Entomopathogenic fungi play a pivotal role in the regulation of insect populations in nature, and representative species have been developed as promising environmentally friendly mycoinsecticides. Recent advances in the genome biology of insect pathogenic fungi have revealed genomic features associated with fungal adaptation to insect hosts and different host ranges, as well as the evolutionary relationships between insect and noninsect pathogens. By using species in the and genera as models, molecular biology studies have revealed the genes that function in fungus-insect interactions and thereby contribute to fungal virulence. Taken together with efforts toward genetic improvement of fungal virulence and stress resistance, knowledge of entomopathogenic fungi will potentiate cost-effective applications of mycoinsecticides for pest control in the field. Relative to our advanced insights into the mechanisms of fungal pathogenesis in plants and humans, future studies will be necessary to unravel the gene-for-gene relationships in fungus-insect interactive models.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Agrawal Y, Khatri I, Subramanian S, Shenoy BD. 1.  2015. Genome sequence, comparative analysis, and evolutionary insights into chitinases of entomopathogenic fungus Hirsutella thompsonii. Genome Biol. Evol. 7:916–30 [Google Scholar]
  2. Agrawal Y, Narwani T, Subramanian S. 2.  2016. Genome sequence and comparative analysis of clavicipitaceous insect-pathogenic fungus Aschersonia badia with Metarhizium spp. BMC Genom. 17:367 [Google Scholar]
  3. Behie SW, Zelisko PM, Bidochka MJ. 3.  2012. Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 336:1576–77Evidence of nutrient trading among insects, entomopathogenic fungi, and plants. [Google Scholar]
  4. Behle RW, Compton DL, Laszlo JA, Shapiro-Ilan DI. 4.  2009. Evaluation of soyscreen in an oil-based formulation for UV protection of Beauveria bassiana conidia. J. Econ. Entomol. 102:1759–66 [Google Scholar]
  5. Boomsma JJ, Jensen AB, Meyling NV, Eilenberg J. 5.  2014. Evolutionary interaction networks of insect pathogenic fungi. Annu. Rev. Entomol. 59:467–85 [Google Scholar]
  6. Bowman SM, Free SJ. 6.  2006. The structure and synthesis of the fungal cell wall. BioEssays 28:799–808 [Google Scholar]
  7. Boyce KJ, Andrianopoulos A. 7.  2015. Fungal dimorphism: The switch from hyphae to yeast is a specialized morphogenetic adaptation allowing colonization of a host. FEMS Microbiol. Rev. 39:797–811 [Google Scholar]
  8. Bushley KE, Raja R, Jaiswal P, Cumbie JS, Nonogaki M. 8.  et al. 2013. The genome of Tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster. PLOS Genet. 9:e1003496 [Google Scholar]
  9. Chamilos G, Lionakis MS, Lewis RE, Kontoyiannis DP. 9.  2007. Role of mini-host models in the study of medically important fungi. Lancet Infect. Dis. 7:42–55 [Google Scholar]
  10. Chang Y, Wang SS, Sekimoto S, Aerts AL, Choi C. 10.  et al. 2015. Phylogenomic analyses indicate that early fungi evolved digesting cell walls of algal ancestors of land plants. Genome Biol. Evol. 7:1590–601 [Google Scholar]
  11. Chen YX, Duan Z, Chen P, Shang YF, Wang CS. 11.  2015. The Bax inhibitor MrBI-1 regulates heat tolerance, apoptotic-like cell death, and virulence in Metarhizium robertsii. Sci. Rep. 5:10625 [Google Scholar]
  12. Chen YX, Feng P, Shang YF, Xu YJ, Wang CS. 12.  2015. Biosynthesis of non-melanin pigment by a divergent polyketide synthase in Metarhizium robertsii. Fungal Genet. Biol. 81:142–49 [Google Scholar]
  13. da Silva WOB, Santi L, Schrank A, Vainstein MH. 13.  2010. Metarhizium anisopliae lipolytic activity plays a pivotal role in Rhipicephalus (Boophilus) microplus infection. Fungal Biol. 114:10–15 [Google Scholar]
  14. de Bekker C, Ohm RA, Loreto RG, Sebastian A, Albert I. 14.  et al. 2015. Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genom. 16:620 [Google Scholar]
  15. Duan Z, Shang Y, Gao Q, Zheng P, Wang C. 15.  2009. A phosphoketolase Mpk1 of bacterial origin is adaptively required for full virulence in the insect-pathogenic fungus Metarhizium anisopliae. Environ. Microbiol. 11:2351–60 [Google Scholar]
  16. Duan ZB, Chen YX, Huang W, Shang YF, Chen PL, Wang CS. 16.  2013. Linkage of autophagy to fungal development, lipid storage and virulence in Metarhizium robertsii. Autophagy 9:538–49 [Google Scholar]
  17. Enkerli J, Widmer F. 17.  2010. Molecular ecology of fungal entomopathogens: molecular genetic tools and their applications in population and fate studies. BioControl 55:17–37 [Google Scholar]
  18. Fan Y, Borovsky D, Hawkings C, Ortiz-Urquiza A, Keyhani NO. 18.  2012. Exploiting host molecules to augment mycoinsecticide virulence. Nat. Biotechnol. 30:35–37Virulence increase by transformation with endogenous insect genes. [Google Scholar]
  19. Fan Y, Fang W, Guo S, Pei X, Zhang Y. 19.  et al. 2007. Increased insect virulence in Beauveria bassiana strains overexpressing an engineered chitinase. Appl. Environ. Microbiol. 73:295–302 [Google Scholar]
  20. Fan Y, Ortiz-Urquiza A, Garrett T, Pei Y, Keyhani NO. 20.  2015. Involvement of a caleosin in lipid storage, spore dispersal, and virulence in the entomopathogenic filamentous fungus, Beauveria bassiana. Environ. Microbiol. 17:4600–14 [Google Scholar]
  21. Fan Y, Pereira RM, Kilic E, Casella G, Keyhani NO. 21.  2012. Pyrokinin β-neuropeptide affects necrophoretic behavior in fire ants (S. invicta), and expression of β-NP in a mycoinsecticide increases its virulence. PLOS ONE 7:e26924 [Google Scholar]
  22. Fang W, Lu HL, King GF, St. Leger RJ. 22.  2014. Construction of a hypervirulent and specific mycoinsecticide for locust control. Sci. Rep. 4:7345 [Google Scholar]
  23. Fang W, Pava-Ripoll M, Wang S, St. Leger R. 23.  2009. Protein kinase A regulates production of virulence determinants by the entomopathogenic fungus, Metarhizium anisopliae. Fungal Genet. Biol. 46:277–85 [Google Scholar]
  24. Fang W, St. Leger RJ. 24.  2012. Enhanced UV resistance and improved killing of malaria mosquitoes by photolyase transgenic entomopathogenic fungi. PLOS ONE 7:e43069 [Google Scholar]
  25. Fang W, Vega-Rodriguez J, Ghosh AK, Jacobs-Lorena M, Kang A, St. Leger RJ. 25.  2011. Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science 331:1074–77Genetically altered fungus to combat malaria in mosquitos. [Google Scholar]
  26. Feng P, Shang Y, Cen K, Wang C. 26.  2015. Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. PNAS 112:11365–70 [Google Scholar]
  27. Gao Q, Jin K, Ying SH, Zhang Y, Xiao G. 27.  et al. 2011. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLOS Genet. 7:e1001264First sequenced genomes of insect pathogenic fungi. [Google Scholar]
  28. Gao Q, Shang YF, Huang W, Wang CS. 28.  2013. Glycerol-3-phosphate acyltransferase contributes to triacylglycerol biosynthesis, lipid droplet formation, and host invasion in Metarhizium robertsii. Appl. Environ. Microbiol. 79:7646–53 [Google Scholar]
  29. Donzelli B, Gibson DM, Krasnoff SB. 29.  Giuliano Garisto 2015. Intracellular siderophore but not extracellular siderophore is required for full virulence in Metarhizium robertsii. Fungal Genet. Biol. 82:56–68 [Google Scholar]
  30. Gladieux P, Ropars J, Badouin H, Branca A, Aguileta G. 30.  et al. 2014. Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes. Mol. Ecol. 23:753–73 [Google Scholar]
  31. Gomez-Diaz E, Jorda M, Peinado MA, Rivero A. 31.  2012. Epigenetics of host-pathogen interactions: the road ahead and the road behind. PLOS Pathog. 8:e1003007 [Google Scholar]
  32. Gottar M, Gobert V, Matskevich A, Reichhart J, Wang C. 32.  et al. 2006. Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127:1425–37 [Google Scholar]
  33. Henk DA. 33.  2005. New species of Septobasidium from southern Costa Rica and the southeastern United States. Mycologia 97:908–13 [Google Scholar]
  34. Hu X, Xiao GH, Zheng P, Shang YF, Su Y. 34.  et al. 2014. Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. PNAS 111:16796–801The finding of existing transitional species to bridge fungal speciation relationships. [Google Scholar]
  35. Hu X, Zhang YJ, Xiao GH, Zheng P, Xia YL. 35.  et al. 2013. Genome survey uncovers the secrets of sex and lifestyle in caterpillar fungus. Chin. Sci. Bull. 58:2846–54 [Google Scholar]
  36. Huang W, Shang YF, Chen PL, Cen K, Wang CS. 36.  2015. Basic leucine zipper (bZIP) domain transcription factor MBZ1 regulates cell wall integrity, spore adherence, and virulence in Metarhizium robertsii. J. Biol. Chem. 290:8218–31 [Google Scholar]
  37. Huang W, Shang YF, Chen PL, Gao Q, Wang CS. 37.  2015. MrpacC regulates sporulation, insect cuticle penetration and immune evasion in Metarhizium robertsii. Environ. Microbiol. 17:994–1008 [Google Scholar]
  38. Jin K, Ming Y, Xia YX. 38.  2012. MaHog1, a Hog1-type mitogen-activated protein kinase gene, contributes to stress tolerance and virulence of the entomopathogenic fungus Metarhizium acridum. Microbiology 158:2987–96 [Google Scholar]
  39. Jin K, Peng G, Liu Y, Xia Y. 39.  2015. The acid trehalase, ATM1, contributes to the in vivo growth and virulence of the entomopathogenic fungus, Metarhizium acridum. Fungal Genet. Biol. 77:61–67 [Google Scholar]
  40. Keller NP, Turner G, Bennett JW. 40.  2005. Fungal secondary metabolism—from biochemistry to genomics. Nat. Rev. Microbiol. 3:937–47 [Google Scholar]
  41. Kepler RM, Sung GH, Harada Y, Tanaka K, Tanaka E. 41.  et al. 2012. Host jumping onto close relatives and across kingdoms by Tyrannicordyceps (Clavicipitaceae) gen. nov. and Ustilaginoidea_(Clavicipitaceae). Am. J. Bot. 99:552–61 [Google Scholar]
  42. Lamb C, Dixon RA. 42.  1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:251–75 [Google Scholar]
  43. Li F, Shi HQ, Ying SH, Feng MG. 43.  2015. Distinct contributions of one Fe- and two Cu/Zn-cofactored superoxide dismutases to antioxidation, UV tolerance and virulence of Beauveria bassiana. Fungal Genet. Biol. 81:160–71 [Google Scholar]
  44. Li F, Shi HQ, Ying SH, Feng MG. 44.  2015. WetA and VosA are distinct regulators of conidiation capacity, conidial quality, and biological control potential of a fungal insect pathogen. Appl. Microbiol. Biotechnol. 99:10069–81 [Google Scholar]
  45. Liao X, Lu HL, Fang W, St. Leger RJ. 45.  2014. Overexpression of a Metarhizium robertsii HSP25 gene increases thermotolerance and survival in soil. Appl. Microbiol. Biotechnol. 98:777–83 [Google Scholar]
  46. Lin LC, Fang WG, Liao XG, Wang FQ, Wei DZ, St. Leger RJ. 46.  2011. The MrCYP52 cytochrome P450 monoxygenase gene of Metarhizium robertsii is important for utilizing insect epicuticular hydrocarbons. PLOS ONE 6:e28984 [Google Scholar]
  47. Linder T, Gustafsson CM. 47.  2008. Molecular phylogenetics of ascomycotal adhesins—a novel family of putative cell-surface adhesive proteins in fission yeasts. Fungal Genet. Biol. 45:485–97 [Google Scholar]
  48. Lomer CJ, Bateman RP, Johnson DL, Langewald J, Thomas M. 48.  2001. Biological control of locusts and grasshoppers. Annu. Rev. Entomol. 46:667–702 [Google Scholar]
  49. Lu D, Pava-Ripoll M, Li Z, Wang C. 49.  2008. Insecticidal evaluation of Beauveria bassiana engineered to express a scorpion neurotoxin and a cuticle degrading protease. Appl. Microbiol. Biotechnol. 81:515–22 [Google Scholar]
  50. Luo S, He M, Cao Y, Xia Y. 50.  2013. The tetraspanin gene MaPls1 contributes to virulence by affecting germination, appressorial function and enzymes for cuticle degradation in the entomopathogenic fungus, Metarhizium acridum. Environ. Microbiol. 15:2966–79 [Google Scholar]
  51. Luo Z, Li Y, Mousa J, Bruner S, Zhang Y. 51.  et al. 2015. Bbmsn2 acts as a pH-dependent negative regulator of secondary metabolite production in the entomopathogenic fungus Beauveria bassiana. Environ. Microbiol. 17:1189–202 [Google Scholar]
  52. Luo Z, Qin Y, Pei Y, Keyhani NO. 52.  2014. Ablation of the creA regulator results in amino acid toxicity, temperature sensitivity, pleiotropic effects on cellular development and loss of virulence in the filamentous fungus Beauveria bassiana. Environ. Microbiol. 16:1122–36 [Google Scholar]
  53. Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ. 53.  et al. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–73 [Google Scholar]
  54. Molnar I, Gibson DM, Krasnoff SB. 54.  2010. Secondary metabolites from entomopathogenic Hypocrealean fungi. Nat. Prod. Rep. 27:1241–75 [Google Scholar]
  55. Nikoh N, Fukatsu T. 55.  2000. Interkingdom host jumping underground: phylogenetic analysis of entomoparasitic fungi of the genus Cordyceps. Mol. Biol. Evol. 17:629–38 [Google Scholar]
  56. Ortiz-Urquiza A, Luo ZB, Keyhani NO. 56.  2015. Improving mycoinsecticides for insect biological control. Appl. Microbiol. Biotechnol. 99:1057–68 [Google Scholar]
  57. Pattemore JA, Hane JK, Williams AH, Wilson BA, Stodart BJ, Ash GJ. 57.  2014. The genome sequence of the biocontrol fungus Metarhizium anisopliae and comparative genomics of Metarhizium species. BMC Genom. 15:660 [Google Scholar]
  58. Pava-Ripoll M, Posada F, Momen B, Wang C, St. Leger R. 58.  2008. Increased pathogenicity against coffee berry borer, Hypothenemus hampei (Coleoptera: Curculionidae) by Metarhizium anisopliae expressing the scorpion toxin (AaIT) gene. J. Invertebr. Pathol. 99:220–26 [Google Scholar]
  59. Pedrini N, Ortiz-Urquiza A, Huarte-Bonnet C, Fan Y, Juarez MP, Keyhani NO. 59.  2015. Tenebrionid secretions and a fungal benzoquinone oxidoreductase form competing components of an arms race between a host and pathogen. PNAS 112:E3651–60Molecular evidence of a coevolutionary arms race between a fungus and its host. [Google Scholar]
  60. Pedrini N, Ortiz-Urquiza A, Huarte-Bonnet C, Zhang S, Keyhani NO. 60.  2013. Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction. Front. Microbiol. 4:24 [Google Scholar]
  61. Pedrini N, Zhang S, Juarez MP, Keyhani NO. 61.  2010. Molecular characterization and expression analysis of a suite of cytochrome P450 enzymes implicated in insect hydrocarbon degradation in the entomopathogenic fungus Beauveria bassiana. Microbiology 156:2549–57 [Google Scholar]
  62. Porter TM, Martin W, James TY, Longcore JE, Gleason FH. 62.  et al. 2011. Molecular phylogeny of the Blastocladiomycota (Fungi) based on nuclear ribosomal DNA. Fungal Biol. 115:381–92 [Google Scholar]
  63. Qin Y, Ortiz-Urquiza A, Keyhani NO. 63.  2014. A putative methyltransferase, mtrA, contributes to development, spore viability, protein secretion and virulence in the entomopathogenic fungus Beauveria bassiana. Microbiology 160:2526–37 [Google Scholar]
  64. Qin Y, Ying SH, Chen Y, Shen ZC, Feng MG. 64.  2010. Integration of insecticidal protein Vip3Aa1 into Beauveria bassiana enhances fungal virulence to Spodoptera litura larvae by cuticle and per os infection. Appl. Environ. Microbiol. 76:4611–18 [Google Scholar]
  65. Raffaele S, Kamoun S. 65.  2012. Genome evolution in filamentous plant pathogens: why bigger can be better. Nat. Rev. Microbiol. 10:417–30 [Google Scholar]
  66. Rangel DE, Butler MJ, Torabinejad J, Anderson AJ, Braga GU. 66.  et al. 2006. Mutants and isolates of Metarhizium anisopliae are diverse in their relationships between conidial pigmentation and stress tolerance. J. Invertebr. Pathol. 93:170–82 [Google Scholar]
  67. Shang Y, Chen P, Chen Y, Lu Y, Wang C. 67.  2015. MrSkn7 controls sporulation, cell wall integrity, autolysis, and virulence in Metarhizium robertsii. Eukaryot. Cell 14:396–405 [Google Scholar]
  68. Shang Y, Duan Z, Huang W, Gao Q, Wang C. 68.  2012. Improving UV resistance and virulence of Beauveria bassiana by genetic engineering with an exogenous tyrosinase gene. J. Invertebr. Pathol. 109:105–9 [Google Scholar]
  69. Shang Y, Feng P, Wang C. 69.  2015. Fungi that infect insects: altering host behavior and beyond. PLOS Pathog. 11:e1005037 [Google Scholar]
  70. Shang Y, Xiao G, Zheng P, Cen K, Zhan S, Wang C. 70.  2016. Divergent and convergent evolution of fungal pathogenicity. Genome Biol. Evol. 8:1374–87 [Google Scholar]
  71. St. Leger RJ, Joshi L, Bidochka MJ, Roberts DW. 71.  1996. Construction of an improved mycoinsecticide overexpressing a toxic protease. PNAS 93:6349–54First trial to genetically improve fungal virulence. [Google Scholar]
  72. St. Leger RJ, Joshi L, Roberts D. 72.  1998. Ambient pH is a major determinant in the expression of cuticle-degrading enzymes and hydrophobin by Metarhizium anisopliae. Appl. Environ. Microbiol. 64:709–13 [Google Scholar]
  73. St. Leger RJ, Wang CS. 73.  2010. Genetic engineering of fungal biocontrol agents to achieve greater efficacy against insect pests. Appl. Microbiol. Biotechnol. 85:901–7 [Google Scholar]
  74. Staats CC, Junges A, Guedes RL, Thompson CE, de Morais GL. 74.  et al. 2014. Comparative genome analysis of entomopathogenic fungi reveals a complex set of secreted proteins. BMC Genom. 15:822 [Google Scholar]
  75. Stergiopoulos I, de Wit PJGM. 75.  2009. Fungal effector proteins. Annu. Rev. Phytopathol. 47:233–63 [Google Scholar]
  76. Sung GH, Hywel-Jones NL, Sung JM, Luangsa-Ard JJ, Shrestha B, Spatafora JW. 76.  2007. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud. Mycol. 57:5–59 [Google Scholar]
  77. Sung GH, Poinar GO, Spatafora JW. 77.  2008. The oldest fossil evidence of animal parasitism by fungi supports a Cretaceous diversification of fungal-arthropod symbioses. Mol. Phylogenet. Evol. 49:495–502 [Google Scholar]
  78. Tseng MN, Chung PC, Tzean SS. 78.  2011. Enhancing the stress tolerance and virulence of an entomopathogen by metabolic engineering of dihydroxynaphthalene melanin biosynthesis genes. Appl. Environ. Microbiol. 77:4508–19 [Google Scholar]
  79. Vega F, Meyling N, Luangsa-Ard J, Blackwell M. 79.  2012. Fungal entomopathogens. Insect Pathology F Vega, H Kaya 171–220 San Diego, CA: Academic [Google Scholar]
  80. Wang B, Kang QJ, Lu YZ, Bai LQ, Wang CS. 80.  2012. Unveiling the biosynthetic puzzle of destruxins in Metarhizium species. PNAS 109:1287–92 [Google Scholar]
  81. Wang C, Duan Z, St. Leger RJ. 81.  2008. MOS1 osmosensor of Metarhizium anisopliae is required for adaptation to insect host hemolymph. Eukaryot. Cell 7:302–9 [Google Scholar]
  82. Wang C, Fan M, Li ZZ, Butt TM. 82.  2004. Molecular monitoring and evaluation of the application of the insect-pathogenic fungus Beauveria bassiana in southeast China. J. Appl. Microbiol. 96:861–70 [Google Scholar]
  83. Wang C, Li ZZ, Butt TM. 83.  2002. Molecular studies of co-formulated strains of the entomopathogenic fungus, Beauveria bassiana. J. Invertebr. Pathol. 80:29–34 [Google Scholar]
  84. Wang C, Skrobek A, Butt TM. 84.  2003. Concurrence of losing a chromosome and the ability to produce destruxins in a mutant of Metarhizium anisopliae. FEMS Microbiol. Lett. 226:373–78 [Google Scholar]
  85. Wang C, St. Leger RJ. 85.  2006. A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. PNAS 103:6647–52A strategy to evade insect immunity by molecular camouflaging of cell wall structure. [Google Scholar]
  86. Wang CS, Feng MG. 86.  2014. Advances in fundamental and applied studies in China of fungal biocontrol agents for use against arthropod pests. Biol. Control 68:129–35 [Google Scholar]
  87. Wang CS, Hu G, St. Leger RJ. 87.  2005. Differential gene expression by Metarhizium anisopliae growing in root exudate and host (Manduca sexta) cuticle or hemolymph reveals mechanisms of physiological adaptation. Fungal Genet. Biol. 42:704–18 [Google Scholar]
  88. Wang CS, Shah FA, Patel N, Li ZZ, Butt TM. 88.  2003. Molecular investigation on strain genetic relatedness and population structure of Beauveria bassiana. Environ. Microbiol. 5:908–15 [Google Scholar]
  89. Wang CS, St. Leger RJ. 89.  2007. A scorpion neurotoxin increases the potency of a fungal insecticide. Nat. Biotechnol. 25:1455–56Genetic improvement of fungal virulence with a scorpion neurotoxin gene. [Google Scholar]
  90. Wang CS, St. Leger RJ. 90.  2007. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryot. Cell 6:808–16 [Google Scholar]
  91. Wang CS, St. Leger RJ. 91.  2007. The Metarhizium anisopliae perilipin homolog MPL1 regulates lipid metabolism, appressorial turgor pressure, and virulence. J. Biol. Chem. 282:21110–15 [Google Scholar]
  92. Wang S, O'Brien TR, Pava-Ripoll M, St. Leger RJ. 92.  2011. Local adaptation of an introduced transgenic insect fungal pathogen due to new beneficial mutations. PNAS 108:20449–54 [Google Scholar]
  93. Wang ZL, Zhang LB, Ying SH, Feng MG. 93.  2013. Catalases play differentiated roles in the adaptation of a fungal entomopathogen to environmental stresses. Environ. Microbiol. 15:409–18 [Google Scholar]
  94. Wichadakul D, Kobmoo N, Ingsriswang S, Tangphatsornruang S, Chantasingh D. 94.  et al. 2015. Insights from the genome of Ophiocordyceps polyrhachis-furcata to pathogenicity and host specificity in insect fungi. BMC Genom. 16:881 [Google Scholar]
  95. Wilson RA, Talbot NJ. 95.  2009. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat. Rev. Microbiol. 7:185–95 [Google Scholar]
  96. Xiao G, Ying SH, Zheng P, Wang ZL, Zhang S. 96.  et al. 2012. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci. Rep. 2:483 [Google Scholar]
  97. Xu Y-J, Luo F, Gao Q, Shang Y, Wang C. 97.  2015. Metabolomics reveals insect metabolic responses associated with fungal infection. Anal. Bioanal. Chem. 407:4815–21 [Google Scholar]
  98. Xu Y, Orozco R, Kithsiri Wijeratne EM, Espinosa-Artiles P, Leslie Gunatilaka AA. 98.  et al. 2009. Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genet. Biol. 46:353–64 [Google Scholar]
  99. Xu Y, Orozco R, Wijeratne EM, Leslie Gunatilaka AA, Stock SP, Molnar I. 99.  2008. Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana. Chem. Biol. 15:898–907First evidence of a small molecule contributing to fungal virulence. [Google Scholar]
  100. Xue CY, Hsueh YP, Heitman J. 100.  2008. Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiol. Rev. 32:1010–32 [Google Scholar]
  101. Yang L, Keyhani NO, Tang G, Tian C, Lu R. 101.  et al. 2014. Expression of a Toll signaling regulator serpin in a mycoinsecticide for increased virulence. Appl. Environ. Microbiol. 80:4531–39 [Google Scholar]
  102. Ying SH, Feng MG, Keyhani NO. 102.  2013. A carbon responsive G-protein coupled receptor modulates broad developmental and genetic networks in the entomopathogenic fungus, Beauveria bassiana. Environ. Microbiol. 15:2902–21 [Google Scholar]
  103. Zhang LB, Tang L, Ying SH, Feng MG. 103.  2015. Subcellular localization of six thioredoxins and their antioxidant activity and contributions to biological control potential in Beauveria bassiana. Fungal Genet. Biol. 76:1–9 [Google Scholar]
  104. Zhang S, Xia YX, Kim B, Keyhani NO. 104.  2011. Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, Beauveria bassiana. Mol. Microbiol. 80:811–26 [Google Scholar]
  105. Zhang SZ, Widemann E, Bernard G, Lesot A, Pinot F. 105.  et al. 2012. CYP52X1, representing new cytochrome P450 subfamily, displays fatty acid hydroxylase activity and contributes to virulence and growth on insect cuticular substrates in entomopathogenic fungus Beauveria bassiana. J. Biol. Chem. 287:13477–86 [Google Scholar]
  106. Zhao H, Xu C, Lu HL, Chen X, St. Leger RJ, Fang W. 106.  2014. Host-to-pathogen gene transfer facilitated infection of insects by a pathogenic fungus. PLOS Pathog. 10:e1004009 [Google Scholar]
  107. Zheng P, Xia YL, Xiao G, Xiong C, Hu X. 107.  et al. 2011. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol. 12:R116 [Google Scholar]
  108. Zheng P, Xia YL, Zhang SW, Wang CS. 108.  2013. Genetics of Cordyceps and related fungi. Appl. Microbiol. Biotechnol. 97:2797–804 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error