1932

Abstract

Accurate species delimitation underpins good taxonomy. Formalization of integrative taxonomy in the past decade has provided a framework for using multidisciplinary data to make species delimitation hypotheses more rigorous. We address the current state of integrative taxonomy by using as a case study an international project targeted at resolving three important tephritid species complexes: complex, complex, and FAR (, , ) complex. The integrative taxonomic approach has helped deliver significant advances in resolving these complexes: It has been used to identify some taxa as belonging to the same biological species as well as to confirm hidden cryptic diversity under a single taxonomic name. Nevertheless, the general application of integrative taxonomy has not been without issue, revealing challenges that must be considered when undertaking an integrative taxonomy project. Scrutiny of this international case study provides a unique opportunity to document lessons learned for the benefit of not only tephritid taxonomists, but also the wider taxonomic community.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-031616-035518
2017-01-31
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/ento/62/1/annurev-ento-031616-035518.html?itemId=/content/journals/10.1146/annurev-ento-031616-035518&mimeType=html&fmt=ahah

Literature Cited

  1. Aluja M, Norrbom A. 1.  1999. Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior Boca Raton, FL: CRC Press [Google Scholar]
  2. Aluja M, Pérez-Staples D, Macías-Ordoñez R, Piñero J, McPheron BA, Hernández-Ortiz V. 2.  2003. Nonhost status of Citrus sinensis cultivar Valencia and C. paradisi cultivar Ruby Red to Mexican Anastrepha fraterculus (Diptera: Tephritidae). J. Econ. Entomol. 96:1693–703 [Google Scholar]
  3. Andersson L. 3.  1990. The driving force: species concepts and ecology. Taxon 39:375–82 [Google Scholar]
  4. Augustinos AA, Drosopoulou E, Gariou-Papalexiou A, Asimakis ED, Cáceres C. 4.  et al. 2015. Cytogenetic and symbiont analysis of five members of the B. dorsalis complex (Diptera, Tephritidae): no evidence of chromosomal or symbiont-based speciation events. ZooKeys 540:273–98 [Google Scholar]
  5. Baker AC, Stone WE, Plummer CC, McPhail M. 5.  1944. A review of studies on the Mexican fruitfly and related Mexican species US Dep. Agric. Misc. Publ. 531, Washington, DC [Google Scholar]
  6. Bo W, Ahmad S, Dammalage T, Tomas US, Wornoayporn V. 6.  et al. 2014. Mating compatibility between Bactrocera invadens and Bactrocera dorsalis (Diptera: Tephritidae). J. Econ. Entomol. 107:623–29 [Google Scholar]
  7. Boykin L, Schutze M, Krosch M, Chomič A, Chapman T. 7.  et al. 2014. Multi-gene phylogenetic analysis of south-east Asian pest members of the Bactrocera dorsalis species complex (Diptera: Tephritidae) does not support current taxonomy. J. Appl. Entomol. 138:235–53 [Google Scholar]
  8. Brèthes J. 8.  1914. Notes synonymiques sur quelques insectes argentins. Bull. Soc. Entomol. Fr. 1914:58–59 [Google Scholar]
  9. Břízová R, Vaníčková L, Fat'arová M, Ekesi S, Hoskovec M, Kalinová B. 9.  2015. Analyses of volatiles produced by the African fruit fly species complex (Diptera, Tephritidae). ZooKeys 540:385–404 [Google Scholar]
  10. Cáceres C, Segura DF, Vera MT, Wornoayporn V, Cladera JL. 10.  et al. 2009. Incipient speciation revealed in Anastrepha fraterculus (Diptera; Tephritidae) by studies on mating compatibility, sex pheromones, hybridization, and cytology. Biol. J. Linn. Soc. 97:152–65 [Google Scholar]
  11. Canal NA, Hernández-Ortiz V, Tigrero Salas JO, Selivon D. 11.  2015. Morphometric study of third-instar larvae from five morphotypes of the Anastrepha fraterculus cryptic species complex (Diptera, Tephritidae). ZooKeys 540:41–59 [Google Scholar]
  12. Carstens BC, Pelletier TA, Reid NM, Satler JD. 12.  2013. How to fail at species delimitation. Mol. Ecol. 22:4369–83 [Google Scholar]
  13. Chinvinijkul S, Srikachar S, Kumjing P, Kimjong W, Sukamnouyporn W, Polchaimat N. 13.  2015. Inter-regional mating compatibility among Bactrocera dorsalis populations in Thailand (Diptera, Tephritidae). ZooKeys 540:299–311 [Google Scholar]
  14. Clarke AR, Armstrong KF, Carmichael AE, Milne JR, Raghu S. 14.  et al. 2005. Invasive phytophagous pests arising through a recent tropical evolutionary radiation: the Bactrocera dorsalis complex of fruit flies. Annu. Rev. Entomol. 50:293–319 [Google Scholar]
  15. Clarke AR, Schutze MK. 15.  2014. The complexities of knowing what it is you are trapping. Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies TE Shelly, N Epsky, EB Jang, J Reyes-Flores, RI Vargas 611–32 Dordrecht, Neth.: Springer [Google Scholar]
  16. Cruickshank L, Jessup AJ, Cruickshank DJ. 16.  2001. Interspecific crosses of Bactrocera tryoni (Froggatt) and Bactrocera jarvisi (Tryon) (Diptera: Tephritidae) in the laboratory. Aust. J. Entomol. 40:278–80 [Google Scholar]
  17. Dayrat B. 17.  2005. Towards integrative taxonomy. Biol. J. Linn. Soc. 85:407–15 [Google Scholar]
  18. De Meyer M. 18.  2001. On the identity of the Natal fruit fly Ceratitis rosa Karsch (Diptera, Tephritidae). Bull. Inst. R. Sci. Nat. Belg. Entomol. 71:55–62 [Google Scholar]
  19. De Meyer M, Delatte H, Ekesi S, Jordaens K, Kalinova B. 19.  et al. 2015. An integrative approach to unravel the Ceratitis FAR (Diptera, Tephritidae) cryptic species complex: a review. ZooKeys 540:405–27 [Google Scholar]
  20. De Meyer M, Freidberg A. 20.  2005. Revision of the subgenus Ceratitis (Pterandrus) Bezzi (Diptera: Tephritidae). Isr. J. Entomol. 35:197–315 [Google Scholar]
  21. De Meyer M, Mwatawala M, Copeland R, Virgilio M. 21.  2016. Description of new Ceratitis species (Diptera: Tephritidae) from Africa, or how morphological and DNA data are complementary in discovering unknown species and matching sexes. Eur. J. Taxon. 233:1–23 [Google Scholar]
  22. de Queiroz K. 22.  1998. The general lineage concept of species, species criteria, and the process of speciation. Endless Forms: Species and Speciation DJ Howard, SH Berlocher 57–75 New York: Oxford Univ. Press [Google Scholar]
  23. de Queiroz K. 23.  1999. The general lineage concept of species and the defining properties of the species category. Species: New Interdisciplinary Essays RA Wilson 49–89 Cambridge, MA: MIT Press [Google Scholar]
  24. de Queiroz K. 24.  2007. Species concepts and species delimitation. Syst. Biol. 56:879–86 [Google Scholar]
  25. DeSalle R, Egan MG, Siddall M. 25.  2005. The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philos. Trans. R. Soc. Lond. B 360:1905–16 [Google Scholar]
  26. Devescovi F, Abraham S, Roriz AK, Nolazco N, Castañeda R. 26.  et al. 2014. Ongoing speciation within the Anastrepha fraterculus cryptic species complex: the case of the Andean morphotype. Entomol. Exp. Appl. 152:238–47 [Google Scholar]
  27. Donoghue MJ. 27.  1985. A critique of the biological species concept and recommendations for a phylogenetic alternative. Bryologist 88:172–81 [Google Scholar]
  28. Drew R, Ma J, Smith S, Hughes J. 28.  2011. The taxonomy and phylogenetic relationships of species in the Bactrocera musae complex of fruit flies (Diptera: Tephritidae: Dacinae) in Papua New Guinea. Raffles Bull. Zool. 59:145–62 [Google Scholar]
  29. Drew RA. 29.  1989. The Tropical Fruit Flies (Diptera: Tephritidae: Dacinae) of the Australasian and Oceanian Regions Brisbane: Qld. Mus. [Google Scholar]
  30. Drew RA, Hancock DL. 30.  1994. The Bactrocera dorsalis complex of fruit flies (Diptera: Tephritidae: Dacinae) in Asia. Bull. Entomol. Res. Suppl. Ser. 2:1–68 [Google Scholar]
  31. Drew RA, Raghu S, Halcoop P. 31.  2008. Bridging the morphological and biological species concepts: studies on the Bactrocera dorsalis (Hendel) complex (Diptera: Tephritidae: Dacinae) in South-east Asia. Biol. J. Linn. Soc. 93:217–26 [Google Scholar]
  32. Drew RA, Romig MC. 32.  2013. Tropical Fruit Flies (Tephritidae: Dacinae) of South-East Asia Wallingford, UK: CABI [Google Scholar]
  33. Erbout N, De Meyer M, Lens L. 33.  2008. Hybridization between two polyphagous fruit-fly species (Diptera: Tephritidae) causes sex-biased reduction in developmental stability. Biol. J. Linn. Soc. 93:579–88 [Google Scholar]
  34. Erbout N, Virgilio M, Lens L, Barr N, De Meyer M. 34.  2011. Discrepancies between subgeneric classification and molecular phylogeny of Ceratitis (Diptera: Tephritidae), can the evolution of host use provide some clues?. Mol. Phylogenet. Evol. 60:259–64 [Google Scholar]
  35. Feder JL, Xie X, Rull J, Velez S, Forbes A. 35.  et al. 2005. Mayr, Dobzhansky, and Bush and the complexities of sympatric speciation in Rhagoletis. PNAS 102:6573–80 [Google Scholar]
  36. Fujita MK, Leaché AD, Burbrink FT, McGuire JA, Moritz C. 36.  2012. Coalescent-based species delimitation in an integrative taxonomy. Trends Ecol. Evol. 27:480–88 [Google Scholar]
  37. Gaubert P, Taylor PJ, Veron G. 37.  2005. Integrative taxonomy and phylogenetic systematics of the genets (Carnivora, Viverridae, Genetta): a new classification of the most speciose carnivoran genus in Africa. African Biodiversity: Molecules, Organisms, Ecosystems B Huber, B Sinclair, K-H Lampe 371–83 Bonn, Ger.: Springer [Google Scholar]
  38. Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RL. 38.  2006. Multivariate Data Analysis Upper Saddle River, NJ: Pearson Prentice Hall [Google Scholar]
  39. Hancock D, Drew R. 39.  2015. A review of the Indo-Australian subgenus Parazeugodacus Shiraki of Bactrocera Macquart (Diptera: Tephritidae: Dacinae). Aust. Entomol. 42:91–104 [Google Scholar]
  40. Hee A, Ooi Y-S, Wee S-L, Tan K-H. 40.  2015. Comparative sensitivity to methyl eugenol of four putative Bactrocera dorsalis complex sibling species: further evidence that they belong to one and the same species B. dorsalis. ZooKeys 540:313–21 [Google Scholar]
  41. Hee A, Wee S-L, Nishida R, Ono H, Hendrichs J. 41.  et al. 2015. Historical perspective on the synonymization of the four major pest species belonging to the Bactrocera dorsalis species complex (Diptera, Tephritidae). ZooKeys 540:323–38 [Google Scholar]
  42. Hendrichs J, Vera T, De Meyer M, Clarke A. 42.  2015. Resolving cryptic species complexes of major tephritid pests. ZooKeys 540:5–39 [Google Scholar]
  43. Hernández-Ortiz V, Bartolucci AF, Morales-Valles P, Frías D, Selivon D. 43.  2012. Cryptic species of the Anastrepha fraterculus complex (Diptera: Tephritidae): a multivariate approach for the recognition of South American morphotypes. Ann. Entomol. Soc. Am. 105:305–18 [Google Scholar]
  44. Hernández-Ortiz V, Canal NA, Salas JOT, Ruíz-Hurtado FM, Dzul-Cauich JF. 44.  2015. Taxonomy and phenotypic relationships of the Anastrepha fraterculus complex in the Mesoamerican and Pacific Neotropical dominions (Diptera, Tephritidae). ZooKeys 540:95–124 [Google Scholar]
  45. Hernández-Ortiz V, Morales-Valles P. 45.  2004. Distribución geográfica y plantas hospederas de Anastrepha fraterculus (Diptera: Tephritidae) en Venezuela. Folia Entomol. Mex. 43:181–89 [Google Scholar]
  46. Juárez ML, Devescovi F, Břízová R, Bachmann G, Segura DF. 46.  et al. 2015. Evaluating mating compatibility within fruit fly cryptic species complexes and the potential role of sex pheromones in pre-mating isolation. ZooKeys 540:125–55 [Google Scholar]
  47. Kluge AG. 47.  1989. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst. Zool. 38:7–25 [Google Scholar]
  48. Korytkowski C. 48.  2001. Situación actual del género Anastrepha Schiffner, 1868 (Diptera: Tephritidae) en el Perú. Rev. Peru. Entomol. 42:97–158 [Google Scholar]
  49. Krosch MN, Schutze MK, Armstrong KF, Boontop Y, Boykin LM. 49.  et al. 2013. Piecing together an integrative taxonomic puzzle: microsatellite, wing shape and aedeagus length analyses of Bactrocera dorsalis s.l. (Diptera: Tephritidae) find no evidence of multiple lineages in a proposed contact zone along the Thai/Malay Peninsula. Syst. Entomol. 38:2–13 [Google Scholar]
  50. Krosch MN, Schutze MK, Armstrong KF, Graham GC, Yeates DK, Clarke AR. 50.  2012. A molecular phylogeny for the Tribe Dacini (Diptera: Tephritidae): systematic and biogeographic implications. Mol. Phylogenet. Evol. 64:513–23 [Google Scholar]
  51. Lanzavecchia SB, Juri M, Bonomi A, Gomulski L, Scannapieco AC. 51.  et al. 2014. Microsatellite markers from the ‘South American fruit fly’ Anastrepha fraterculus: a valuable tool for population genetic analysis and SIT applications. BMC Genet 15:Suppl. 2S13 [Google Scholar]
  52. Leblanc L, San Jose M, Barr N, Rubinoff D. 52.  2015. A phylogenetic assessment of the polyphyletic nature and intraspecific color polymorphism in the Bactrocera dorsalis complex (Diptera, Tephritidae). ZooKeys 540:339–67 [Google Scholar]
  53. Lecocq T, Dellicour S, Michez D, Dehon M, Dewulf A. 53.  et al. 2015. Methods for species delimitation in bumblebees (Hymenoptera, Apidae, Bombus): towards an integrative approach. Zool. Scr. 44:281–97 [Google Scholar]
  54. Linnaeus C. 54.  1758. Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Caracteribus, Differentiis, Synonymis, Locis 1 Holmiae: Laurentii Salvii, 10th ed.. [Google Scholar]
  55. Loew H. 55.  1873. Monographs of the Diptera of North America Part III Washington, DC: Smithsonian Inst. [Google Scholar]
  56. Ludeña B, Bayas R, Pintaud J-C. 56.  2010. Phylogenetic relationships of Andean-Ecuadorian populations of Anastrepha fraterculus (Wiedemann 1830) (Diptera: Tephritidae) inferred from COI and COII gene sequences. Proc. Ann. Soc. Entomol. Fr. 46:344–50 [Google Scholar]
  57. Malacrida AR, Gomulski LM, Bonizzoni M, Bertin S, Gasperi G, Guglielmino CR. 57.  2007. Globalization and fruitfly invasion and expansion: the medfly paradigm. Genetica 131:1–9 [Google Scholar]
  58. Mallet J. 58.  1995. A species definition for the modern synthesis. Trends Ecol. Evol. 10:294–99 [Google Scholar]
  59. Manni M, Lima KM, Guglielmino CR, Lanzavecchia SB, Juri M. 59.  et al. 2015. Relevant genetic differentiation among Brazilian populations of Anastrepha fraterculus (Diptera, Tephritidae). ZooKeys 540:157–73 [Google Scholar]
  60. Mayden RL. 60.  1997. A hierarchy of species concepts: the denouement in the saga of the species problem. Species: The Units of Biodiversity MF Claridge, HA Dawah, MR Wilson 381–424 London: Chapman & Hall Ltd. [Google Scholar]
  61. Mayr E. 61.  1942. Systematics and the Origin of Species, from the Viewpoint of a Zoologist New York: Columbia Univ. Press [Google Scholar]
  62. Mayr E. 62.  1957. Species concepts and definitions. The Species Problem E Mayr 1–22 Washington, DC: Am. Assoc. Adv. Sci. [Google Scholar]
  63. Michener CD. 63.  1970. Diverse approaches to systematics. Evol. Biol. 4:1–38 [Google Scholar]
  64. Mwatawala M, Virgilio M, Joseph J, De Meyer M. 64.  2015. Niche partitioning among two Ceratitis rosa morphotypes and other Ceratitis pest species (Diptera, Tephritidae) along an altitudinal transect in Central Tanzania. ZooKeys 540:429–42 [Google Scholar]
  65. Naomi SI. 65.  2011. On the integrated frameworks of species concepts: Mayden's hierarchy of species concepts and de Queiroz's unified concept of species. J. Zool. Syst. Evol. Res. 49:177–84 [Google Scholar]
  66. 66. Marie Curie Speciat. Netw. 2012. What do we need to know about speciation?. Trends Ecol. Evol. 27:27–39 [Google Scholar]
  67. Norrbom A. 67.  2004. Updates to biosystematic database of world Diptera for Tephritidae through 1999. Diptera Data Dissemination Disk CD-ROM. Washington, DC: US Dep. Agric. [Google Scholar]
  68. Norrbom AL, Carroll LE, Thompson FC, White IM, Freidberg A. 68.  1999. Systematic database of names. Fruit Fly Expert Identification System and Systematic Information Database: A Resource for Identification and Information of Fruit Flies and Maggots, with Information on Their Classification, Distribution and Documentation FC Thompson 65–251 Leiden, Neth.: Backhuys [Google Scholar]
  69. Padial JM, De La Riva I. 69.  2010. A response to recent proposals for integrative taxonomy. Biol. J. Linn. Soc. 101:747–56 [Google Scholar]
  70. Padial JM, Miralles A, De la Riva I, Vences M. 70.  2010. Review: the integrative future of taxonomy. Front. Zool. 7:1–14 [Google Scholar]
  71. Pante E, Puillandre N, Viricel A, Arnaud‐Haond S, Aurelle D. 71.  et al. 2015. Species are hypotheses: avoid connectivity assessments based on pillars of sand. Mol. Ecol. 24:525–44 [Google Scholar]
  72. Pante E, Schoelinck C, Puillandre N. 72.  2014. From integrative taxonomy to species description: one step beyond. Syst. Biol. 64:152–60 [Google Scholar]
  73. Pike N, Meats A. 73.  2002. Potential for mating between Bactrocera tryoni (Froggatt) and Bactrocera neohumeralis (Hardy) (Diptera: Tephritidae). Aust. J. Entomol. 41:70–74 [Google Scholar]
  74. Przybyłowicz Ł, Pniak M, Tofilski A. 74.  2015. Semiautomated identification of European corn borer (Lepidoptera: Crambidae). J. Econ. Entomol. 109:195–99 [Google Scholar]
  75. Rocha LS, Selivon D. 75.  2004. Studies on highly repetitive DNA in cryptic species of the Anastrepha fraterculus complex. See Ref. 116 415–18
  76. Rosen DE. 76.  1979. Fishes from the uplands and intermontane basins of Guatemala: revisionary studies and comparative geography. Bull. Am. Mus. Nat. Hist. 162:269–375 [Google Scholar]
  77. Rull J, Abraham S, Kovaleski A, Segura DF, Mendoza M. 77.  et al. 2013. Evolution of pre-zygotic and post-zygotic barriers to gene flow among three cryptic species within the Anastrepha fraterculus complex. Entomol. Exp. Appl. 148:213–22 [Google Scholar]
  78. Schlick-Steiner BC, Steiner FM, Seifert B, Stauffer C, Christian E, Crozier RH. 78.  2010. Integrative taxonomy: a multisource approach to exploring biodiversity. Annu. Rev. Entomol. 55:421–38 [Google Scholar]
  79. Schutze M, Jessup A, Clarke AR. 79.  2012. Wing shape as a potential discriminator of morphologically similar pest taxa within the Bactrocera dorsalis species complex (Diptera: Tephritidae). Bull. Entomol. Res. 102:103–11 [Google Scholar]
  80. Schutze M, Jessup A, Ul-Haq I, Vreysen M, Wornoayporn V. 80.  et al. 2013. Mating compatibility among four pest members of the Bactrocera dorsalis fruit fly species complex (Diptera: Tephritidae). J. Econ. Entomol. 106:695–707 [Google Scholar]
  81. Schutze MK, Aketarawong N, Amornsak W, Armstrong KF, Augustinos AA. 81.  et al. 2015. Synonymization of key pest species within the Bactrocera dorsalis species complex (Diptera: Tephritidae): taxonomic changes based on a review of 20 years of integrative morphological, molecular, cytogenetic, behavioural and chemoecological data. Syst. Entomol. 40:456–71 [Google Scholar]
  82. Schutze MK, Krosch MN, Armstrong KF, Chapman TA, Englezou A. 82.  et al. 2012. Population structure of Bactroceradorsalis ss, B. papayae and B. philippinensis (Diptera: Tephritidae) in Southeast Asia: evidence for a single species hypothesis using mitochondrial DNA and wing-shape data. BMC Evol. Biol. 12:1–15 [Google Scholar]
  83. Schwarz D, Robertson HM, Feder JL, Varala K, Hudson ME. 83.  et al. 2009. Sympatric ecological speciation meets pyrosequencing: sampling the transcriptome of the apple maggot Rhagoletis pomonella. BMC Genom. 10:1–14 [Google Scholar]
  84. Selivon D, Perondini A, Morgante J. 84.  2005. A genetic-morphological characterization of two cryptic species of the Anastrepha fraterculus complex (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 98:367–81 [Google Scholar]
  85. Selivon D, Perondini ALP. 85.  1998. Eggshell morphology in two cryptic species of the Anastrepha fraterculus complex (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 91:473–78 [Google Scholar]
  86. Selivon D, Perondini ALP. 86.  2007. Especies crípticas del complejo Anastrepha fraterculus en Brasil. See Ref. 115 101–18
  87. Selivon D, Vretos C, Fontes L, Perondini ALP. 87.  2004. New variant forms in the Anastrepha fraterculus complex (Diptera: Tephritidae). See Ref. 116 253–58
  88. Sites JW Jr., Marshall JC. 88.  2004. Operational criteria for delimiting species. Annu. Rev. Ecol. Evol. Syst. 35:199–227 [Google Scholar]
  89. Sokal RR, Crovello TJ. 89.  1970. The biological species concept: a critical evaluation. Am. Nat. 104:127–53 [Google Scholar]
  90. Steck GJ. 90.  1991. Biochemical systematics and population genetic structure of Anastrepha fraterculus and related species (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 84:10–28 [Google Scholar]
  91. Steck GJ, Ekesi S. 91.  2015. Description of third instar larvae of Ceratitis fasciventris, C. anonae, C. rosa (FAR complex) and C. capitata (Diptera, Tephritidae). ZooKeys 540:443–66 [Google Scholar]
  92. Stone A. 92.  1942. The fruitflies of the genus Anastrepha. U.S. Dep. Agric. Misc. Publ. 439, Washington, DC [Google Scholar]
  93. Sutton BD, Steck GJ, Norrbom AL, Rodriguez EJ, Srivastava P. 93.  et al. 2015. Nuclear ribosomal internal transcribed spacer 1 (ITS1) variation in the Anastrepha fraterculus cryptic species complex (Diptera, Tephritidae) of the Andean region. ZooKeys 540:175–91 [Google Scholar]
  94. Tan KH. 94.  2003. Interbreeding and DNA analysis of sibling species within the Bactrocera dorsalis complex Rep. INIS-JP—106. Res. Inst. Subtrop., Naha, Jpn. [Google Scholar]
  95. Tanga CM, Manrakhan A, Daneel J-H, Mohamed SA, Fathiya K, Ekesi S. 95.  2015. Comparative analysis of development and survival of two Natal fruit fly Ceratitis rosa Karsch (Diptera, Tephritidae) populations from Kenya and South Africa. ZooKeys 540:467–87 [Google Scholar]
  96. Valdecasas AG, Williams D, Wheeler QD. 96.  2008. ‘Integrative taxonomy’ then and now: a response to Dayrat (2005). Biol. J. Linn. Soc. 93:211–16 [Google Scholar]
  97. Van Cann J, Virgilio M, Jordaens K, De Meyer M. 97.  2015. Wing morphometrics as a possible tool for the diagnosis of the Ceratitis fasciventris, C. anonae, C. rosa complex (Diptera, Tephritidae). ZooKeys 540:489–506 [Google Scholar]
  98. Van Valen L. 98.  1976. Ecological species, multispecies, and oaks. Taxon 25:233–39 [Google Scholar]
  99. Vaníčková L, Břízová R, Mendonça A, Pompeiano A, Do Nascimento R. 99.  2015. Intraspecific variation of cuticular hydrocarbon profiles in the Anastrepha fraterculus (Diptera: Tephritidae) species complex. J. Appl. Entomol. 139:679–89 [Google Scholar]
  100. Vaníčková L, Břízová R, Pompeiano A, Ekesi S, De Meyer M. 100.  2015. Cuticular hydrocarbons corroborate the distinction between lowland and highland Natal fruit fly (Tephritidae, Ceratitis rosa) populations. ZooKeys 540:507–24 [Google Scholar]
  101. Vaníčková L, Břízová R, Pompeiano A, Ferreira LL, de Aquino NC. 101.  et al. 2015. Characterisation of the chemical profiles of Brazilian and Andean morphotypes belonging to the Anastrepha fraterculus complex (Diptera, Tephritidae). ZooKeys 540:193–209 [Google Scholar]
  102. Vaníčková L, Hernández-Ortiz V, Bravo ISJ, Dias V, Roriz AKP. 102.  et al. 2015. Current knowledge of the species complex Anastrepha fraterculus (Diptera, Tephritidae) in Brazil. ZooKeys 540:211–37 [Google Scholar]
  103. Vaníčková L, Virgilio M, Tomčala A, Břízová R, Ekesi S. 103.  et al. 2014. Resolution of three cryptic agricultural pests (Ceratitis fasciventris, C. anonae, C. rosa, Diptera: Tephritidae) using cuticular hydrocarbon profiling. Bull. Entomol. Res. 104:631–38 [Google Scholar]
  104. Vera MT, Cáceres C, Wornoayporn V, Islam A, Robinson AS. 104.  et al. 2006. Mating incompatibility among populations of the South American fruit fly Anastrepha fraterculus (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 99:387–97 [Google Scholar]
  105. Virgilio M, Backeljau T, Barr N, De Meyer M. 105.  2008. Molecular evaluation of nominal species in the Ceratitis fasciventris, C. anonae, C. rosa complex (Diptera: Tephritidae). Mol. Phylogenet. Evol. 48:270–80 [Google Scholar]
  106. Virgilio M, De Meyer M, White I, Backeljau T. 106.  2009. African Dacus (Diptera: Tephritidae: molecular data and host plant associations do not corroborate morphology based classifications. Mol. Phylogenet. Evol. 51:531–39 [Google Scholar]
  107. Virgilio M, Delatte H, Quilici S, Backeljau T, De Meyer M. 107.  2013. Cryptic diversity and gene flow among three African agricultural pests: Ceratitis rosa, Ceratitis fasciventris and Ceratitis anonae (Diptera, Tephritidae). Mol. Ecol. 22:2526–39 [Google Scholar]
  108. Walter GH. 108.  2005. Insect Pest Management and Ecological Research Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  109. White IM. 109.  1987. The Linnaean species of the family Tephritidae (Insecta: Diptera). Zool. J. Linn. Soc. 90:99–107 [Google Scholar]
  110. Will KW, Mishler BD, Wheeler QD. 110.  2005. The perils of DNA barcoding and the need for integrative taxonomy. Syst. Biol. 54:844–51 [Google Scholar]
  111. Yamada SM, Selivon D. 111.  2001. Rose, an eye color mutation in a species of the Anastrepha fraterculus complex (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 94:592–95 [Google Scholar]
  112. Yeates DK, Seago A, Nelson L, Cameron SL, Joseph L, Trueman JW. 112.  2011. Integrative taxonomy, or iterative taxonomy?. Syst. Entomol. 36:209–17 [Google Scholar]
  113. Zucchi R. 113.  1981. Anastrepha Schiner, 1868 (Diptera, Tephritidae): novas sinonimias. Rev. Bras. Entomol. 25:289–94 [Google Scholar]
  114. Zucchi RA. 114.  2007. Diversidad, distribución y hospederos del género Anastrepha en Brasil. See Ref. 115 77–100
  115. Hernández-Ortiz V. 115.  2007. Moscas de la Fruta en Latinoamérica (Diptera: Tephritidae): Diversidad, Biología y Manejo Distrito Federal, Méx.: S y G Ed. [Google Scholar]
  116. Barnes BN. 116.  2004. Proceedings of the 6th International Symposium on Fruit Flies of Economic Importance, Stellenbosch, South Africa, 6–10 May 2002 Irene, S. Afr.: Isteg Sci. [Google Scholar]
/content/journals/10.1146/annurev-ento-031616-035518
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error