Neuropeptides are by far the largest and most diverse group of signaling molecules in multicellular organisms. They are ancient molecules important in regulating a multitude of processes. Their small proteinaceous character allowed them to evolve and radiate quickly into numerous different molecules. On average, hundreds of distinct neuropeptides are present in animals, sometimes with unique classes that do not occur in distantly related species. Acting as neurotransmitters, neuromodulators, hormones, or growth factors, they are extremely diverse and are involved in controlling growth, development, ecdysis, digestion, diuresis, and many more physiological processes. Neuropeptides are also crucial in regulating myriad behavioral actions associated with feeding, courtship, sleep, learning and memory, stress, addiction, and social interactions. In general, behavior ensures that an organism can survive in its environment and is defined as any action that can change an organism's relationship to its surroundings. Even though the mode of action of neuropeptides in insects has been vigorously studied, relatively little is known about most neuropeptides and only a few model insects have been investigated. Here, we provide an overview of the roles neuropeptides play in insect behavior. We conclude that multiple neuropeptides need to work in concert to coordinate certain behaviors. Additionally, most neuropeptides studied to date have more than a single function.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aguilar R, Maestro JL, Vilaplana L, Chiva C, Andreu D, Belles X. 1.  2004. Identification of leucomyosuppressin in the German cockroach, Blattella germanica, as an inhibitor of food intake. Regul. Pept. 119:105–12 [Google Scholar]
  2. Aguilar R, Maestro JL, Vilaplana L, Pascual N, Piulachs MD, Belles X. 2.  2003. Allatostatin gene expression in brain and midgut, and activity of synthetic allatostatins on feeding-related processes in the cockroach Blattella germanica. Regul. Pept. 115:171–77 [Google Scholar]
  3. Al-Anzi B, Armand E, Nagamei P, Olszewski M, Sapin V. 3.  et al. 2010. The leucokinin pathway and its neurons regulate meal size in Drosophila. Curr. Biol. 20:969–78 [Google Scholar]
  4. Aldrich BT, Kasuya J, Faron M, Ishimoto H, Kitamoto T. 4.  2010. The amnesiac gene is involved in the regulation of thermal nociception in Drosophila melanogaster. J. Neurogenet. 24:33–41 [Google Scholar]
  5. Ament SA, Corona M, Pollock HS, Robinson GE. 5.  2008. Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. PNAS 105:4226–31 [Google Scholar]
  6. Asahina K, Watanabe K, Duistermars BJ, Hoopfer E, Gonzalez CR. 6.  et al. 2014. Tachykinin-expressing neurons control male-specific aggressive arousal in Drosophila. Cell 156:221–35 [Google Scholar]
  7. Audsley N, Duve H, Thorpe A, Weaver RJ. 7.  2000. Morphological and physiological comparisons of two types of allatostatin in the brain and retrocerebral complex of the tomato moth, Lacanobia oleracea (Lepidoptera: Noctuidae). J. Comp. Neurol. 424:37–46 [Google Scholar]
  8. Audsley N, Weaver RJ. 8.  2009. Neuropeptides associated with the regulation of feeding in insects. Gen. Comp. Endocrinol. 162:93–104 [Google Scholar]
  9. Avargues-Weber A, Dyer AG, Ferrah N, Giurfa M. 9.  2015. The forest or the trees: preference for global over local image processing is reversed by prior experience in honey bees. Proc. Biol. Sci. 282:20142384 [Google Scholar]
  10. Bandeira de Melo EB, Araujo AF. 10.  2011. Modelling foraging ants in a dynamic and confined environment. Biosystems 104:23–31 [Google Scholar]
  11. Bargmann CI. 11.  2012. Beyond the connectome: how neuromodulators shape neural circuits. Bioessays 34:458–65 [Google Scholar]
  12. Bateson M, Desire S, Gartside SE, Wright GA. 12.  2011. Agitated honey bees exhibit pessimistic cognitive biases. Curr. Biol. 21:1070–73 [Google Scholar]
  13. Bausenwein B, Muller NR, Heisenberg M. 13.  1994. Behavior-dependent activity labeling in the central complex of Drosophila during controlled visual stimulation. J. Comp. Neurol. 340:255–68 [Google Scholar]
  14. Beckwith EJ, Ceriani MF. 14.  2015. Communication between circadian clusters: the key to a plastic network. FEBS Lett 589:3336–42 [Google Scholar]
  15. Beets I, Janssen T, Meelkop E, Temmerman L, Suetens N. 15.  et al. 2012. Vasopressin/oxytocin-related signaling regulates gustatory associative learning in C. elegans.. Science 338:543–45 [Google Scholar]
  16. Beshel J, Zhong Y. 16.  2013. Graded encoding of food odor value in the Drosophila brain. J. Neurosci. 33:15693–704 [Google Scholar]
  17. Bhandari P, Kendler KS, Bettinger JC, Davies AG, Grotewiel M. 17.  2009. An assay for evoked locomotor behavior in Drosophila reveals a role for integrins in ethanol sensitivity and rapid ethanol tolerance. Alcohol Clin. Exp. Res. 33:1794–805 [Google Scholar]
  18. Brezina V. 18.  2010. Beyond the wiring diagram: signalling through complex neuromodulator networks. Philos. Trans. R. Soc. B 365:2363–74 [Google Scholar]
  19. Brockmann A, Annangudi SP, Richmond TA, Ament SA, Xie F. 19.  et al. 2009. Quantitative peptidomics reveal brain peptide signatures of behavior. PNAS 106:2383–88 [Google Scholar]
  20. Brown MR, Crim JW, Arata RC, Cai HN, Chun C, Shen P. 20.  1999. Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family. Peptides 20:1035–42 [Google Scholar]
  21. Caers J, Boonen K, Van Den Abbeele J, Van Rompay L, Schoofs L, Van Hiel MB. 21.  2015. Peptidomics of neuropeptidergic tissues of the tsetse fly Glossina morsitans morsitans. J. Am. Soc. Mass Spectrom. 26:2024–38 [Google Scholar]
  22. Cannell E, Dornan AJ, Halberg KA, Terhzaz S, Dow JA, Davies SA. 22.  2016. The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster. Peptides 80:96–107 [Google Scholar]
  23. Carazo P, Font E, Forteza-Behrendt E, Desfilis E. 23.  2009. Quantity discrimination in Tenebrio molitor: evidence of numerosity discrimination in an invertebrate?. Anim. Cogn. 12:463–70 [Google Scholar]
  24. Carlsson MA, Enell LE, Nassel DR. 24.  2013. Distribution of short neuropeptide F and its receptor in neuronal circuits related to feeding in larval Drosophila. Cell Tissue Res 353:511–23 [Google Scholar]
  25. Cavey M, Collins B, Bertet C, Blau J. 25.  2016. Circadian rhythms in neuronal activity propagate through output circuits. Nat. Neurosci. 19:587–95 [Google Scholar]
  26. Cazzamali G, Saxild N, Grimmelikhuijzen C. 26.  2002. Molecular cloning and functional expression of a Drosophila corazonin receptor. Biochem. Biophys. Res. Commun. 298:31–36 [Google Scholar]
  27. Cervantes-Sandoval I, Davis RL. 27.  2012. Distinct traces for appetitive versus aversive olfactory memories in DPM neurons of Drosophila. Curr. Biol. 22:1247–52 [Google Scholar]
  28. Chan YB, Kravitz EA. 28.  2007. Specific subgroups of FruM neurons control sexually dimorphic patterns of aggression in Drosophila melanogaster. PNAS 104:19577–82 [Google Scholar]
  29. Changizi MA. 29.  2003. Relationship between number of muscles, behavioral repertoire size, and encephalization in mammals. J. Theor. Biol. 220:157–68 [Google Scholar]
  30. Chen ME, Pietrantonio PV. 30.  2006. The short neuropeptide F-like receptor from the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). Arch. Insect Biochem. Physiol. 61:195–208 [Google Scholar]
  31. Chittka L, Niven J. 31.  2009. Are bigger brains better?. Curr. Biol. 19:R995–1008 [Google Scholar]
  32. Chronwall BM, Zukowska Z. 32.  2004. Neuropeptide Y, ubiquitous and elusive. Peptides 25:359–63 [Google Scholar]
  33. Dacke M, Srinivasan MV. 33.  2008. Evidence for counting in insects. Anim. Cogn. 11:683–89 [Google Scholar]
  34. DeZazzo J, Xia S, Christensen J, Velinzon K, Tully T. 34.  1999. Developmental expression of an amn+ transgene rescues the mutant memory defect of amnesiac adults. J. Neurosci. 19:8740–46 [Google Scholar]
  35. Dierick HA, Greenspan RJ. 35.  2007. Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. Nat. Genet. 39:678–82 [Google Scholar]
  36. Dillen S, Verdonck R, Zels S, Van Wielendaele P, Vanden Broeck J. 36.  2014. Identification of the short neuropeptide F precursor in the desert locust: evidence for an inhibitory role of sNPF in the control of feeding. Peptides 53:134–39 [Google Scholar]
  37. Dillen S, Zels S, Verlinden H, Spit J, Van Wielendaele P, Vanden Broeck J. 37.  2013. Functional characterization of the short neuropeptide F receptor in the desert locust, Schistocerca gregaria. PLOS ONE 8:e53604 [Google Scholar]
  38. Dreier S, van Zweden JS, D'Ettorre P. 38.  2007. Long-term memory of individual identity in ant queens. Biol. Lett. 3:459–62 [Google Scholar]
  39. Dubowy CM, Cavanaugh DJ. 39.  2014. Sleep: a neuropeptidergic wake-up call for flies. Curr. Biol. 24:R1092–94 [Google Scholar]
  40. Dussutour A, Deneubourg JL, Beshers S, Fourcassie V. 40.  2009. Individual and collective problem-solving in a foraging context in the leaf-cutting ant Atta colombica. Anim. Cogn. 12:21–30 [Google Scholar]
  41. Fairclough SR, Chen Z, Kramer E, Zeng Q, Young S. 41.  et al. 2013. Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta. Genome Biol 14:R15 [Google Scholar]
  42. Fan Y, Pereira RM, Kilic E, Casella G, Keyhani NO. 42.  2012. Pyrokinin β-neuropeptide affects necrophoretic behavior in fire ants (S. invicta), and expression of β-NP in a mycoinsecticide increases its virulence. PLOS ONE 7:e26924 [Google Scholar]
  43. Farhan A, Gulati J, Grobetae-Wilde E, Vogel H, Hansson BS, Knaden M. 43.  2013. The CCHamide 1 receptor modulates sensory perception and olfactory behavior in starved Drosophila. Sci. Rep. 3:2765 [Google Scholar]
  44. Feany MB, Quinn WG. 44.  1995. A neuropeptide gene defined by the Drosophila memory mutant amnesiac. Science 268:869–73 [Google Scholar]
  45. Fricker LD. 45.  2005. Neuropeptide-processing enzymes: applications for drug discovery. AAPS J 7:E449–55 [Google Scholar]
  46. Fujii S, Amrein H. 46.  2010. Ventral lateral and DN1 clock neurons mediate distinct properties of male sex drive rhythm in Drosophila. PNAS 107:10590–95 [Google Scholar]
  47. Gendron CM, Kuo TH, Harvanek ZM, Chung BY, Yew JY. 47.  et al. 2014. Drosophila life span and physiology are modulated by sexual perception and reward. Science 343:544–48 [Google Scholar]
  48. Giurfa M, Zhang S, Jenett A, Menzel R, Srinivasan MV. 48.  2001. The concepts of ‘sameness’ and ‘difference’ in an insect. Nature 410:930–33 [Google Scholar]
  49. Han B, Fang Y, Feng M, Hu H, Qi Y. 49.  et al. 2015. Quantitative neuropeptidome analysis reveals neuropeptides are correlated with social behavior regulation of the honey bee workers. J. Proteome Res. 14:4382–93 [Google Scholar]
  50. Hanin O, Azrielli A, Applebaum SW, Rafaeli A. 50.  2012. Functional impact of silencing the Helicoverpa armigera sex-peptide receptor on female reproductive behaviour. Insect Mol. Biol. 21:161–67 [Google Scholar]
  51. He X, Zang J, Li X, Shao J, Yang H. 51.  et al. 2014. Activation of BNGR-A24 by direct interaction with tachykinin-related peptides from the silkworm Bombyx mori leads to the Gq- and Gs-coupled signaling cascades. Biochemistry 53:6667–78 [Google Scholar]
  52. Hergarden AC, Tayler TD, Anderson DJ. 52.  2012. Allatostatin-A neurons inhibit feeding behavior in adult Drosophila. PNAS 109:3967–72 [Google Scholar]
  53. Hermann-Luibl C, Yoshii T, Senthilan PR, Dircksen H, Helfrich-Forster C. 53.  2014. The ion transport peptide is a new functional clock neuropeptide in the fruit fly Drosophila melanogaster. J. Neurosci. 34:9522–36 [Google Scholar]
  54. Hong SH, Lee KS, Kwak SJ, Kim AK, Bai H. 54.  et al. 2012. Minibrain/Dyrk1α regulates food intake through the Sir2-FOXO-sNPF/NPY pathway in Drosophila and mammals. PLOS Genet 8:e1002857 [Google Scholar]
  55. Ida T, Takahashi T, Tominaga H, Sato T, Sano H. 55.  et al. 2012. Isolation of the bioactive peptides CCHamide-1 and CCHamide-2 from Drosophila and their putative role in appetite regulation as ligands for G protein-coupled receptors. Front. Endocrinol. 3:177 [Google Scholar]
  56. Ignell R, Root CM, Birse RT, Wang JW, Nassel DR, Winther AM. 56.  2009. Presynaptic peptidergic modulation of olfactory receptor neurons in Drosophila. PNAS 106:13070–75 [Google Scholar]
  57. Jekely G, Paps J, Nielsen C. 57.  2015. The phylogenetic position of ctenophores and the origin(s) of nervous systems. EvoDevo 6:1 [Google Scholar]
  58. Jiang H, Kim HG, Park Y. 58.  2015. Alternatively spliced orcokinin isoforms and their functions in Tribolium castaneum. Insect Biochem. Mol. Biol. 65:1–9 [Google Scholar]
  59. Jiang H, Lkhagva A, Daubnerova I, Chae HS, Simo L. 59.  et al. 2013. Natalisin, a tachykinin-like signaling system, regulates sexual activity and fecundity in insects. PNAS 110:E3526–34 [Google Scholar]
  60. Jimenez CR, Spijker S, de Schipper S, Lodder JC, Janse CK. 60.  et al. 2006. Peptidomics of a single identified neuron reveals diversity of multiple neuropeptides with convergent actions on cellular excitability. J. Neurosci. 26:518–29 [Google Scholar]
  61. Johnson EC, Shafer OT, Trigg JS, Park J, Schooley DA. 61.  et al. 2005. A novel diuretic hormone receptor in Drosophila: evidence for conservation of CGRP signaling. J. Exp. Biol. 208:1239–46 [Google Scholar]
  62. Jorgensen EM. 62.  2014. Animal evolution: looking for the first nervous system. Curr. Biol. 24:R655–58 [Google Scholar]
  63. Jung JW, Kim JH, Pfeiffer R, Ahn YJ, Page TL, Kwon HW. 63.  2013. Neuromodulation of olfactory sensitivity in the peripheral olfactory organs of the American cockroach, Periplaneta americana. PLOS ONE 8e81361
  64. Kacsoh BZ, Bozler J, Hodge S, Ramaswami M, Bosco G. 64.  2015. A novel paradigm for nonassociative long-term memory in Drosophila: predator-induced changes in oviposition behavior. Genetics 199:1143–57 [Google Scholar]
  65. Kacsoh BZ, Lynch ZR, Mortimer NT, Schlenke TA. 65.  2013. Fruit flies medicate offspring after seeing parasites. Science 339:947–50 [Google Scholar]
  66. Kahsai L, Kapan N, Dircksen H, Winther AM, Nassel DR. 66.  2010. Metabolic stress responses in Drosophila are modulated by brain neurosecretory cells that produce multiple neuropeptides. PLOS ONE 5:e11480 [Google Scholar]
  67. Kaneko Y, Hiruma K. 67.  2014. Short neuropeptide F (sNPF) is a stage-specific suppressor for juvenile hormone biosynthesis by corpora allata, and a critical factor for the initiation of insect metamorphosis. Dev. Biol. 393:312–19 [Google Scholar]
  68. Kapan N, Lushchak OV, Luo J, Nassel DR. 68.  2012. Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin. Cell Mol. Life Sci. 69:4051–66 [Google Scholar]
  69. Khurana S, Abu Baker MB, Siddiqi O. 69.  2009. Odour avoidance learning in the larva of Drosophila melanogaster. J. Biosci. 34:621–31 [Google Scholar]
  70. Kim WJ, Jan LY, Jan YN. 70.  2013. A PDF/NPF neuropeptide signaling circuitry of male Drosophila melanogaster controls rival-induced prolonged mating. Neuron 80:1190–205 [Google Scholar]
  71. Klose MK, Dason JS, Atwood HL, Boulianne GL, Mercier AJ. 71.  2010. Peptide-induced modulation of synaptic transmission and escape response in Drosophila requires two G-protein-coupled receptors. J. Neurosci. 30:14724–34 [Google Scholar]
  72. Knapek S, Kahsai L, Winther AM, Tanimoto H, Nassel DR. 72.  2013. Short neuropeptide F acts as a functional neuromodulator for olfactory memory in Kenyon cells of Drosophila mushroom bodies. J. Neurosci. 33:5340–45 [Google Scholar]
  73. Ko KI, Root CM, Lindsay SA, Zaninovich OA, Shepherd AK. 73.  et al. 2015. Starvation promotes concerted modulation of appetitive olfactory behavior via parallel neuromodulatory circuits. eLife 4:e08298 [Google Scholar]
  74. Krashes MJ, DasGupta S, Vreede A, White B, Armstrong JD, Waddell S. 74.  2009. A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell 139:416–27 [Google Scholar]
  75. Krashes MJ, Waddell S. 75.  2008. Rapid consolidation to a radish and protein synthesis-dependent long-term memory after single-session appetitive olfactory conditioning in Drosophila. J. Neurosci. 28:3103–13 [Google Scholar]
  76. Krupp JJ, Billeter JC, Wong A, Choi C, Nitabach MN, Levine JD. 76.  2013. Pigment-dispersing factor modulates pheromone production in clock cells that influence mating in Drosophila. Neuron 79:54–68 [Google Scholar]
  77. Kubli E, Bopp D. 77.  2012. Sexual behavior: how sex peptide flips the postmating switch of female flies. Curr. Biol. 22:R520–22 [Google Scholar]
  78. Kuo TH, Fedina TY, Hansen I, Dreisewerd K, Dierick HA. 78.  et al. 2012. Insulin signaling mediates sexual attractiveness in Drosophila. PLOS Genet 8:e1002684 [Google Scholar]
  79. Lee DW, Shrestha S, Kim AY, Park SJ, Yang CY. 79.  et al. 2011. RNA interference of pheromone biosynthesis-activating neuropeptide receptor suppresses mating behavior by inhibiting sex pheromone production in Plutella xylostella (L.). Insect Biochem. Mol. Biol. 41:236–43 [Google Scholar]
  80. Lee G, Bahn JH, Park JH. 80.  2006. Sex- and clock-controlled expression of the neuropeptide F gene in Drosophila. PNAS 103:12580–85 [Google Scholar]
  81. Lee KS, You KH, Choo JK, Han YM, Yu K. 81.  2004. Drosophila short neuropeptide F regulates food intake and body size. J. Biol. Chem. 279:50781–89 [Google Scholar]
  82. Lee PT, Lin HW, Chang YH, Fu TF, Dubnau J. 82.  et al. 2011. Serotonin-mushroom body circuit modulating the formation of anesthesia-resistant memory in Drosophila. PNAS 108:13794–99 [Google Scholar]
  83. Lenz O, Xiong J, Nelson MD, Raizen DM, Williams JA. 83.  2015. FMRFamide signaling promotes stress-induced sleep in Drosophila. Brain Behav. Immun. 47:141–48 [Google Scholar]
  84. Liesch J, Bellani LL, Vosshall LB. 84.  2013. Functional and genetic characterization of neuropeptide Y-like receptors in Aedes aegypti. PLOS Negl. Trop. Dis. 7:e2486 [Google Scholar]
  85. Lingo PR, Zhao Z, Shen P. 85.  2007. Co-regulation of cold-resistant food acquisition by insulin- and neuropeptide Y-like systems in Drosophila melanogaster. Neuroscience 148:371–74 [Google Scholar]
  86. Linnaeus C. 86.  1758. Systema Naturae per Regna Tria Naturae: Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis Stockholm: Laurentius Salvius
  87. Liu H, Kubli E. 87.  2003. Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. PNAS 100:9929–33 [Google Scholar]
  88. Lopez-Arias B, Dorado B, Herrero P. 88.  2011. Blockade of the release of the neuropeptide leucokinin to determine its possible functions in fly behavior: chemoreception assays. Peptides 32:545–52 [Google Scholar]
  89. Maestro JL, Aguilar R, Pascual N, Valero ML, Piulachs MD. 89.  et al. 2001. Screening of antifeedant activity in brain extracts led to the identification of sulfakinin as a satiety promoter in the German cockroach. Are arthropod sulfakinins homologous to vertebrate gastrins-cholecystokinins?. Eur. J. Biochem. 268:5824–30 [Google Scholar]
  90. Matthews HJ, Down RE, Audsley N. 90.  2010. Effects of Manduca sexta allatostatin and an analogue on the peach-potato aphid Myzus persicae (Hemiptera: Aphididae) and degradation by enzymes in the aphid gut. Arch. Insect Biochem. Physiol 75:139–57 [Google Scholar]
  91. McClure KD, Heberlein U. 91.  2013. A small group of neurosecretory cells expressing the transcriptional regulator apontic and the neuropeptide corazonin mediate ethanol sedation in Drosophila. J. Neurosci. 33:4044–54 [Google Scholar]
  92. Melcher C, Pankratz MJ. 92.  2005. Candidate gustatory interneurons modulating feeding behavior in the Drosophila brain. PLOS Biol 3:1618–29 [Google Scholar]
  93. Meyering-Vos M, Muller A. 93.  2007. RNA interference suggests sulfakinins as satiety effectors in the cricket Gryllus bimaculatus. J. Insect Physiol. 53:840–48 [Google Scholar]
  94. Mikani A, Wang QS, Takeda M. 94.  2012. Brain-midgut short neuropeptide F mechanism that inhibits digestive activity of the American cockroach, Periplaneta americana upon starvation. Peptides 34:135–44 [Google Scholar]
  95. Mikani A, Watari Y, Takeda M. 95.  2015. Brain-midgut cross-talk and autocrine metabolastat via the sNPF/CCAP negative feedback loop in the American cockroach, Periplaneta americana. Cell Tissue Res 362:481–96 [Google Scholar]
  96. Miyatake T, Katayama K, Takeda Y, Nakashima A, Sugita A, Mizumoto M. 96.  2004. Is death-feigning adaptive? Heritable variation in fitness difference of death-feigning behaviour. Proc. Biol. Sci. 271:2293–96 [Google Scholar]
  97. Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP. 97.  et al. 2014. The ctenophore genome and the evolutionary origins of neural systems. Nature 510:109–14 [Google Scholar]
  98. Motosaka K, Koganezawa M, Narikawa S, Furuyama A, Shinozaki K. 98.  et al. 2007. Cyclic AMP-dependent memory mutants are defective in the food choice behavior of Drosophila. J. Comp. Physiol. A 193:279–83 [Google Scholar]
  99. Nagata S, Matsumoto S, Nakane T, Ohara A, Morooka N. 99.  et al. 2012. Effects of starvation on brain short neuropeptide F-1, -2, and -3 levels and short neuropeptide F receptor expression levels of the silkworm, Bombyx mori. Front. Endocrinol. 3:3 [Google Scholar]
  100. Nagata S, Morooka N, Matsumoto S, Kawai T, Nagasawa H. 100.  2011. Effects of neuropeptides on feeding initiation in larvae of the silkworm, Bombyx mori. Gen. Comp. Endocrinol. 172:90–95 [Google Scholar]
  101. Nassel DR, Enell LE, Santos JG, Wegener C, Johard HA. 101.  2008. A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions. BMC Neurosci 9:90 [Google Scholar]
  102. Nassel DR, Winther AM. 102.  2010. Drosophila neuropeptides in regulation of physiology and behavior. Prog. Neurobiol. 92:42–104 [Google Scholar]
  103. Oeh U, Lorenz MW, Dyker H, Losel P, Hoffmann KH. 103.  2000. Interaction between Manduca sexta allatotropin and Manduca sexta allatostatin in the fall armyworm Spodoptera frugiperda. Insect Biochem. Mol. Biol 30:719–27 [Google Scholar]
  104. Pahl M, Si A, Zhang S. 104.  2013. Numerical cognition in bees and other insects. Front. Psychol. 4:162 [Google Scholar]
  105. Park D, Veenstra JA, Park JH, Taghert PH. 105.  2008. Mapping peptidergic cells in Drosophila: where DIMM fits in. PLOS ONE 3:e1896 [Google Scholar]
  106. Peterson KJ, Butterfield NJ. 106.  2005. Origin of the eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. PNAS 102:9547–52 [Google Scholar]
  107. Predel R, Russell WK, Russell DH, Lopez J, Esquivel J, Nachman RJ. 107.  2008. Comparative peptidomics of four related hemipteran species: pyrokinins, myosuppressin, corazonin, adipokinetic hormone, sNPF, and periviscerokinins. Peptides 29:162–67 [Google Scholar]
  108. Quinn WG, Sziber PP, Booker R. 108.  1979. The Drosophila memory mutant amnesiac. Nature 277:212–14 [Google Scholar]
  109. Ren GR, Hauser F, Rewitz KF, Kondo S, Engelbrecht AF. 109.  et al. 2015. CCHamide-2 is an orexigenic brain-gut peptide in Drosophila. PLOS ONE 10:e0133017 [Google Scholar]
  110. Rohwedder A, Selcho M, Chassot B, Thum AS. 110.  2015. Neuropeptide F neurons modulate sugar reward during associative olfactory learning of Drosophila larvae. J. Comp. Neurol. 523:2637–64 [Google Scholar]
  111. Root CM, Ko KI, Jafari A, Wang JW. 111.  2011. Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell 145:133–44 [Google Scholar]
  112. Sano H, Nakamura A, Texada MJ, Truman JW, Ishimoto H. 112.  et al. 2015. The nutrient-responsive hormone CCHamide-2 controls growth by regulating insulin-like peptides in the brain of Drosophila melanogaster. PLOS Genet 11:e1005209 [Google Scholar]
  113. Sato C, Matsumoto Y, Sakura M, Mizunami M. 113.  2006. Contextual olfactory learning in cockroaches. Neuroreport 17:553–57 [Google Scholar]
  114. Schoofs L, Clynen E, Cerstiaens A, Baggerman G, Wei Z. 114.  et al. 2001. Newly discovered functions for some myotropic neuropeptides in locusts. Peptides 22:219–27 [Google Scholar]
  115. Sellami A, Wegener C, Veenstra JA. 115.  2012. Functional significance of the copper transporter ATP7 in peptidergic neurons and endocrine cells in Drosophila melanogaster. FEBS Lett 586:3633–38 [Google Scholar]
  116. Sha K, Choi SH, Im J, Lee GG, Loeffler F, Park JH. 116.  2014. Regulation of ethanol-related behavior and ethanol metabolism by the corazonin neurons and corazonin receptor in Drosophila melanogaster. PLOS ONE 9:e87062 [Google Scholar]
  117. Shang Y, Donelson NC, Vecsey CG, Guo F, Rosbash M, Griffith LC. 117.  2013. Short neuropeptide F is a sleep-promoting inhibitory modulator. Neuron 80:171–83 [Google Scholar]
  118. Shankar S, Chua JY, Tan KJ, Calvert ME, Weng R. 118.  et al. 2015. The neuropeptide tachykinin is essential for pheromone detection in a gustatory neural circuit. eLife 4:e06914 [Google Scholar]
  119. Sheehan MJ, Tibbetts EA. 119.  2011. Specialized face learning is associated with individual recognition in paper wasps. Science 334:1272–75 [Google Scholar]
  120. Shohat-Ophir G, Kaun KR, Azanchi R, Mohammed H, Heberlein U. 120.  2012. Sexual deprivation increases ethanol intake in Drosophila. Science 335:1351–55 [Google Scholar]
  121. Smith CL, Varoqueaux F, Kittelmann M, Azzam RN, Cooper B. 121.  et al. 2014. Novel cell types, neurosecretory cells, and body plan of the early-diverging metazoan Trichoplax adhaerens. Curr. Biol. 24:1565–72 [Google Scholar]
  122. Soderberg JA, Birse RT, Nassel DR. 122.  2011. Insulin production and signaling in renal tubules of Drosophila is under control of tachykinin-related peptide and regulates stress resistance. PLOS ONE 6:e19866 [Google Scholar]
  123. Soderberg JA, Carlsson MA, Nassel DR. 123.  2012. Insulin-producing cells in the Drosophila brain also express satiety-inducing cholecystokinin-like peptide, drosulfakinin. Front. Endocrinol. 3:109 [Google Scholar]
  124. Stafford JW, Lynd KM, Jung AY, Gordon MD. 124.  2012. Integration of taste and calorie sensing in Drosophila. J. Neurosci. 32:14767–74 [Google Scholar]
  125. Stanek DM, Pohl J, Crim JW, Brown MR. 125.  2002. Neuropeptide F and its expression in the yellow fever mosquito, Aedes aegypti. Peptides 23:1367–78 [Google Scholar]
  126. Stoffolano JG Jr., Croke K, Chambers J, Gade G, Solari P, Liscia A. 126.  2014. Role of Phote-HrTH (Phormia terraenovae hypertrehalosemic hormone) in modulating the supercontractile muscles of the crop of adult Phormia regina Meigen. J. Insect Physiol. 71:147–55 [Google Scholar]
  127. Takahashi T, Takeda N. 127.  2015. Insight into the molecular and functional diversity of cnidarian neuropeptides. Int. J. Mol. Sci. 16:2610–25 [Google Scholar]
  128. Tayler TD, Pacheco DA, Hergarden AC, Murthy M, Anderson DJ. 128.  2012. A neuropeptide circuit that coordinates sperm transfer and copulation duration in Drosophila. PNAS 109:20697–702 [Google Scholar]
  129. Terhzaz S, Rosay P, Goodwin SF, Veenstra JA. 129.  2007. The neuropeptide SIFamide modulates sexual behavior in Drosophila. Biochem. Biophys. Res. Commun. 352:305–10 [Google Scholar]
  130. Terhzaz S, Teets NM, Cabrero P, Henderson L, Ritchie MG. 130.  et al. 2015. Insect capa neuropeptides impact desiccation and cold tolerance. PNAS 112:2882–87 [Google Scholar]
  131. Urlacher E, Soustelle L, Parmentier ML, Verlinden H, Gherardi MJ. 131.  et al. 2016. Honey bee allatostatins target galanin/somatostatin-like receptors and modulate learning: a conserved function?. PLOS ONE 11:e0146248 [Google Scholar]
  132. Van Wielendaele P, Wynant N, Dillen S, Badisco L, Marchal E, Vanden Broeck J. 132.  2013. In vivo effect of neuropeptide F on ecdysteroidogenesis in adult female desert locusts (Schistocerca gregaria). J. Insect Physiol. 59:624–30 [Google Scholar]
  133. Verdonck R, De Haes W, Cardoen D, Menschaert G, Huhn T. 133.  et al. 2016. Fast and reliable quantitative peptidomics with labelpepmatch. J. Proteome Res. 15:1080–89 [Google Scholar]
  134. Verleyen P, Clynen E, Huybrechts J, Van Lommel A, Vanden Bosch L. 134.  et al. 2004. Fraenkel's pupariation factor identified at last. Dev. Biol. 273:38–47 [Google Scholar]
  135. Vilaplana L, Pascual N, Perera N, Leira D, Belles X. 135.  2008. Antifeeding properties of myosuppressin in a generalist phytophagous leafworm, Spodoptera littoralis (Boisduval). Regul. Pept. 148:68–75 [Google Scholar]
  136. von Frisch K. 136.  1965. Tanzsprache und Orientierung der Bienen Berlin: Springer
  137. Waddell S, Armstrong JD, Kitamoto T, Kaiser K, Quinn WG. 137.  2000. The amnesiac gene product is expressed in two neurons in the Drosophila brain that are critical for memory. Cell 103:805–13 [Google Scholar]
  138. Wang C, Chin-Sang I, Bendena WG. 138.  2012. The FGLamide-allatostatins influence foraging behavior in Drosophila melanogaster. PLOS ONE 7:e36059 [Google Scholar]
  139. Wang Y, Mutti NS, Ihle KE, Siegel A, Dolezal AG. 139.  et al. 2010. Down-regulation of honey bee IRS gene biases behavior toward food rich in protein. PLOS Genet 6:e1000896 [Google Scholar]
  140. Wang Y, Pu Y, Shen P. 140.  2013. Neuropeptide-gated perception of appetitive olfactory inputs in Drosophila larvae. Cell Rep 3:820–30 [Google Scholar]
  141. Watanabe H, Mizunami M. 141.  2007. Pavlov's cockroach: classical conditioning of salivation in an insect. PLOS ONE 2:e529 [Google Scholar]
  142. Wei Z, Baggerman G, Nachman RJ, Goldsworthy G, Verhaert P. 142.  et al. 2000. Sulfakinins reduce food intake in the desert locust, Schistocerca gregaria. J. Insect Physiol. 46:1259–65 [Google Scholar]
  143. Wen TQ, Parrish CA, Xu D, Wu Q, Shen P. 143.  2005. Drosophila neuropeptide F and its receptor, NPFR1, define a signaling pathway that acutely modulates alcohol sensitivity. PNAS 102:2141–46 [Google Scholar]
  144. Whalan S, Webster NS. 144.  2014. Sponge larval settlement cues: the role of microbial biofilms in a warming ocean. Sci. Rep. 4:4072 [Google Scholar]
  145. White BH, Ewer J. 145.  2014. Neural and hormonal control of postecdysial behaviors in insects. Annu. Rev. Entomol. 59:363–81 [Google Scholar]
  146. Wigby S, Chapman T. 146.  2005. Sex peptide causes mating costs in female Drosophila melanogaster. Curr. Biol. 15:316–21 [Google Scholar]
  147. Williams MJ, Goergen P, Rajendran J, Klockars A, Kasagiannis A. 147.  et al. 2014. Regulation of aggression by obesity-linked genes TfAP-2 and Twz through octopamine signaling in Drosophila. Genetics 196:349–62 [Google Scholar]
  148. Winther AM, Acebes A, Ferrus A. 148.  2006. Tachykinin-related peptides modulate odor perception and locomotor activity in Drosophila. Mol. Cell. Neurosci. 31:399–406 [Google Scholar]
  149. Wu CL, Fu TF, Chou YY, Yeh SR. 149.  2015. A single pair of neurons modulates egg-laying decisions in Drosophila. PLOS ONE 10:e0121335 [Google Scholar]
  150. Wu Q, Wen T, Lee G, Park JH, Cai HN, Shen P. 150.  2003. Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron 39:147–61 [Google Scholar]
  151. Wu Q, Zhao Z, Shen P. 151.  2005. Regulation of aversion to noxious food by Drosophila neuropeptide Y- and insulin-like systems. Nat. Neurosci. 8:1350–55 [Google Scholar]
  152. Xu J, Li M, Shen P. 152.  2010. A G-protein-coupled neuropeptide Y-like receptor suppresses behavioral and sensory response to multiple stressful stimuli in Drosophila. J. Neurosci. 30:2504–12 [Google Scholar]
  153. Yamamoto D. 153.  2008. Brain sex differences and function of the fruitless gene in Drosophila. J. Neurogenet. 22:309–32 [Google Scholar]
  154. Yamamoto D, Koganezawa M. 154.  2013. Genes and circuits of courtship behaviour in Drosophila males. Nat. Rev. Neurosci. 14:681–92 [Google Scholar]
  155. Yamanaka N, Romero NM, Martin FA, Rewitz KF, Sun M. 155.  et al. 2013. Neuroendocrine control of Drosophila larval light preference. Science 341:1113–16 [Google Scholar]
  156. Yang CH, Belawat P, Hafen E, Jan LY, Jan YN. 156.  2008. Drosophila egg-laying site selection as a system to study simple decision-making processes. Science 319:1679–83 [Google Scholar]
  157. Yapici N, Kim YJ, Ribeiro C, Dickson BJ. 157.  2008. A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature 451:33–37 [Google Scholar]
  158. Yin Y, Chen N, Zhang S, Guo A. 158.  2009. Choice strategies in Drosophila are based on competition between olfactory memories. Eur. J. Neurosci. 30:279–88 [Google Scholar]
  159. Yu D, Keene AC, Srivatsan A, Waddell S, Davis RL. 159.  2005. Drosophila DPM neurons form a delayed and branch-specific memory trace after olfactory classical conditioning. Cell 123:945–57 [Google Scholar]
  160. Yu N, Nachman RJ, Smagghe G. 160.  2013. Characterization of sulfakinin and sulfakinin receptor and their roles in food intake in the red flour beetle Tribolium castaneum. Gen. Comp. Endocrinol. 188:196–203 [Google Scholar]
  161. Zels S, Dillen S, Crabbe K, Spit J, Nachman RJ, Vanden Broeck J. 161.  2015. Sulfakinin is an important regulator of digestive processes in the migratory locust, Locusta migratoria. Insect Biochem. Mol. Biol. 61:8–16 [Google Scholar]
  162. Zhang S, Mizutani A, Srinivasan MV. 162.  2000. Maze navigation by honey bees: learning path regularity. Learn. Mem. 7:363–74 [Google Scholar]
  163. Zhao XL, Campos AR. 163.  2012. Insulin signalling in mushroom body neurons regulates feeding behaviour in Drosophila larvae. J. Exp. Biol. 215:2696–702 [Google Scholar]
  164. Zhao Y, Bretz CA, Hawksworth SA, Hirsh J, Johnson EC. 164.  2010. Corazonin neurons function in sexually dimorphic circuitry that shape behavioral responses to stress in Drosophila. PLOS ONE 5:e9141 [Google Scholar]
  165. Zwanzger P, Domschke K, Bradwejn J. 165.  2012. Neuronal network of panic disorder: the role of the neuropeptide cholecystokinin. Depress. Anxiety 29:762–74 [Google Scholar]
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error