, Osumi S. 93.  2006. Amensalism via webs causes unidirectional shifts of dominance in spider mite communities. Oecologia 150:496–505 [Google Scholar]
  94. Oscherov EB, Damborsky MP, Bar ME, Gorla DE. 94.  2004. Competition between vectors of Chagas disease, Triatoma infestans and T. sordida: effects on fecundity and mortality. Med. Vet. Entomol 18:323–28 [Google Scholar]
  95. Paini DR, Funderburk JE, Reitz SR. 95.  2008. Competitive exclusion of a worldwide invasive pest by a native. Quantifying competition between two phytophagous insects on two host plant species. J. Anim. Ecol. 77184–90 [Google Scholar]
  96. Palmer TM, Young TP, Stanton ML. 96.  2002. Burning bridges: priority effects and the persistence of a competitively subordinate acacia-ant in Laikipia, Kenya. Oecologia 133:372–79 [Google Scholar]
  97. Pan H, Chu D, Ge D, Wang S, Wu Q. 97.  et al. 2011. Further spread of and domination by Bemisia tabaci (Hemiptera: Aleyrodidae) biotype Q on field crops in China. J. Econ. Entomol. 104:978–85 [Google Scholar]
  98. Pan H, Preisser EL, Chu D, Wang S, Wu Q. 98.  et al. 2015. Insecticides promote viral outbreaks by altering herbivore competition. Ecol. Appl. 25:1585–95 [Google Scholar]
  99. Parr CL, Gibb H. 99.  2010. Competition and the role of dominant ants. Ant Ecology L Lach, CL Parr, KL Abbott 77–96 Oxford, UK: Oxford Univ. Press [Google Scholar]
  100. Pascual S, Callejas C. 100.  2004. Intra-and interspecific competition between biotypes B and Q of Bemisia tabaci (Hemiptera: Aleyrodidae) from Spain. Bull. Entomol. Res. 94369–75 [Google Scholar]
  101. Pereira MH, Gontijo NF, Guarneri AA, Sant'Anna MRV, Diotaiuti L. 101.  2006. Competitive displacement in Triatominae: the Triatoma infestans success. Trends Parasitol 22:516–20 [Google Scholar]
  102. Perring TM, Copper AD, Rodriguez RJ, Farrar CA, Bellows TS Jr. 102.  1993. Identification of a whitefly species by genomic and behavioral studies. Science 259:74–77 [Google Scholar]
  103. Porter SD, Calcaterra LA. 103.  2013. Dispersal and competitive impacts of a third fire ant decapitating fly (Pseudacteon obtusus) established in North Central Florida. Biol. Control 6466–74 [Google Scholar]
  104. Prenter J, MacNeil C, Dick JTA, Dunn AM. 104.  2004. Roles of parasites in animal invasions. Trends Ecol. Evol. 19:385–90 [Google Scholar]
  105. Radville L, Gonda-King L, Gomez S, Kaplan I, Preisser EL. 105.  2014. Are exotic herbivores better competitors? A meta-analysis. Ecology 9530–36 [Google Scholar]
  106. Reitz SR, Funderburk J. 106.  2012. Management strategies for western flower thrips and the role of insecticides. Insecticides: Pest Engineering F Perveen 355–84 Rijeka, Croatia: InTech [Google Scholar]
  107. Reitz SR, Gao Y, Lei Z. 107.  2013. Insecticide use and the ecology of invasive Liriomyza leafminer management. Insecticides: Development of Safer and More Effective Technologies S Trdan 235–55 Rijeka, Croatia: InTech [Google Scholar]
  108. Reitz SR, Trumble JT. 108.  2002. Competitive displacement among insects and arachnids. Annu. Rev. Entomol. 47435–65 [Google Scholar]
  109. Reitz SR, Trumble JT. 109.  2002. Interspecific and intraspecific differences in two Liriomyza leafminer species in California. Entomol. Exp. Appl. 102:101–13 [Google Scholar]
  110. Rhainds M, Heard SB, Sweeney JD, Silk P, Flaherty L. 110.  2010. Phenology and spatial distribution of native and exotic Tetropium longhorned beetles (Coleoptera: Cerambycidae). Environ. Entomol. 391794–800 [Google Scholar]
  111. Ricciardi A. 111.  2007. Are modern biological invasions an unprecedented form of global change?. Conserv. Biol. 21:329–36 [Google Scholar]
  112. Rice ES, Silverman J. 112.  2013. Propagule pressure and climate contribute to the displacement of Linepithema humile by Pachycondyla chinensis. PLOS ONE 8e56281 [Google Scholar]
  113. Rochlin I, Gaugler R, Williges E, Farajollahi A. 113.  2013. The rise of the invasives and decline of the natives: insights revealed from adult populations of container-inhabiting Aedes mosquitoes (Diptera: Culicidae) in temperate North America. Biol. Invasions 15:991–1003 [Google Scholar]
  114. Saleh D, Laarif A, Clouet C, Gauthier N. 114.  2012. Spatial and host-plant partitioning between coexisting Bemisia tabaci cryptic species in Tunisia. Popul. Ecol. 54261–74 [Google Scholar]
  115. Sato S, Dixon AFG. 115.  2004. Effect of intraguild predation on the survival and development of three species of aphidophagous ladybirds: consequences for invasive species. Agric. For. Entomol. 621–24 [Google Scholar]
  116. Scheffer SJ, Lewis ML. 116.  2005. Mitochondrial phylogeography of vegetable pest Liriomyza sativae (Diptera: Agromyzidae): divergent clades and invasive populations. Ann. Entomol. Soc. Am. 98181–86 [Google Scholar]
  117. Scheffer SJ, Lewis ML. 117.  2006. Mitochondrial phylogeography of the vegetable pest Liriomyza trifolii (Diptera: Agromyzidae): diverged clades and invasive populations. Ann. Entomol. Soc. Am. 99991–98 [Google Scholar]
  118. Schellhorn NA, Kuhman TR, Olson AC, Ives AR, Schellhorn NA. 118.  2002. Competition between native and introduced parasitoids of aphids: nontarget effects and biological control. Ecology 832745–57 [Google Scholar]
  119. Schliserman P, Aluja M, Rull J, Ovruski SM. 119.  2014. Habitat degradation and introduction of exotic plants favor persistence of invasive species and population growth of native polyphagous fruit fly pests in a Northwestern Argentinean mosaic. Biol. Invasions 16:2599–613 [Google Scholar]
  120. Schoeman CS, Samways MJ. 120.  2011. Synergisms between alien trees and the Argentine ant on indigenous ant species in the Cape Floristic Region, South Africa. Afr. Entomol. 19:96–105 [Google Scholar]
  121. Seguni ZSK, Way MJ, Van Mele P. 121.  2011. The effect of ground vegetation management on competition between the ants Oecophylla longinoda and Pheidole megacephala and implications for conservation biological control. Crop Prot 30713–17 [Google Scholar]
  122. Snyder WE, Clevenger GM, Eigenbrode SD. 122.  2004. Intraguild predation and successful invasion by introduced ladybird beetles. Oecologia 140:559–65 [Google Scholar]
  123. Sorribas J, Rodriguez R, Garcia-Mari F. 123.  2010. Parasitoid competitive displacement and coexistence in citrus agroecosystems: linking species distribution with climate. Ecol. Appl. 20:1101–13 [Google Scholar]
  124. Sorribas J, van Baaren J, Garcia-Mari F. 124.  2012. Effects of climate on the introduction, distribution and biotic potential of parasitoids: applications to biological control of California red scale. Biol. Control 62103–12 [Google Scholar]
  125. Stuble KL, Chick LD, Rodriguez-Cabal MA, Lessard J-P, Sanders NJ. 125.  2013. Fire ants are drivers of biodiversity loss: a reply to King and Tschinkel 2013. Ecol. Entomol. 38540–42 [Google Scholar]
  126. Su Q, Oliver KM, Pan H, Jiao X, Liu B. 126.  et al. 2013. Facultative symbiont Hamiltonellaconfers benefits to Bemisia tabaci (Hemiptera: Aleyrodidae), an invasive agricultural pest worldwide. Environ. Entomol 421265–71 [Google Scholar]
  127. Su Q, Pan H, Liu B, Chu D, Xie W. 127.  et al. 2013. Insect symbiont facilitates vector acquisition, retention, and transmission of plant virus. Sci. Rep. 31367 [Google Scholar]
  128. Sun DB, Liu YQ, Qin L, Xu J, Li FF, Liu SS. 128.  2013. Competitive displacement between two invasive whiteflies: insecticide application and host plant effects. Bull. Entomol. Res. 103:344–53 [Google Scholar]
  129. Tapia DH, Troncoso AJ, Vargas RR, Olivares-Donoso R, Niemeyer HM. 129.  2008. Experimental evidence for competitive exclusion of Myzus persicae nicotianae by Myzus persicae s.s. (Hemiptera: Aphididae) on sweet pepper, Capsicum annuum (Solanaceae). Eur. J. Entomol 105:643–48 [Google Scholar]
  130. Thomas MB, Willis AJ. 130.  1998. Biocontrol—risky but necessary?. Trends Ecol. Evol. 13:325–27 [Google Scholar]
  131. Thum RA. 131.  2007. Reproductive interference, priority effects and the maintenance of parapatry in Skistodiaptomus copepods. Oikos 116:759–68 [Google Scholar]
  132. Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ, Kuris AM. 132.  2003. Introduced species and their missing parasites. Nature 421:628–30 [Google Scholar]
  133. Tripet F, Lounibos LP, Robbins D, Moran J, Nishimura N, Blosser EM. 133.  2011. Competitive reduction by satyrization? Evidence for interspecific mating in nature and asymmetric reproductive competition between invasive mosquito vectors. Am. J. Trop. Med. Hyg. 85265–70 [Google Scholar]
  134. Tsutsui ND, Case TJ. 134.  2001. Population genetics and colony structure of the argentine ant (Linepithema humile) in its native and introduced ranges. Evolution 55976–85 [Google Scholar]
  135. Tsutsui ND, Suarez AV, Holway DA, Case TJ. 135.  2000. Reduced genetic variation and the success of an invasive species. PNAS 975948–53 [Google Scholar]
  136. Tsutsui ND, Suarez AV, Holway DA, Case TJ. 136.  2001. Relationships among native and introduced populations of the Argentine ant (Linepithema humile) and the source of introduced populations. Mol. Ecol. 10:2151–61 [Google Scholar]
  137. Turnock WJ, Wise IL, Matheson FO. 137.  2003. Abundance of some native coccinellines (Coleoptera: Coccinellidae) before and after the appearance of Coccinella septempunctata. Can. Entomol. 135:391–404 [Google Scholar]
  138. Vellend M, Harmon LJ, Lockwood JL, Mayfield MM, Hughes AR. 138.  et al. 2007. Effects of exotic species on evolutionary diversification. Trends Ecol. Evol. 22:481–88 [Google Scholar]
  139. Vonshak M, Dayan T, Hefetz A. 139.  2012. Interspecific displacement mechanisms by the invasive little fire ant Wasmannia auropunctata. Biol. Invasions 14:851–61 [Google Scholar]
  140. Walters AC, Mackay DA. 140.  2005. Importance of large colony size for successful invasion by Argentine ants (Hymenoptera: Formicidae): evidence for biotic resistance by native ants. Aust. Ecol. 30395–406 [Google Scholar]
  141. Wang H, Reitz SR, Xiang J, Smagghe G, Lei Z. 141.  2014. Does temperature-mediated reproductive success drive the direction of species displacement in two invasive species of leafminer fly?. PLOS ONE 9e98761 [Google Scholar]
  142. Wang X-G, Bokonon-Ganta AH, Messing RH. 142.  2008. Intrinsic inter-specific competition in a guild of tephritid fruit fly parasitoids: effect of co-evolutionary history on competitive superiority. Biol. Control 44312–20 [Google Scholar]
  143. Wang XG, Messing RH. 143.  2002. Newly imported larval parasitoids pose minimal competitive risk to extant egg-larval parasitoid of tephritid fruit flies in Hawaii. Bull. Entomol. Res. 92423–29 [Google Scholar]
  144. Wang XG, Messing RH, Bautista RC. 144.  2003. Competitive superiority of early acting species: a case study of opiine fruit fly parasitoids. Biocontrol Sci. Technol. 13:391–402 [Google Scholar]
  145. Way MJ, Khoo KC. 145.  1992. Role of ants in pest management. Annu. Rev. Entomol. 37479–503 [Google Scholar]
  146. Wetterer JK, Espadaler X, Wetterer AL, Aguin-Pombo D, Franquinho-Aguiar AM. 146.  2006. Long-term impact of exotic ants on the native ants of Madeira. Ecol. Entomol. 31358–68 [Google Scholar]
  147. White EM, Wilson JC, Clarke AR. 147.  2006. Biotic indirect effects: a neglected concept in invasion biology. Divers. Distrib. 12:443–55 [Google Scholar]
  148. Wild AL. 148.  2004. Taxonomy and distribution of the Argentine ant, Linepithema humile (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am. 971204–15 [Google Scholar]
  149. Wilson EE, Holway DA. 149.  2010. Multiple mechanisms underlie displacement of solitary Hawaiian Hymenoptera by an invasive social wasp. Ecology 913294–302 [Google Scholar]
  150. Zwolfer H. 150.  1971. The structure and effect of parasite complexes attacking phytophagous host insects. Dynamics of Populations Proc. Adv. Study Inst. Dyn. Numbers Popul., ed. PJ Den Boer, GR Gradwell 405–18 Wageningen, Neth.: Cent. Agric. Publ. Doc. [Google Scholar]

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error