1932

Abstract

Insect cuticular hydrocarbons (CHCs) consist of complex mixtures of straight-chain alkanes and alkenes, and methyl-branched hydrocarbons. In addition to restricting water loss through the cuticle and preventing desiccation, they have secondarily evolved to serve a variety of functions in chemical communication and play critical roles as signals mediating the life histories of insects. In this review, we describe the physical properties of CHCs that allow for both waterproofing and signaling functions, summarize their roles as inter- and intraspecific chemical signals, and discuss the influences of diet and environment on CHC profiles. We also present advances in our understanding of hydrocarbon biosynthesis. Hydrocarbons are biosynthesized in oenocytes and transported to the cuticle by lipophorin proteins. Recent work on the synthesis of fatty acids and their ultimate reductive decarbonylation to hydrocarbons has taken advantage of powerful new tools of molecular biology, including genomics and RNA interference knockdown of specific genes, to provide new insights into the biosynthesis of hydrocarbons.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-031620-071754
2021-01-07
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/en/66/1/annurev-ento-031620-071754.html?itemId=/content/journals/10.1146/annurev-ento-031620-071754&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ablard K, Gries R, Khaskin G, Schaefer PW, Gries G 2012. Does the stereochemistry of methylated cuticular hydrocarbons contribute to mate recognition in the egg parasitoid wasp Ooencyrtus kuvanae. J. Chem. Ecol. 38:1306–17
    [Google Scholar]
  2. 2. 
    Bagnères A-G, Blomquist GJ. 2010. Site of synthesis, mechanism of transport and selective deposition of hydrocarbons. See Reference 12 75–99
  3. 3. 
    Balabanidou E, Kampouraki A, MacLean M, Blomquist GJ, Tittiger C et al. 2016. Cytochromes P450 associated with insecticide resistance catalyze cuticular hydrocarbon production in Anopheles gambiae. PNAS 113:9268–73
    [Google Scholar]
  4. 4. 
    Balabanidou V, Kefi M, Aivaliotis M, Koidou V, Girotti JR et al. 2019. Mosquitoes cloak their legs to resist insecticides. Proc. R. Soc. B 286:20191091
    [Google Scholar]
  5. 5. 
    Bartelt RJ, Jones RL. 1983. (Z)-10-Nonadecenal: a pheromonally active air oxidation product of (Z,Z)-9,19 dienes in yellowheaded spruce sawfly. J. Chem. Ecol. 9:1333–41
    [Google Scholar]
  6. 6. 
    Bartelt RJ, Krick TP, Jones RL 1984. Cuticular hydrocarbons of the yellowheaded spruce sawfly. Pikonema alaskensis. Insect Biochem. 14:209–13
    [Google Scholar]
  7. 7. 
    Bello JE, McElfresh S, Millar JG 2015. Isolation and determination of absolute configurations of insect-produced methyl-branched hydrocarbons. PNAS 112:1077–82
    [Google Scholar]
  8. 8. 
    Binz H, Kraft EF, Entling MH, Menzel F 2016. Behavioral response of a generalist predator to chemotactile cues of two taxonomically distinct prey species. Chemoecology 26:153–62
    [Google Scholar]
  9. 9. 
    Blailock TT, Blomquist GJ, Jackson LL 1976. Biosynthesis of 2-methylalkanes in the crickets Nemobius fasciatus and Gryllus pennsylvanicus.Biochem.Biophys.Res. Commun 68:841–49
    [Google Scholar]
  10. 10. 
    Blomquist GJ. 2010. Biosynthesis of cuticular hydrocarbons. See Reference 12 35–52
  11. 11. 
    Blomquist GJ. 2010. Structure and analysis of insect hydrocarbons. See Reference 12 19–34
  12. 12. 
    Blomquist GJ, Bagnères A-G 2010. Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  13. 13. 
    Blomquist GJ, Bagnères A-G. 2010. Introduction: history and overview of insect hydrocarbons. See Reference 12 3–18
  14. 14. 
    Blomquist GJ, Dillwith JW. 1985. Cuticular lipids. Comprehensive Insect Physiology, Biochemistry and Pharmacology, GA Kerkut, LL Gilbert 117–54 Toronto, Can: Pergamon Press
    [Google Scholar]
  15. 15. 
    Blomquist GJ, Guo L, Gu P, Blomquist C, Reitz RC, Reed JR 1994. Methyl-branched fatty acids and their biosynthesis in the housefly, Musca domestica L. (Diptera: Muscidae). Insect Biochem. Mol. Biol. 24:803–10
    [Google Scholar]
  16. 16. 
    Blum MS, Fales HM, Morse RA, Underwood BA 2000. Chemical characters of two related species of giant honeybees (Apis dorsata and A. laboriosa): possible ecological significance. J. Chem. Ecol. 26:801–7
    [Google Scholar]
  17. 17. 
    Calla B, MacLean M, Liao M, Dhanjal L-H, Tittiger C et al. 2018. Functional characterization of CYP4G11: a highly conserved enzyme in the western honey bee Apis mellifera. Insect Mol. Biol 27:661–74
    [Google Scholar]
  18. 18. 
    Carlson DA, Mayer MS, Silhacek DL, Janaes JD, Beroza M, Bierl BA 1971. Sex attractant pheromone of the house fly: isolation, identification and synthesis. Science 174:76–78
    [Google Scholar]
  19. 19. 
    Chase J, Jurenka RA, Schal V, Halarnkar PP, Blomquist GJ 1990. Biosynthesis of methyl branched hydrocarbons in the German cockroach Blattella germanica (L.) (Orthoptera, Blattellidae). Insect Biochem 20:149–56
    [Google Scholar]
  20. 20. 
    Chen N, Fan Y-L, Bai Y, Li X-D, Zhang Z-F, Liu T-X 2016. Cytochrome P450 gene, CYP4G51, modulates hydrocarbon production in the pea aphid. Acyrthosiphon pisum. Insect Biochem. Mol. Biol. 76:84–94
    [Google Scholar]
  21. 21. 
    Chen N, Pei X-J, Li S, Fan Y-L, Liu T-X 2019. Involvement of integument-rich CYP4G19 in hydrocarbon biosynthesis and cuticular penetration resistance in Blattella germanica (L). Pest Manag. Sci. 76:215–26
    [Google Scholar]
  22. 22. 
    Chertemps T, Duportets L, Labeur C, Udeda R, Takahashi K et al. 2007. A female-biased expressed elongase involved in long-chain hydrocarbon biosynthesis and courtship behavior in Drosophila melanogaster. PNAS 104:4273–78
    [Google Scholar]
  23. 23. 
    Chung H, Loehlin DW, Dufour HD, Vaccarro K, Millar JG, Carroll SB 2014. A single gene affects both ecological divergence and mate choice in Drosophila. Science 343:148–51
    [Google Scholar]
  24. 24. 
    Cinnamon E, Makki R, Sawala A, Wickenberg LP, Blomquist GJ et al. 2016. Drosophila Spidey/Kar regulates oenocyte growth via P13-kinase signaling. PLOS Genet 12:e1006154
    [Google Scholar]
  25. 25. 
    Colazza S, Aquila G, De Pasquale C, Peri E, Millar J 2007. The egg parasitoid Trissolcus basalis uses n-nonadecane, a cuticular hydrocarbon from its stink bug host Nezara viridula, to discriminate between female and male hosts. J. Chem. Ecol. 33:1405–20
    [Google Scholar]
  26. 26. 
    Cossé AA, Bartelt RJ, Weaver DK, Zilkowski BW 2002. Pheromone components of the wheat stem sawfly: identification, electrophysiology, and field bioassay. J. Chem. Ecol. 28:407–23
    [Google Scholar]
  27. 27. 
    Dallerac R, Labeur C, Jallon J-M, Knipple DC, Roelofs WL, Wicker-Thomas C 2000. A Δ-9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. PNAS 97:9449–54
    [Google Scholar]
  28. 28. 
    Dapporto L. 2007. Cuticular lipid diversification in Lasiommata megera and Lasiommata paramegaera: the influence of species, sex, and population (Lepidoptera: Nymphalidae). Biol. J. Linn. Soc. 91:703–10
    [Google Scholar]
  29. 29. 
    Dembeck LM, Böröczky K, Huang W, Schal C, Anholt RRH, Mackay TF 2015. Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster. eLife 4:e09861
    [Google Scholar]
  30. 30. 
    Dennis MW, Kolattukudy PE. 1991. Alkane biosynthesis by decarbonylation of aldehyde catalyzed by a microsomal preparation from Botryococcus brauni. Arch. Biochem. Biophys 287:268–75
    [Google Scholar]
  31. 31. 
    Dillwith JW, Nelson JH, Pomonis JG, Nelson DR, Blomquist GJ 1982. A 13C NMR study of methyl-branched hydrocarbon biosynthesis in the housefly. J. Biol. Chem. 257:11305–14
    [Google Scholar]
  32. 32. 
    Drijfhout FP, Kather R, Martin SJ 2009. The role of cuticular hydrocarbons in insects. Behavioral and Chemical Ecology W Zhang, H Lui 1–24 Hauppauge, NY: Nova Sci. Publ.
    [Google Scholar]
  33. 33. 
    Dronnet S, Lohou C, Christides JP, Bagnères AG 2006. Cuticular hydrocarbon composition reflects genetic relationship among colonies of the introduced termite Reticulitermes santonensis Feytaud. J. Chem. Ecol. 32:1027–42
    [Google Scholar]
  34. 34. 
    Dwyer LA, Blomquist GJ, Nelson JH, Pomonis JG 1981. A 13C-NMR study of the biosynthesis of 3-methylpentacosane in the American cockroach. Biochim. Biophys. Acta 663:536–44
    [Google Scholar]
  35. 35. 
    Edney EB. 1977. Water Balance in Land Arthropods Berlin: Springer
    [Google Scholar]
  36. 36. 
    Eliyahu D, Mori K, Takikawa WS, Leal WS, Schal S 2004. Behavioral activity of stereoisomers and a new component of the contact sex pheromone of female German cockroach. Blattella germanica. J. Chem. Ecol. 34:229–37
    [Google Scholar]
  37. 37. 
    Endo S, Itino T. 2013. Myrmecophilous aphids produce cuticular hydrocarbons that resemble those of their tending ant. Popul. Ecol. 5:27–34
    [Google Scholar]
  38. 38. 
    Ferveur J-F. 2005. Cuticular hydrocarbons: their evolution and roles in Drosophila pheromonal communication. Behav. Genet. 35:279–95
    [Google Scholar]
  39. 39. 
    Ferveur J-F, Savarit F, O'Kane CJ, Sureau G, Greenspan RJ, Jallon J-M 1997. Genetic feminization of pheromones and its behavioral consequences in Drosophila males. Science 276:1555–58
    [Google Scholar]
  40. 40. 
    Feyereisen R. 2020. Origin and evolution of the CYP4G subfamily in insects, cytochrome P450 enzymes involved in cuticular hydrocarbon synthesis. Mol. Phylogenet. Evol. 143:106695
    [Google Scholar]
  41. 41. 
    Finck J, Berdan E, Mayer F, Ronacher B, Geiselhardt S 2016. Divergence of cuticular hydrocarbons in two sympatric grasshopper species and the evolution of fatty acid synthases and elongases across insects. Sci. Rep. 6:33695
    [Google Scholar]
  42. 42. 
    Funaro C, Schal C, Vargo EL 2018. Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes. PNAS 115:3888–93
    [Google Scholar]
  43. 43. 
    Gefen E, Talal S, Brendzel O, Dror A, Fishman A 2015. Variation in quantity and composition of cuticular hydrocarbons in the scorpion Buthus occitanus (Buthidae) in response to acute exposure to desiccation stress. Comp. Biochem. Physiol. A 182:58–63
    [Google Scholar]
  44. 44. 
    Geiselhardt S, Otte T, Hilker M 2012. Looking for a similar partner: Host plants shape mating preferences of herbivorous insects by altering their contact pheromones. Ecol. Lett. 15:971–77
    [Google Scholar]
  45. 45. 
    Geiselhardt SF, Geiselhardt S, Peschke K 2011. Congruence of epicuticular hydrocarbons and tarsal secretions as a principle in beetles. Chemoecology 21:181–86
    [Google Scholar]
  46. 46. 
    Genin E, Jullien R, Perez F, Fuzeau-Braesch S 1986. Cuticular hydrocarbons of gregarious and solitary locusts Locusta migratoria cinerascens.J. Chem. Ecol 12:1213–38
    [Google Scholar]
  47. 47. 
    Gibbs AG. 1998. Water‐proofing properties of cuticular lipids. Am. Zool. 38:471–82
    [Google Scholar]
  48. 48. 
    Gibbs AG. 2002. Lipid melting and cuticular permeability: new insights into an old problem. J. Insect. Physiol. 48:391–400
    [Google Scholar]
  49. 49. 
    Gibbs AG, Chippindale AK, Rose MR 1997. Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster.J. Exp. Biol 200:1821–32
    [Google Scholar]
  50. 50. 
    Gibbs AG, Crowe JH. 1991. Intra-individual variation in cuticular lipids studied using Fourier transform infrared spectroscopy. J. Insect Physiol. 37:743–48
    [Google Scholar]
  51. 51. 
    Gibbs AG, Rajpurohit S. 2010. Cuticular lipids and water balance. See Reference 12 100–20
  52. 52. 
    Gibbs G, Pomonis JG. 1995. Physical properties of insect cuticular hydrocarbons: the effects of chain length, methyl-branching and unsaturation. Comp. Biochem. Physiol. 112:243–49
    [Google Scholar]
  53. 53. 
    Ginzel MD, Blomquist GJ. 2016. Insect hydrocarbons: biochemistry and chemical ecology. Extracellular Composite Matrices in Arthropods E Cohen, B Moussian 221–52 Berlin: Springer
    [Google Scholar]
  54. 54. 
    Ginzel MD, Millar JG, Hanks LM 2003. (Z)-9-Pentacosene—contact sex pheromone of the locust borer. Megacyllene robiniae. Chemoecology 13:135–41
    [Google Scholar]
  55. 55. 
    Goębiowski M, Maliński E, Boguś MI, Kumirska J, Stepnowski P 2008. The cuticular fatty acids of Calliphora vicina, Dendrolimus pini and Galleria mellonella larvae and their role in resistance to fungal infection. Insect Biochem. Mol. Biol. 38:619–27
    [Google Scholar]
  56. 56. 
    Gu X, Quilici D, Juarez P, Blomquist GJ, Schal C 1995. Biosynthesis of hydrocarbons and contact sex pheromone and their transport by lipophorin in females of the German cockroach (Blattella germanica). J. Insect Physiol. 41:257–67
    [Google Scholar]
  57. 57. 
    Hadley NF. 1994. Ventilatory patterns and respiratory transpiration in adult terrestrial insects. Physiol. Zool. 67:175–89
    [Google Scholar]
  58. 58. 
    Haslam TM, Kunst L. 2013. Extending the story of very-long-chain fatty acid elongation. Plant Sci 210:93–107
    [Google Scholar]
  59. 59. 
    Hatano E, Wada-Katsumata A, Schal C 2019. Environmental decomposition of cuticular hydrocarbons generates a volatile pheromone that guides insect social behavior. bioRxiv 773937. https://doi.org/10.1101/773937
    [Crossref]
  60. 60. 
    Howard RW, Blomquist GJ. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50:371–93
    [Google Scholar]
  61. 61. 
    Hughes GP, Bello JE, Millar JG, Ginzel MD 2015. Determination of the absolute configuration of female-produced contact sex pheromone components of the longhorned beetle, Neoclytus acuminatus acuminatus (F). J. Chem. Ecol. 41:1050–57
    [Google Scholar]
  62. 62. 
    Hughes GP, Spikes AE, Holland JD, Ginzel MD 2011. Evidence for the stratification of hydrocarbons in the epicuticular wax layer of female Megacyllene robiniae (Coleoptera: Cerambycidae). Chemoecology 21:99–105
    [Google Scholar]
  63. 63. 
    Jackson LL. 1972. Cuticular lipids of insects—IV. Hydrocarbons of the cockroaches Periplaneta japonica and Periplanetaamericana compared to other cockroaches. Comp. Biochem. Physiol. B 41:331–36
    [Google Scholar]
  64. 64. 
    Juarez P, Chase J, Blomquist GJ 1992. A microsomal fatty acid synthetase from the integument of Blattella germanica synthesizes methyl-branched fatty acids, precursors to hydrocarbon and contact sex pheromone. Arch. Biochem. Biophys. 293:333–41
    [Google Scholar]
  65. 65. 
    Jurenka RA, Subchev M, Abad JL, Choi MY, Fabrias G 2003. Sex pheromone biosynthetic pathway for disparlure in the gypsy moth. Lymantria dispar. PNAS 100:809–14
    [Google Scholar]
  66. 66. 
    Kaib M, Brandl R, Bagine RKN 1991. Cuticular hydrocarbon profiles: a valuable tool in termite taxonomy. Naturwissenschaften 78:176–79
    [Google Scholar]
  67. 67. 
    Kefi M, Balabanidou V, Douriss V, Lycett G, Feyerisen R, Vontas J 2019. Two functionally distinct CYP4G genes of Anopheles gambiae contribute to cuticular hydrocarbon biosynthesis. Insect Biochem. Mol. Biol. 110:52–59
    [Google Scholar]
  68. 68. 
    Koedam D, Morgan ED, Nunes TM, Patricio E, Imperatriz-Fonseca VL 2011. Selective preying of the sphecid wasp Trachypus boharti on the meliponine bee Scaptotrigona postica: potential involvement of caste-specific cuticular hydrocarbons. Physiol. Entomol. 36:187–93
    [Google Scholar]
  69. 69. 
    Kühsel S, Brückner A, Schmelzle S, Heethoff M, Blüthgen N 2017. Surface area-volume ratios in insects. Insect Sci 24:829–41
    [Google Scholar]
  70. 70. 
    Lahav S, Soroker V, Hefetz A, Vander Meer RK 1999. Direct behavioral evidence for hydrocarbons as ant recognition discriminators. Naturwissenschaften 86:246–49
    [Google Scholar]
  71. 71. 
    Lebreton S, Borrero-Echeverry F, Gonzalez F, Solum M, Wallin E et al. 2017. A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC Biol 15:88
    [Google Scholar]
  72. 72. 
    Leonhardt SD, Menzel F, Nehring V, Schmitt T 2016. Ecology and evolution of communication in social insects. Cell 164:1277–87
    [Google Scholar]
  73. 73. 
    Li D-T, Chen X, Wang X-Q, Moussian B, Zhang C-X 2019. The fatty acid elongase gene family in the brown planthopper, Nilaparvata lugens. Insect Biochem. Mol. Biol. 108:32–43
    [Google Scholar]
  74. 74. 
    Lide DR. 2008. CRC Handbook of Chemistry and Physics Boca Raton, FL: CRC Press
    [Google Scholar]
  75. 75. 
    Lockey KH. 1985. Insect cuticular lipids. Comp. Biochem. Physiol. B 81:263–67
    [Google Scholar]
  76. 76. 
    MacLean M, Nadeau J, Gurnea T, Tittiger C, Blomquist GJ 2018. Mountain pine beetle (Dendroctonus ponderosae) convert long short chain alcohols and aldehydes to hydrocarbons. Insect Biochem. Mol. Biol. 102:11–20
    [Google Scholar]
  77. 77. 
    Martin SJ, Drijfhout FP. 2009. A review of ant cuticular hydrocarbons. J. Chem. Ecol. 35:1151–61
    [Google Scholar]
  78. 78. 
    Menzel F, Morsbach S, Martens JH, Räder P, Hadjaje S et al. 2019. Communication versus waterproofing: the physics of insect cuticular hydrocarbons. J. Exp. Biol. 222:jeb210807
    [Google Scholar]
  79. 79. 
    Morgan ED. 2004. Biosynthesis in Insects Cambridge, UK: R. Soc. Chem. Cambridge
    [Google Scholar]
  80. 80. 
    Moriconi DE, Dulbecco AB, Juárez MP, Calderón-Fernández GM 2019. A fatty acid synthase gene (FASN3) from the integument tissue of Rhodnius prolixus contributes to cuticle water loss regulation. Insect Mol. Biol. 28:850–61
    [Google Scholar]
  81. 81. 
    Mpuru S, Reed JR, Reitz RC, Blomquist GJ 1996. Mechanism of hydrocarbon biosynthesis from aldehyde in selected insect species: requirement for O2 and NADPH and carbonyl group released as CO2. Insect Biochem. Mol. Biol. 26:203–8
    [Google Scholar]
  82. 82. 
    Nelson DR. 1993. Methyl-branched lipids in insects. Insect Lipids: Chemistry, Biochemistry, and Biology DW Stanley-Samuelson, DR Nelson 271–315 Lincoln, NE: Univ. Nebraska Press
    [Google Scholar]
  83. 83. 
    Nelson DR, Dillwith JW, Blomquist GJ 1981. Cuticular hydrocarbons of the house fly. Musca domestica. Insect Biochem. 11:187–97
    [Google Scholar]
  84. 84. 
    Ng WC, Chin JSR, Tan KJ, Yew JY 2015. The fatty acid elongase Bond is essential for Drosophila sex pheromone synthesis and fertility. Nat. Commun. 6:8263
    [Google Scholar]
  85. 85. 
    Oi CA, van Zweden JS, Oliveira RC, Van Oystaeyen A, Nascimento FS, Wenseleers T 2015. The origin and evolution of social insect queen pheromones: novel hypotheses and outstanding problems. BioEssays 37:808–21
    [Google Scholar]
  86. 86. 
    Otte T, Hilker M, Geiselhardt S 2015. The effect of dietary fatty acids on the cuticular hydrocarbon phenotype of an herbivorous insect and consequences for mate recognition. J. Chem. Ecol. 41:32–43
    [Google Scholar]
  87. 87. 
    Otte T, Hilker M, Geiselhardt S 2016. Phenotypic plasticity of mate recognition systems prevents sexual interference between two sympatric leaf beetle species. Evolution 70:1819–28
    [Google Scholar]
  88. 88. 
    Page M, Nelson LJ, Forschler BT, Haverty MI 2002. Cuticular hydrocarbons suggest three lineages in Reticulitermes (Isoptera: Rhinotermitidae) from North America. Comp. Biochem. Physiol. B 131:305–24
    [Google Scholar]
  89. 89. 
    Payne JL, Boyer AG, Brown JH, Finnegan S, Kowalewski M et al. 2009. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. PNAS 106:24–27
    [Google Scholar]
  90. 90. 
    Pei X-J, Chen N, Bai Y, Qiao J-W, Li S et al. 2019. BgFAS1: a fatty acid synthase gene required for both hydrocarbon and cuticular fatty acid biosynthesis in the German cockroach, Blattella germanica (L.). Insect Biochem. Mol. Biol 112:103203
    [Google Scholar]
  91. 91. 
    Peterson MA, Dobler S, Larson EL, Juárez D, Schlarbaum T et al. 2007. Profiles of cuticular hydrocarbons mediate male mate choice and sexual isolation between hybridising Chrysochus (Coleoptera: Chrysomelidae). Chemoecology 17:87–96
    [Google Scholar]
  92. 92. 
    Qiu Y, Tittiger C, Wicker-Thomas C, Le Goff G, Young S et al. 2012. An insect-specific P450 oxidative decabonylase for cuticular hydrocarbon biosynthesis. PNAS 109:14858–63
    [Google Scholar]
  93. 93. 
    Ranganathan Y, Bessière J, Borges RM 2015. A coat of many scents: cuticular hydrocarbons in multitrophic interactions of fig wasps with ants. Acta Oecol 67:24–33
    [Google Scholar]
  94. 94. 
    Reed JR, Quilici DR, Blomquist GJ, Reitz RC 1995. Proposed mechanism for the cytochrome P450-catalyzed conversion of aldehydes to hydrocarbons in the house fly. Musca domestica. Biochemistry 34:16221–27
    [Google Scholar]
  95. 95. 
    Reed JR, Vanderwel D, Choi S, Pomonis JG, Reitz RC, Blomquist GJ 1994. Unusual mechanism of hydrocarbon formation in the housefly: Cytochrome P450 converts aldehyde to the sex pheromone component (Z)-9-tricosene and CO2. PNAS 91:10000–4
    [Google Scholar]
  96. 96. 
    Rourke B, Gibbs A. 1999. Effects of lipid phase transitions on cuticular permeability: model membrane and in situ studies. J. Exp. Biol. 202:3255–62
    [Google Scholar]
  97. 97. 
    Rutledge CE, Silk PJ, Mayo P 2014. Use of contact cues in prey discrimination by Cerceris fumipennis. Entomol. Exp. Appl 2:93–105
    [Google Scholar]
  98. 98. 
    Silberbush A, Markman S, Lewinsohn E, Bar E, Cohen JE, Blaustein L 2010. Predator-released hydrocarbons repel oviposition by a mosquito. Ecol. Lett. 13:1129–38
    [Google Scholar]
  99. 99. 
    Silk PJ, Sweeny J, Wu J, Sopow S, Mayom PD, Magee D 2011. Contact sex pheromones identified for two species of longhorned beetles (Coleoptera: Cerambycidae) Tetropium fuscum and T. cinnamopterum in the subfamily Spondylidinae. Environ. Entomol. 40:714–26
    [Google Scholar]
  100. 100. 
    Singer TL. 1998. Roles of hydrocarbons in the recognition systems of insects. Am. Zool. 38:394–405
    [Google Scholar]
  101. 101. 
    Smith AA, Liebig J. 2017. The evolution of cuticular fertility signals in eusocial insects. Curr. Opin. Insect Sci. 22:79–84
    [Google Scholar]
  102. 102. 
    Sprenger PP, Burkert LH, Abou B, Federle W, Menzel F 2018. Coping with the climate: cuticular hydrocarbon acclimation of ants under constant and fluctuating conditions. J. Exp. Biol. 221:jeb171488
    [Google Scholar]
  103. 103. 
    Swedenborg PD, Jones RL. 1992. (Z)-4-Tridecenal, a pheromonally active air oxidation product from a series of (Z,Z)-9,13-heptacosadienes in Macrocentrus grandii (Goidanich) (Hymenoptera: Braconidae). J. Chem. Ecol. 18:1913–31
    [Google Scholar]
  104. 104. 
    Tillman-Wall JA, Vanderwel D, Kuenzli ME, Reitz RC, Blomquist GJ 1992. Regulation of sex pheromone biosynthesis in the housefly, Musca domestica: relative contribution of the elongation and reductive step. Arch. Biochem. Biophys. 299:92–99
    [Google Scholar]
  105. 105. 
    van Zweden JS, d'Ettorre P 2010. Nestmade recognition in social insects and the role of hydrocarbons. See Reference 12 222–43
  106. 106. 
    Vaz AH, Blomquist GJ, Reitz RC 1988. Characterization of the fatty acyl elongation reactions involved in hydrocarbon biosynthesis in the housefly, Musca domestica L. Insect Biochem 18:177–84
    [Google Scholar]
  107. 107. 
    Wagner D, Tissot M, Gordon D 2001. Task-related environment alters the cuticular hydrocarbon composition of harvester ants. J. Chem. Ecol. 27:1805–19
    [Google Scholar]
  108. 108. 
    Wang S, Li B, Zhang D 2019. NICYP4G76 and NICYP4G115 modulate the susceptibility to desiccation and insecticide penetration through affecting cuticular hydrocarbon biosynthesis in Nilaparvata lugens (Hemiptera: Delphacidae). Front. Physiol. 10:3389
    [Google Scholar]
  109. 109. 
    Wang SY, Price JH, Zhang D 2019. Hydrocarbons catalyzed by TmCYP4G122 and TmCYP4G123 in Tenebrio molitor modulate the olfactory response of the parasitoid Scleroderma guani. Insect Mol. Biol 28:637–48
    [Google Scholar]
  110. 110. 
    Wicker-Thomas C, Chertemps T. 2010. Molecular biology and genetics of hydrocarbon production. See Reference 12 53–74
  111. 111. 
    Wicker-Thomas C, Garrido D, Bontonou G, Napal L, Mazuras N et al. 2015. Flexible origin of hydrocarbon/pheromone precursors in Drosophila melanogaster.J. Lipid Res 56:2094–101
    [Google Scholar]
  112. 112. 
    Wickham JD, Xu Z, Teale SA 2012. Evidence for a female-produced, long range pheromone of Anoplophora glabripennis (Coleoptera: Cerambycidae). Insect Sci 19:355–71
    [Google Scholar]
  113. 113. 
    Young HP, Larabee JK, Gibbs AG, Schal C 2000. Relationship between tissue-specific hydrocarbon profiles and lipid melting temperatures in the cockroach Blattella germanica. J. Chem. Ecol 26:1245–63
    [Google Scholar]
  114. 114. 
    Yu Z, Zhang X, Wang Y, Moussian B, Zhu KY et al. 2016. LmCYP4G102: an oenocyte-specific cytochrome P450 gene required for cuticular waterproofing in the migratory locust. Locusta migratoria. Sci. Rep. 6:29980
    [Google Scholar]
/content/journals/10.1146/annurev-ento-031620-071754
Loading
/content/journals/10.1146/annurev-ento-031620-071754
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error