With a million described species and more than half a billion preserved specimens, the large scale of insect collections is unequaled by those of any other group. Advances in genomics, collection digitization, and imaging have begun to more fully harness the power that such large data stores can provide. These new approaches and technologies have transformed how entomological collections are managed and utilized. While genomic research has fundamentally changed the way many specimens are collected and curated, advances in technology have shown promise for extracting sequence data from the vast holdings already in museums. Efforts to mainstream specimen digitization have taken root and have accelerated traditional taxonomic studies as well as distribution modeling and global change research. Emerging imaging technologies such as microcomputed tomography and confocal laser scanning microscopy are changing how morphology can be investigated. This review provides an overview of how the realization of big data has transformed our field and what may lie in store.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Arillo A, Peñalver E, Pérez-Delafuente R, Delclòs X, Criscione J. 1.  et al. 2015. Long-proboscid brachyceran flies in Cretaceous amber (Diptera: Stratiomyomorpha: Zhangsolvidae). Syst. Entomol. 40:1242–67 [Google Scholar]
  2. Astrid T, Margit E, Leopold F. 2.  2016. Ethanol: a simple and effective RNA-preservation for freshwater insects living in remote habitats. Limnol. Oceanogr. Methods 14:186–95 [Google Scholar]
  3. Aylward FO, Burnum KE, Scott JJ, Suen G, Tringe SG. 3.  et al. 2012. Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens. ISME J 6:91688–701 [Google Scholar]
  4. Baird R. 4.  2010. Leveraging the fullest potential of scientific collections through digitization. Biodivers. Inform. 7:130–36 [Google Scholar]
  5. Balhoff JP, Mikó I, Yoder MJ, Mullins PL, Deans AR. 5.  2013. A semantic model for species description applied to the ensign wasps (Hymenoptera: Evaniidae) of New Caledonia. Syst. Biol. 62:5639–59 [Google Scholar]
  6. Balke M, Schmidt S, Hausmann A, Toussaint E, Bergsten J. 6.  et al. 2013. Biodiversity into your hands—a call for a virtual global natural history ‘metacollection.’. Front. Zool 10:55 [Google Scholar]
  7. Bazinet AL, Cummings MP, Mitter KT, Mitter CW. 7.  2013. Can RNA-seq resolve the rapid radiation of advanced moths and butterflies (Hexapoda: Lepidoptera: Apoditrysia)? An exploratory study. PLOS ONE 8:e82615 [Google Scholar]
  8. Bertone M, Blinn R, Stanfield T, Dew K, Seltmann K, Deans A. 8.  2012. Results and insights from the NCSU Insect Museum GigaPan project. ZooKeys 209:115–32 [Google Scholar]
  9. Beutel RG, Friedrich F, Ge SQ, Yang XK. 9.  2014. Insect Morphology and Phylogeny Berlin: De Gruyter
  10. Blagoderov V, Kitching I, Livermore L, Simonsen T, Smith V. 10.  2012. No specimen left behind: industrial scale digitization of natural history collections. ZooKeys 209:133–46 [Google Scholar]
  11. Blaimer BB, Brady SG, Schultz TR, Lloyd MW, Fisher BL, Ward PS. 11.  2015. Phylogenomic methods outperform traditional multi-locus approaches in resolving deep evolutionary history: a case study of formicine ants. BMC Evol. Biol. 15:e271 [Google Scholar]
  12. Blanchard BD, Moreau CS. 12.  2017. Defensive traits exhibit an evolutionary trade-off and drive diversification in ants. Evolution 71:2315–28 [Google Scholar]
  13. Buerki S, Baker WJ. 13.  2016. Collections-based research in the genomic era. Biol. J. Linn. Soc. 117:5–10 [Google Scholar]
  14. Cameron SL. 14.  2014. How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research. Syst. Entomol. 39:400–11 [Google Scholar]
  15. Cameron SL, Lozier JD, Strange JP, Koch JB, Cordes N. 15.  et al. 2011. Patterns of widespread decline in North American bumble bees. PNAS 108:662–67 [Google Scholar]
  16. Campbell MA, Van Leuven JT, Meister RC, Carey KM, Simon C, McCutcheon JP. 16.  2015. Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia. PNAS 112:10192–99 [Google Scholar]
  17. Catzeflis F. 17.  1991. Animal tissue collections for molecular genetics and systematics. Trends Ecol. Evol. 6:168 [Google Scholar]
  18. Chapco W, Litzenberger G. 18.  2004. A DNA investigation into the mysterious disappearance of the Rocky Mountain grasshopper, mega-pest of the 1800s. Mol. Phylogenetics Evol. 30:810–14 [Google Scholar]
  19. Cho S, Epstein SW, Mitter K, Hamilton CA, Plotkin D. 19.  et al. 2016. Preserving and vouchering butterflies and moths for large-scale museum-based molecular research. PeerJ 4:e2160 [Google Scholar]
  20. Collins SD, McIntyre NE. 20.  2015. Modeling and distribution of odonates: a review. Freshw. Sci. 34:31144–58 [Google Scholar]
  21. Colman DR, Toolson EC, Takacs-Vesbach CD. 21.  2012. Do diet and taxonomy influence insect gut bacterial communities?. Mol. Ecol. 21:5124–37 [Google Scholar]
  22. Corthals A, Desalle A. 22.  2005. An application of tissue and DNA banking for genomics and conservation: the Ambrose Monell Cryo-Collection (AMCC). Syst. Biol. 54:5819–23 [Google Scholar]
  23. Cranston K, Harmon LJ, O'Leary MA, Lisle C. 23.  2014. Best practices for data sharing in phylogenetic research. PLOS Curr 6: ecurrents.tol.bf01eff4a6b60ca4825c69293dc59645 [Google Scholar]
  24. Cruaud A, Gautier M, Galan M, Foucaud J, Sauné L. 24.  et al. 2014. Empirical assessment of RAD sequencing for interspecific phylogeny. Mol. Biol. Evol. 31:1272–74 [Google Scholar]
  25. Deans AR, Mikó I, Wipfler B, Friedrich F. 25.  2012. Evolutionary phenomics and the emerging enlightenment of arthropod systematics. Invertebr. Syst. 26:323–30 [Google Scholar]
  26. Degnan PH, Lazarus AB, Wernegreen JJ. 26.  2005. Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. Genome Res 15:1023–33 [Google Scholar]
  27. Dell'Ampio E, Meusemann K, Szucsich NU, Peters RS, Meyer B. 27.  et al. 2014. Decisive data sets in phylogenomics: lessons from studies on the phylogenetic relationships of primarily wingless insects. Mol. Biol. Evol. 31:239–49 [Google Scholar]
  28. Dietrich C, Hart J, Raila D, Ravaioli U, Sobh N. 28.  et al. 2012. InvertNet: a new paradigm for digital access to invertebrate collections. ZooKeys 209:165–81 [Google Scholar]
  29. DiEuliis D, Johnson KR, Morse SS, Schindel DE. 29.  2016. Opinion: Specimen collections should have a much bigger role in infectious disease research and response. PNAS 113:4–7 [Google Scholar]
  30. Dikow RB, Frandsen PB, Turcatel M, Dikow T. 30.  2017. Genomic and transcriptomic resources for assassin flies including the complete genome sequence of Proctacanthus coquilletti (Insecta: Diptera: Asilidae) and 16 representative transcriptomes. PeerJ 5:e2951 [Google Scholar]
  31. Dillon N, Austin AD, Bartowsky E. 31.  1996. Comparison of preservation techniques for DNA extraction from hymenopterous insects. Insect Mol. Biol. 5:21–24 [Google Scholar]
  32. Douglas AE. 32.  2015. Multiorganismal insects: diversity and function of resident microorganisms. Annu. Rev. Entomol. 60:17–34 [Google Scholar]
  33. Droege G, Barker K, Seberg O, Coddington J, Benson E. 33.  et al. 2016. The Global Genome Biodiversity Network (GGBN) Data Standard specification. Database 2016:baw125 [Google Scholar]
  34. Engel P, Martinson VG, Moran NA. 34.  2012. Functional diversity within the simple gut microbiota of the honey bee. PNAS 109:11002–7 [Google Scholar]
  35. Ernst A, Mikó I, Deans A. 35.  2013. Morphology and function of the ovipositor mechanism in Ceraphronoidea (Hymenoptera, Apocrita). J. Hymenopt. Res. 33:25–61 [Google Scholar]
  36. Faircloth BC, Branstetter MG, White ND, Brady SG. 36.  2014. Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera. Mol. Ecol. Resour. 15:489–501 [Google Scholar]
  37. Faulwetter S, Vasileiadou A, Kouratoras M, Dailianis T, Arvanitidis C. 37.  2013. Micro-computed tomography: introducing new dimensions to taxonomy. ZooKeys 263:1–45 [Google Scholar]
  38. Ferro ML, Park JS. 38.  2013. Effect of propylene glycol concentration on mid-term DNA preservation of Coleoptera. Coleopt. Bull. 67:581–86 [Google Scholar]
  39. Frampton M, Conrad S, Prager T, Richards MH. 39.  2008. Evaluation of specimen preservatives for DNA analyses of bees. J. Hymenopt. Res. 17:195–200 [Google Scholar]
  40. Friedrich F, Beutel RG. 40.  2008. The thorax of Zorotypus (Hexapoda, Zoraptera) and a new nomenclature for the musculature of Neoptera. Arthropod Struct. Dev. 37:129–54 [Google Scholar]
  41. Friedrich F, Beutel RG. 41.  2010. Goodbye Halteria? The thoracic morphology of Endopterygota (Insecta) and its phylogenetic implications. Cladistics 26:579–612 [Google Scholar]
  42. Friedrich F, Beutel RG. 42.  2010. The thoracic morphology of Nannochorista (Nannochoristidae) and its implications for the phylogeny of Mecoptera and Antliophora. J. Zool. Syst. Evol. Res. 48:150–74 [Google Scholar]
  43. Friedrich F, Farrell BD, Beutel RG. 43.  2009. The thoracic morphology of Archostemata and the relationships of the extant suborders of Coleoptera (Hexapoda). Cladistics 25:11–37 [Google Scholar]
  44. Friedrich F, Matsumura Y, Pohl H, Bai M, Hörnschemeyer T, Beutel RG. 44.  2014. Insect morphology in the age of phylogenomics: innovative techniques and its future role in systematics. Entomol. Sci. 17:11–24 [Google Scholar]
  45. Gilbert MTP, Moore W, Melchior L, Worobey M. 45.  2007. DNA extraction from dry museum beetles without conferring external morphological damage. PLOS ONE 2:e272 [Google Scholar]
  46. Giribet G, Edgecombe GD. 46.  2006. Conflict between data sets and phylogeny of centipedes: an analysis based on seven genes and morphology. Proc. R. Soc. B 273:531–38 [Google Scholar]
  47. Hammer TJ, Dickerson JC, Fierer N. 47.  2015. Evidence-based recommendations on storing and handling specimens for analyses of insect microbiota. PeerJ 3:e1190 [Google Scholar]
  48. Hebert PDN, Cywinska A, Ball SL, deWaard JR. 48.  2003. Biological identifications through DNA barcodes. Proc. R. Soc. B 270:313–21 [Google Scholar]
  49. Heerlien M, van Leusen J, Schnorr S, de Jong-Kole S, Raes N, van Hulsen K. 49.  2015. The natural history production line: an industrial approach to the digitization of scientific collections. ACM J. Comput. Cult. Herit. 8:13 [Google Scholar]
  50. Hendrickx H, Cnudde V, Masschaele B, Dierick M, Vlassenbroeck J, van Hoorebeke L. 50.  2006. Description of a new fossil Pseudogarypus (Pseudoscorpiones: Pseudogarypidae) with the use of X-ray micro-CT to penetrate opaque amber. Zootaxa 1305:41–50 [Google Scholar]
  51. Hernández-Triana LM, Prosser SW, Rodríguez-Perez MA, Chaverri LG, Hebert PDN, Gregory TR. 51.  2013. Recovery of DNA barcodes from blackfly museum specimens (Diptera: Simuliidae) using primer sets that target a variety of sequence lengths. Mol. Ecol. Resour. 14:508–18 [Google Scholar]
  52. Hill A, Guralnick R, Smith A, Sallans A, Gillespie R. 52.  et al. 2012. The notes from nature tool for unlocking biodiversity records from museum records through citizen science. ZooKeys 209:219–33 [Google Scholar]
  53. Holovachov O, Zatushevsky A, Shydlovsky I. 53.  2014. Whole-drawer imaging of entomological collections: benefits, limitations and alternative applications. J. Conserv. Mus. Stud. 12:19 [Google Scholar]
  54. Hongoh Y, Sharma VK, Prakash T, Noda S, Toh H. 54.  et al. 2008. Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322:1108–9 [Google Scholar]
  55. Hörnschemeyer T, Beutel RG, Pasop F. 55.  2002. Head structures of Priacma serrata Leconte (Coleptera, Archostemata) inferred from X-ray tomography. J. Morphol. 252:3298–314 [Google Scholar]
  56. Hudson LN, Blagoderov V, Heaton A, Holtzhausen P, Livermore L. 56.  et al. 2015. Inselect: automating the digitization of natural history collections. PLOS ONE 10:11e0143402 [Google Scholar]
  57. Hughes J, Longhorn SJ, Papadopoulou A, Theodorides K, de Riva A. 57.  et al. 2006. Dense taxonomic EST sampling and its applications for molecular systematics of the Coleoptera (beetles). Mol. Biol. Evol. 23:268–78 [Google Scholar]
  58. Hunt T, Bergsten J, Levkanicova Z, Papadopoulou A, John OS. 58.  et al. 2007. A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318:1913–16 [Google Scholar]
  59. Hurst GDD, Jiggins FM. 59.  2005. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc. R. Soc. B 272:1525–34 [Google Scholar]
  60. Ješovnik A, Sosa-Clavo J, Lloyd MW, Branstetter MG, Fernández F, Schultz TR. 60.  2017. Phylogenomic species delimitation and host-symbiont coevolution in the fungus-farming ant genus Sericomyrmex Mayr (Hymenoptera: Formicidae): ultraconserved elements (UCEs) resolve a recent radiation. Syst. Entomol. 42:3523–42 [Google Scholar]
  61. Johnson BR, Borowiec ML, Chiu JC, Lee EK, Atallah J, Ward PS. 61.  2013. Phylogenomics resolves evolutionary relationships among ants, bees, and wasps. Curr. Biol. 23:2058–62 [Google Scholar]
  62. Jones RT, Sanchez LG, Fierer N. 62.  2013. A cross-taxon analysis of insect-associated bacterial diversity. PLOS ONE 8:e61218 [Google Scholar]
  63. Kaltenpoth M, Engl T. 63.  2013. Defensive microbial symbionts in Hymenoptera. Funct. Ecol. 28:315–27 [Google Scholar]
  64. Kanda K, Pflug JM, Sproul JS, Dasenko MA, Maddison DR. 64.  2015. Successful recovery of nuclear protein-coding genes from small insects in museums using illumina sequencing. PLOS ONE 10:e0143929 [Google Scholar]
  65. Kautz S, Rubin BER, Russell JA, Moreau CS. 65.  2013. Surveying the microbiome of ants: Comparing 454 pyrosequencing with traditional methods to uncover bacterial diversity. Appl. Environ. Microbiol. 79:525–34 [Google Scholar]
  66. Kawahara AY, Breinholt JW. 66.  2014. Phylogenomics provides strong evidence for relationships of butterflies and moths. Proc. R. Soc. B 281:20140970 [Google Scholar]
  67. Koch JB, Lozier J, Strange JP, Ikerd H, Griswold T. 67.  et al. 2015. USBombus, a database of contemporary survey data for North American bumble bees (Hymenoptera, Apidae, Bombus) distributed in the United States. Biodivers. Data J 2015:3e6833 [Google Scholar]
  68. Koeth M, Friedrich F, Pohl H, Beutel RG. 68.  2012. The thoracic skeleto-muscular system of Mengenilla (Strepsiptera: Mengenillidae) and its phylogenetic implications. Arthropod Struct. Dev. 41:4323–35 [Google Scholar]
  69. Koh I, Lonsdorf EV, Williams NM, Brittain C, Isaacs R. 69.  et al. 2016. Modeling the status, trends, and impacts of wild bee abundance in the United States. PNAS 113:140–45 [Google Scholar]
  70. Klaus AV, Kulasekera VL, Schawaroch V. 70.  2003. Three-dimensional visualization of insect morphology using confocal laser scanning microscopy. J. Microsc. 212:2107–21 [Google Scholar]
  71. Krehenwinkel H, Pekar S. 71.  2015. An analysis of factors affecting genotyping success from museum specimens reveals an increase of genetic and morphological variation during a historical range expansion of a European spider. PLOS ONE 10:e0136337 [Google Scholar]
  72. Letsch HO, Meusemann K, Wipfler B, Schütte K, Beutel R, Misof B. 72.  2012. Insect phylogenomics: results, problems and the impact of matrix composition. Proc. R. Soc. B 279:3282–90 [Google Scholar]
  73. Letsch HO, Simon S. 73.  2013. Insect phylogenomics: new insights on the relationships of lower neopteran orders (Polyneoptera). Syst. Entomol. 38:783–93 [Google Scholar]
  74. Maddison DR. 74.  2016. The rapidly changing landscape of insect phylogenetics. Curr. Opin. Insect Sci. 18:77–82 [Google Scholar]
  75. Maddison DR, Cooper KW. 75.  2014. Species delimitation in the ground beetle subgenus Liocosmius (Coleoptera: Carabidae: Bembidion), including standard and next-generation sequencing of museum specimens. Zoolog. J. Linn. Soc. 172:741–70 [Google Scholar]
  76. Maldonado C, Molina CI, Zizka A, Persson C, Taylor CM. 76.  et al. 2015. Estimating species diversity and distribution in the era of big data: To what extent can we trust public databases?. Glob. Ecol. Biogeogr. 24:973–84 [Google Scholar]
  77. Mandrioli M. 77.  2008. Insect collections and DNA analyses: how to manage collections?. Mus. Manag. Curatorship 23:193–99 [Google Scholar]
  78. Mantle B, LaSalle J, Fisher N. 78.  2012. Whole-drawer imaging for digital management and curation of a large entomological collection. ZooKeys 209:147–63 [Google Scholar]
  79. Martin G. 79.  2006. The impact of frozen tissue and molecular collections on natural history museum collections. NatSCA News 10:31–47 [Google Scholar]
  80. Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran NA. 80.  2010. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20:619–28 [Google Scholar]
  81. McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Lošo T. 81.  et al. 2013. Animals in a bacterial world, a new imperative for the life sciences. PNAS 110:3229–36 [Google Scholar]
  82. Meier R, Shiyang K, Vaidya G, Ng PKL. 82.  2006. DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst. Biol. 55:5715–28 [Google Scholar]
  83. Meusemann K, von Reumont BM, Simon S, Roeding F, Strauss S. 83.  et al. 2010. A phylogenomic approach to resolve the arthropod tree of life. Mol. Biol. Evol. 27:2451–64 [Google Scholar]
  84. Michalik P, Piacentini L, Lipke E, Ramírez M. 84.  2013. The enigmatic Otway odd-clawed spider (Progradungula otwayensis Milledge, 1997, Gradungulidae, Araneae): natural history, first description of the female and micro-computed tomography of the male palpal organ. ZooKeys 335:101–12 [Google Scholar]
  85. Michalik P, Ramírez MJ. 85.  2013. First description of the male of Thaida chepu Platnick, 1987 (Araneae, Austrochilidae) with micro-computed tomography of the palpal organ. ZooKeys 352:117–25 [Google Scholar]
  86. Mikó I, Friedrich F, Yoder MJ, Hines HM, Deitz LL. 86.  et al. 2012. On dorsal prothoracic appendages in treehoppers (Hemiptera: Membracidae) and the nature of morphological evidence. PLOS ONE 7:1e30137 [Google Scholar]
  87. Mikó I, Masner L, Johannes E, Yoder MJ, Deans AR. 87.  2013. Male terminalia of Ceraphronoidea: morphological diversity in an otherwise monotonous taxon. Insect Syst. Evol. 44:3–4261–347 [Google Scholar]
  88. Miller J, Beentjes K, van Helsdingen P, IJland S. 88.  2013. Which specimens from a museum collection will yield DNA barcodes? A time series study of spiders in alcohol. ZooKeys 365:245–61 [Google Scholar]
  89. Misof B, Liu S, Meusemann K, Peters RS, Donath A. 89.  et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–67 [Google Scholar]
  90. Moran NA. 90.  2007. Symbiosis as an adaptive process and source of phenotypic complexity. PNAS 104:Suppl. 18627–33 [Google Scholar]
  91. Moran NA, Tran P, Gerardo NM. 91.  2005. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. App. Environ. Microbiol. 71:8802–10 [Google Scholar]
  92. Moreau CS, Bell CD. 92.  2013. Testing the museum versus cradle biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution 67:82240–57 [Google Scholar]
  93. Moreau CS, Wray BD, Czekanski-Moir JE, Rubin BER. 93.  2013. DNA preservation: a test of commonly used preservatives for insects. Invertebr. Syst. 27:81–86 [Google Scholar]
  94. Moritz C, Cicero C. 94.  2004. DNA barcoding: promise and pitfalls. PLOS Biol 2:e354 [Google Scholar]
  95. Morris RA, Barve V, Carausu M, Chavan V, Cuadra J. 95.  et al. 2013. Discovery and publishing of primary biodiversity data associated with multimedia resources: the Audubon Core strategies and approaches. Biodivers. Inform. 8:2185–97 [Google Scholar]
  96. Moya A, Peretó J, Gil R, Latorre A. 96.  2008. Learning how to live together: genomic insights into prokaryote-animal symbioses. Nat. Rev. Genet. 9:218–29 [Google Scholar]
  97. Nachman MW. 97.  2013. Genomics and museum specimens. Mol. Ecol. 22:5966–68 [Google Scholar]
  98. Nakasone S, Sheffield C. 98.  2013. Descriptive metadata for field books: methods and practices of the Field Book Project. D-Lib Mag 19:11–12 https://doi.org/10.1045/november2013-nakasone [Crossref] [Google Scholar]
  99. O'Leary MA, Kaufmann SG. 99.  2011. MorphoBank: phylophenomics in the ‘cloud.’. Cladistics 27:5529–37 [Google Scholar]
  100. Patrick HJH, Chomič A, Armstrong KF. 100.  2016. Cooled propylene glycol as a pragmatic choice for preservation of DNA from remote field-collected Diptera for next-generation sequence analysis. J. Econ. Entomol. 109:31469–73 [Google Scholar]
  101. Penney D, Dierick M, Cnudde V, Masschaele B, Vlassenbroeck J, van Hoorebeke L. 101.  2007. First fossil Micropholcommatidae (Araneae), imaged in Eocene Paris amber using X-ray computed tomography. Zootaxa 1623:47–53 [Google Scholar]
  102. Peters RS, Meusemann K, Petersen M, Mayer C, Wilbrandt J. 102.  et al. 2014. The evolutionary history of holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data. BMC Evol. Biol. 14:152 [Google Scholar]
  103. Pinto-Tomás AA, Sittenfeld A, Uribe-Lorío L, Chavarría F, Mora M. 103.  et al. 2011. Comparison of midgut bacterial diversity in tropical caterpillars (Lepidoptera: Saturniidae) fed on different diets. Environ. Entomol. 40:1111–22 [Google Scholar]
  104. Pohl H, Wipfler B, Grimaldi DA, Beckmann F, Beutel RG. 104.  2010. Reconstructing the anatomy of the 42-million-year-old fossil Mengea tertiaria (Insecta, Strepsiptera). Naturwissenschaften 97:855–59 [Google Scholar]
  105. Popovici O, Mikó I, Seltmann K, Deans A. 105.  2014. The maxillo-labial complex of Sparasion (Hymenoptera, Platygastroidea). J. Hymenopt. Res. 37:77–111 [Google Scholar]
  106. Post RJ, Flook PK, Millest AL. 106.  1993. Methods for the preservation of insects for DNA studies. Biochem. Syst. Ecol. 21:85–92 [Google Scholar]
  107. Prendini L, Hanner R, DeSalle R. 107.  2002. Obtaining, storing and archiving specimens and tissue samples for use in molecular studies. Techniques in Molecular Systematics and Evolution R DeSalle, G Giribet, W Wheeler 176–248 Basel, Switz.: Springer [Google Scholar]
  108. Quicke DLJ, Belshaw R, Lopez-Vaamonde C. 108.  1999. Preservation of hymenopteran specimens for subsequent molecular and morphological study. Zool. Scr. 28:261–67 [Google Scholar]
  109. Raupach MJ, Amann R, Wheeler DQ, Roos C. 109.  2016. The application of “-omics” technologies for the classification and identification of animals. Org. Divers. Evol. 16:11–12 [Google Scholar]
  110. Reiss RA, Schwert DP, Ashworth AC. 110.  1995. Field preservation of Coleoptera for molecular genetic analyses. Environ. Entomol. 24:716–19 [Google Scholar]
  111. Rowe T, Frank LR. 111.  2011. The disappearing third dimension. Science 331:6018712–14 [Google Scholar]
  112. Rubin BER, Ree RH, Moreau CS. 112.  2012. Inferring phylogenies from RAD sequence data. PLOS ONE 7:4e33394 [Google Scholar]
  113. Russell JA, Moreau CS, Goldman-Huertas B, Fujiwara M, Lohman DJ, Pierce NE. 113.  2009. Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. PNAS 106:5021236–41 [Google Scholar]
  114. Ruthensteiner B, Baeumler N, Barnes DG. 114.  2010. Interactive 3D volume rendering in biomedical publications. Micron 41:7886.e17 [Google Scholar]
  115. Ruthensteiner B, Heß M. 115.  2008. Embedding 3D models of biological specimens in PDF publications. Microsc. Res. Tech. 71:11778–86 [Google Scholar]
  116. Sanders JG, Powell S, Kronauer DJC, Vasconcelos HL, Frederickson ME, Pierce NE. 116.  2014. Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes. Mol. Ecol. 23:1268–83 [Google Scholar]
  117. Schmidt J, Hoffmann H, Michalik P. 117.  2016. Blind life in the Baltic amber forests: description of an eyeless species of the ground beetle genus Trechus Clairville, 1806 (Coleoptera: Carabidae: Trechini). Zootaxa 4083:3431–43 [Google Scholar]
  118. Schmidt S, Balke M, Lafogler S. 118.  2012. DScan—a high-performance digital scanning system for entomological collections. ZooKeys 209:183–91 [Google Scholar]
  119. Sharanowski BJ, Robbertse B, Walker J, Voss SR, Yoder R. 119.  et al. 2010. Expressed sequence tags reveal Proctotrupomorpha (minus Chalcidoidea) as sister to Aculeata (Hymenoptera: Insecta). Mol. Phylogenetics Evol. 57:101–12 [Google Scholar]
  120. Silva DP, Vilela B, De Marco P Jr., Nemésio A. 120.  2014. Using ecological niche models and niche analyses to understand speciation patterns: the case of sister neotropical orchid bees. PLOS ONE 9:11e113246 [Google Scholar]
  121. Simon S, Narechania A, DeSalle R, Hadrys H. 121.  2012. Insect phylogenomics: exploring the source of incongruence using new transcriptomic data. Genome Biol. Evol. 4:1295–309 [Google Scholar]
  122. Smith M, Fisher B, Hebert P. 122.  2005. DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philos. Trans. R. Soc. B 360:1825 [Google Scholar]
  123. Song H, Buhay J, Whiting M, Crandall K. 123.  2008. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. PNAS 105:13486 [Google Scholar]
  124. Spangenberg R, Hünefeld F, Schneeberg K, Beutel RG. 124.  2012. The male postabdomen and reproductive system of Bibio marci Linnaeus, 1758 (Hexapoda: Diptera: Bibionidae). J. Zool. Syst. Evol. Res. 50:4264–88 [Google Scholar]
  125. Staats M, Erkens RHJ, van de Vossenberg B, Wieringa JJ, Kraaijeveld K. 125.  et al. 2013. Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens. PLOS ONE 8:e69189 [Google Scholar]
  126. Stein ED, White BP, Mazor RD, Miller PE, Pilgrim EM. 126.  2013. Evaluating ethanol-based sample preservation to facilitate use of DNA barcoding in routine freshwater biomonitoring programs using benthic macroinvertebrates. PLOS ONE 8:1e51273 [Google Scholar]
  127. Stoev P, Komerički A, Akkari N, Liu S, Xin Z. 127.  et al. 2013. Eupolybothrus cavernicolus Komerički & Stoev sp. n. (Chilopoda: Lithobiomorpha: Lithobiidae): the first eukaryotic species description combining transcriptomic, DNA barcoding and micro-CT imaging data. Biodivers. Data J. 1:e1013 [Google Scholar]
  128. Stouthamer R, Breeuwer JA, Hurst GD. 128.  1999. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 53:71–102 [Google Scholar]
  129. Strutzenberger P, Brehm G, Fiedler K. 129.  2012. DNA barcode sequencing from old type specimens as a tool in taxonomy: a case study in the diverse genus Eois (Lepidoptera: Geometridae). PLOS ONE 7:e49710 [Google Scholar]
  130. Suarez A, Tsutsui N. 130.  2004. The value of museum collections for research and society. BioScience 54:66–74 [Google Scholar]
  131. Suen G, Scott JJ, Aylward FO, Adams SM, Tringe SG. 131.  et al. 2010. An insect herbivore microbiome with high plant biomass-degrading capacity. PLOS Genet 6:e1001129 [Google Scholar]
  132. Tafforeau P, Boistel R, Boller E, Bravin A, Brunet M. 132.  et al. 2006. Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Appl. Phys. A 83:2195–202 [Google Scholar]
  133. Tagliavia M, Massa B, Albanese I, La Farina M. 133.  2011. DNA extraction from Orthoptera museum specimens. Anal. Lett. 44:1058–62 [Google Scholar]
  134. Thomsen PF, Elias S, Gilbert M, Haile J, Munch K. 134.  et al. 2009. Non-destructive sampling of ancient insect DNA. PLOS ONE 4:e5048 [Google Scholar]
  135. Timmermans M, Viberg C, Martin G. 135.  2016. Rapid assembly of taxonomically validated mitochondrial genomes from historical insect collections. Biol. J. Linn. Soc. 117:83–95 [Google Scholar]
  136. Tin MM-Y, Economo EP, Mikheyev AS. 136.  2014. Sequencing degraded DNA from non-destructively sampled museum specimens for RAD-tagging and low-coverage shotgun phylogenetics. PLOS ONE 9:e96793 [Google Scholar]
  137. Trautwein MD, Wiegmann BM, Beutel RG, Kjer KM, Yeates DK. 137.  2012. Advances in insect phylogeny at the dawn of the postgenomic era. Annu. Rev. Entomol. 57:449–68 [Google Scholar]
  138. Vink CJ, Thomas SM, Paquin P, Hayashi CY, Hedin M. 138.  2005. The effects of preservatives and temperatures on arachnid DNA. Invertebr. Syst. 19:99–104 [Google Scholar]
  139. Vogt L. 139.  2009. The future role of bio-ontologies for developing a general data standard in biology: chance and challenge for zoo-morphology. Zoomorphology 128:3201–17 [Google Scholar]
  140. Vogt L. 140.  2013. eScience and the need for data standards in the life sciences: in pursuit of objectivity rather than truth. Syst. Biodivers. 11:3257–70 [Google Scholar]
  141. Vogt L, Nickel M, Jenner RA, Deans AR. 141.  2013. The need for data standards in zoomorphology. J. Morphol. 274:7793–808 [Google Scholar]
  142. Wahlberg N, Braby MF, Brower AVZ, de Jong R, Lee MM. 142.  et al. 2005. Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proc. R. Soc. B 272:1577–86 [Google Scholar]
  143. Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH. 143.  et al. 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–65 [Google Scholar]
  144. Weeks AR, Velten R, Stouthamer R. 144.  2003. Incidence of a new sex-ratio-distorting endosymbiotic bacterium among arthropods. Proc. R. Soc. B 270:1857–65 [Google Scholar]
  145. Wen J, Ickert-Bond SM, Appelhans MS, Dorr LJ, Funk VA. 145.  2015. Collections-based systematics: opportunities and outlook for 2050. J. Syst. Evol. 53:477–88 [Google Scholar]
  146. Whitfield JB, Cameron S. 146.  1994. Museum policies concerning specimen loans for molecular systematic research. Mol. Phylogenet. Evol. 3:268–78 [Google Scholar]
  147. Whyte A. 147.  2015. Where to keep research data: DCC checklist for evaluating data repositories version 1.1 Edinburgh, Scotl.: Digital Curation Centre http://www.dcc.ac.uk/resources/how-guides-checklists/where-keep-research-data
  148. Woller DA, Hill JG. 148.  2015. Melanoplus foxi Hebard, 1923 (Orthoptera: Acrididae: Melanoplinae): rediscovered after almost 60 years using historical field notes connected to curated specimens. Trans. Am. Entomol. Soc. 141:545–74 [Google Scholar]
  149. Wood HM, Parkinson DY, Griswold CE, Gillespie RG, Elias DO. 149.  2016. Repeated evolution of power-amplified predatory strikes in trap-jaw spiders. Curr. Biol. 26:1057–61 [Google Scholar]
  150. Yeates DK, Zwick A, Mikheyev AS. 150.  2016. Museums are biobanks: unlocking the genetic potential of the three billion specimens in the world's biological collections. Curr. Opin. Insect Sci. 18:83–88 [Google Scholar]
  151. Yoder MJ, Mikó I, Seltmann KC, Bertone MA, Deans AR. 151.  2010. A gross anatomy ontology for Hymenoptera. PLOS ONE 5:12e15991 [Google Scholar]
  152. Zimmermann D, Randolf S, Metscher BD, Aspöck U. 152.  2011. The function and phylogenetic implications of the tentorium in adult Neuroptera (Insecta). Arthropod Struct. Dev. 40:6571–82 [Google Scholar]

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error