1932

Abstract

In the past 25 years, studies on interactions between chewing lice and their bird hosts have increased notably. This body of work reveals that sampling of live avian hosts, collection of the lice, and the aggregated distributions of louse infestations pose challenges for assessing louse populations. The number of lice on a bird varies among host taxa, often with host size and social system. Host preening behavior limits louse abundance, depending on bill shape. The small communities of lice (typically one–four species) that live on individual birds show species-specific patterns of abundance, with consistently common and rare species, and lower year-to-year population variability than other groups of insects. Most species of lice appear to breed continuously on their hosts, with seasonal patterns of abundance sometimes related to host reproduction and molting. Competition may have led to spatial partitioning of the host by louse species, but seldom contributes to current patterns of abundance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-041420-075608
2021-01-07
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/en/66/1/annurev-ento-041420-075608.html?itemId=/content/journals/10.1146/annurev-ento-041420-075608&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Agarwal GP, Saxena AK. 1979. Studies on seasonal dynamics of Lipeurus lawrensis tropicalis Peters (Phthiraptera: Ischnocera) infesting poultry birds. Zool. Angew. Entomol. 88:470–76
    [Google Scholar]
  2. 2. 
    Amaral HLC, Bergmann FB, Santos PRS, Silveira T, Krüger F 2017. How do seasonality and host traits influence the distribution patterns of parasites on juvenile and adults of Columba livia. Acta Trop 176:305–10
    [Google Scholar]
  3. 3. 
    Arneberg P, Skorping A, Read AF 1997. Is population density a species character? Comparative analyses of the nematodes of mammals. Oikos 80:289–300
    [Google Scholar]
  4. 4. 
    Bartlett CM. 1993. Lice (Amblycera and Ischnocera) as vectors of Eulimdana spp. (Nematoda: Filarioidea) in charadriiform birds and the necessity of short reproductive periods in adult worms. J. Parasitol. 79:85–91
    [Google Scholar]
  5. 5. 
    Bartlett CM, Anderson RA. 1989. Some observations on Pseudomenopon pilosum (Amblycera: Menoponidae), the louse vector of Pelecitus fulicaeatrae (Nematoda: Filarioidea) of coots, Fulicaamericana (Aves: Gruiformes). Can. J. Zool. 67:1328–31
    [Google Scholar]
  6. 6. 
    Bergstrand JL, Klimstra WD. 1964. Ectoparasites of the bobwhite quail in southern Illinois. Am. Midl. Nat. 72:491–98
    [Google Scholar]
  7. 7. 
    BirdLife Int. 2017. One in eight of all bird species is threatened with global extinction Rep., Data Zone, BirdLife Int Cambridge, UK: http://datazone.birdlife.org/sowb/casestudy/one-in-eight-of-all-bird-species-is-threatened-with-global-extinction
    [Google Scholar]
  8. 8. 
    Boddicker ML. 1972. Bionomics of Mallophaga of sharp-tailed grouse in South Dakota PhD Thesis, South Dakota State Univ Brookings, SD:
    [Google Scholar]
  9. 9. 
    Booth DT, Clayton DH, Block BA 1993. Experimental demonstration of the energetic cost of parasitism in free-ranging hosts. Proc. R. Soc. Lond. B 253:125–29
    [Google Scholar]
  10. 10. 
    Broek E. 1967. Observations on the infection of young gulls by Mallophaga. Ardea 55:112–14
    [Google Scholar]
  11. 11. 
    Bush AO, Lafferty KD, Lotz JM, Shostak AW 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 84:575–83
    [Google Scholar]
  12. 12. 
    Bush SE, Clayton DH. 2018. Anti-parasite behaviour of birds. Phil. Trans. R. Soc. Lond. B 373:20170196
    [Google Scholar]
  13. 13. 
    Bush SE, Harbison CW, Slager DL, Peterson AT, Price RD, Clayton DH 2009. Geographic variation in the community structure of lice on western scrub-jays. J. Parasitol. 95:10–13
    [Google Scholar]
  14. 14. 
    Bush SE, Malenke JR. 2008. Host defence mediates interspecific competition in ectoparasites. J. Anim. Ecol. 77:558–64
    [Google Scholar]
  15. 15. 
    Bush SE, Reed M, Maher S 2013. Impact of forest size on parasite biodiversity: implications for conservation of hosts and parasites. Biodivers. Conserv. 22:1391–404
    [Google Scholar]
  16. 16. 
    Carrillo CM, Valera F, Barbosa A, Moreno E 2007. Thriving in an arid environment: high prevalence of avian lice in low humidity conditions. Ecoscience 14:241–49
    [Google Scholar]
  17. 17. 
    Chandra S, Agarwal GP, Saxena AK 1988. Seasonal changes in the population of Mallophaga on Acridotheres tristis.Angew. Parasitol 29:244–49
    [Google Scholar]
  18. 18. 
    Choe JC, Kim KC. 1987. Ectoparasites of the pelagic cormorant, Phalacrocorax pelagicus, from the Pribilof Islands, Alaska. J. Med. Entomol. 24:592–94
    [Google Scholar]
  19. 19. 
    Choe JC, Kim KC. 1988. Microhabitat preference and coexistence of ectoparasitic arthropods on Alaskan seabirds. Can. J. Zool. 66:987–97
    [Google Scholar]
  20. 20. 
    Chu X, Dik B, Gustafsson DR, Che X, Zhang Q et al. 2019. The influence of host body size and food guild on prevalence and intensity of chewing lice (Phthiraptera) on birds in southern China. J. Parasitol. 105:334–44
    [Google Scholar]
  21. 21. 
    Clark F, Farrell J, Hill LA 1994. A study of a population of the House Martin (Delichon urbica (L.)) louse Brüelia gracilis Nitzsch (Mallophaga: Ischnocera), in Lincolnshire, UK. Entomologist 113:198–206
    [Google Scholar]
  22. 22. 
    Clayton DH, Bush SE, Johnson JP 2015. Coevolution of Life on Hosts: Integrating Ecology and History. Chicago: Univ. Chicago Press
    [Google Scholar]
  23. 23. 
    Clayton DH, Drown DM. 2001. Critical evaluation of five methods for quantifying chewing lice (Insecta: Phthiraptera). J. Parasitol. 87:1291–300
    [Google Scholar]
  24. 24. 
    Clayton DH, Gregory RD, Price RD 1992. Comparative ecology of Neotropical bird lice (Insecta: Phthiraptera). J. Anim. Ecol. 61:781–95
    [Google Scholar]
  25. 25. 
    Clayton DH, Koop JAH, Harbison CW, Moyer BR, Bush SE 2010. How birds combat ectoparasites. Open Ornithol. J. 3:41–71
    [Google Scholar]
  26. 26. 
    Clayton DH, Moore J 1997. Host-Parasite Evolution: General Principles & Avian Models Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  27. 27. 
    Clayton DH, Moyer BR, Bush SE, Jones TG, Gardiner DW et al. 2005. Adaptive significance of avian beak morphology for ectoparasite control. Proc. R. Soc. B 272:811–17
    [Google Scholar]
  28. 28. 
    Clayton DH, Tompkins DM. 1994. Ectoparasite virulence is linked to mode of transmission. Proc. R. Soc. Lond. B 256:211–17
    [Google Scholar]
  29. 29. 
    Clayton DH, Walther BA. 1997. Collection and quantification of arthropod parasites of birds. See Reference 26:419–43
    [Google Scholar]
  30. 30. 
    Clayton DH, Walther BA. 2001. Influence of host ecology and morphology on the diversity of Neotropical bird lice. Oikos 94:455–67
    [Google Scholar]
  31. 31. 
    Colwell RK, Dunn RR, Harris NC 2012. Coextinction and persistence of dependent species in a changing world. Annu. Rev. Ecol. Syst. 43:183–203
    [Google Scholar]
  32. 32. 
    Cotgreave P, Clayton DH. 1994. Comparative analysis of the time spent grooming by birds in relation to parasite load. Behaviour 134:171–87
    [Google Scholar]
  33. 33. 
    Dougherty ER, Carlson CJ, Bueno VM, Burgio KR, Cizauskas CA et al. 2016. Paradigms for parasite conservation. Conserv. Biol. 30:724–33
    [Google Scholar]
  34. 34. 
    Dunn RR, Harris NC, Colwell RK, Koh LP, Sodhi NS 2009. The sixth mass coextinction: Are most endangered species parasites and mutualists. Proc. R. Soc. B 276:3037–45
    [Google Scholar]
  35. 35. 
    Durden LA. 1987. Predator-prey interactions between ectoparasites. Parasitol. Today 3:306–8
    [Google Scholar]
  36. 36. 
    Durkin ES, Luong LT, Bird J 2015. Mechanisms underlying parasite infection: influence of host body mass and age on chewing louse distribution among brown-headed cowbirds. Parasitol. Res. 114:4169–74
    [Google Scholar]
  37. 37. 
    Enout AMJ, Lobato DN, de Azevedo CS, Antonini Y 2009. Parasitismo por malófagos (Insecta) e ácaros (Acari) em Turdus leucomelas (Aves) nas estações reprodutiva e de muda de penas no Parque Estadual do Rio Preto, Minas Gerais, Brasil. Zoologia 26:534–40
    [Google Scholar]
  38. 38. 
    Eveleigh ES, Threlfall W. 1976. Population dynamics of lice (Mallophaga) on auks (Alcidae) from Newfoundland. Can. J. Zool. 54:1694–711
    [Google Scholar]
  39. 39. 
    Foster MS. 1969. Synchronized life cycles in the orange-crowned warbler and its mallophagan parasites. Ecology 50:315–23
    [Google Scholar]
  40. 40. 
    Fowler JA, Cohen S. 1983. A method for the quantitative collection of ectoparasites from birds. Ringing Migr 4:185–89
    [Google Scholar]
  41. 41. 
    Fowler JA, Miller CJ, Cohen S 1984. Ectoparasite populations from breeding and wandering storm petrels. Bird Study 31:126–30
    [Google Scholar]
  42. 42. 
    Fowler JA, Price RA. 1987. A comparative study of the ischnoceran Mallophaga of Wilson's petrel Oceanitesoceanus and British storm petrel Hydrobates pelagicus. Seabird 10:43–49
    [Google Scholar]
  43. 43. 
    Fowler JA, Williams LR. 1985. Population dynamics of Mallophaga and Acari on reed buntings occupying a communal winter roost. Ecol. Entomol. 10:377–83
    [Google Scholar]
  44. 44. 
    Freed LA, Cann RL, Bodner GR 2008. Incipient extinction of a major population of the Hawaii akepa owing to introduced species. Evol. Ecol. Res. 10:931–65
    [Google Scholar]
  45. 45. 
    Freed LA, Medeiros MC, Bodner GR 2008. Explosive increase in ectoparasites in Hawaiian Island birds. J. Parasitol. 94:1009–21
    [Google Scholar]
  46. 46. 
    Galloway TD. 2018. Biodiversity of ectoparasites: lice (Phthiraptera) and fleas (Siphonaptera). Insect Biodiversity: Science and Society RG Foottit, PH Adler 457–82 Hoboken, NJ: Wiley. , 2nd ed..
    [Google Scholar]
  47. 47. 
    Galloway TD, Lamb RJ. 2014. Abundance and stability are species traits for four chewing lice (Phthiraptera: Menoponidae, Philopteridae) on feral pigeons, Columba livia Gmelin (Aves: Columbiformes: Columbidae). Can. Entomol. 146:444–56
    [Google Scholar]
  48. 48. 
    Galloway TD, Lamb RJ. 2015. Abundance and stability of populations of a chewing louse, Mulcticola macrocephalus (Kellogg) (Phthiraptera: Philopteridae), on common nighthawks,. Chordeiles minor (Forster) (Aves: Caprimulgiformes: Caprimulgidae) in Manitoba, Canada. Can. Entomol 147:723–31
    [Google Scholar]
  49. 49. 
    Galloway TD, Lamb RJ. 2015. Seasonal population dynamics of four chewing lice (Phthiraptera: Menoponidae, Philopteridae) on feral pigeons, Columba livia Gmelin (Aves: Columbiformes: Columbidae). Can. Entomol. 147:712–22
    [Google Scholar]
  50. 50. 
    Galloway TD, Lamb RJ. 2016. Chewing lice (Phthiraptera: Amblycera and Ischnocera) infesting woodpeckers, flickers and sapsuckers (Aves: Piciformes: Picidae) in Manitoba, Canada. Can. Entomol. 148:520–31
    [Google Scholar]
  51. 51. 
    Galloway TD, Lamb RJ. 2017. Abundance of chewing lice (Phthiraptera: Amblycera and Ischnocera) increases with the body size of their host woodpeckers and sapsuckers (Aves: Piciformes: Picidae). Can. Entomol. 148:520–31
    [Google Scholar]
  52. 52. 
    Galloway TD, Lamb RJ. 2019. Infestation parameters for chewing lice (Phthiraptera: Amblycera and Ischnocera) infesting owls (Aves: Strigidae) in Manitoba, Canada. Can. Entomol. 151:608–20
    [Google Scholar]
  53. 53. 
    Grossi AA. 2013. Taxonomic, ecological and quantitative examination of chewing lice (Insecta: Phthiraptera) on Canada geese (Branta canadensis) and mallards (Anas platyrhynchos) in Manitoba, Canada. MSc Thesis, Univ. Manitoba, Winnipeg Canada:
  54. 54. 
    Gustafsson DR, Lei L, Luo K, Chu X, Zhao X et al. 2019. Chewing lice from high-altitude and migrating birds in Yunnan, China, with descriptions of two new species of Guimaraesiella. Med. Vet. Entomol 33:407–19
    [Google Scholar]
  55. 55. 
    Hamstra TL, Badyaev AV. 2009. Comprehensive investigation of ectoparasite community and abundance across life history stages of avian host. J. Zool. 278:91–99
    [Google Scholar]
  56. 56. 
    Heath JP. 2006. Quantifying temporal variability in population abundances. Oikos 115:573–81
    [Google Scholar]
  57. 57. 
    Hopkins GHE. 1960. Notes on some Mallophaga from mammals. Bull. Br. Mus. 10:77–95
    [Google Scholar]
  58. 58. 
    Janiga M. 2018. Different coevolutionary breeding strategies of ischnoceran lice on Prunella collaris and P. modularis in high mountains. Pol. J. Ecol. 66:182–93
    [Google Scholar]
  59. 59. 
    Janiga M, Kubaškvá L. 2000. The biology of the alpine accentor Prunella collaris. III. The coevolution of the alpine accentors and lice (Phthiraptera). Oecol. Mont. 9:24–28
    [Google Scholar]
  60. 60. 
    Johnson KP, Clayton DH. 2003. The biology, ecology, and evolution of chewing lice. The Chewing Lice: World Checklist and Biological Overview, ed. RD Price, RA Hellenthal, RL Palma, KP Johnson, DH Clayton 449–76 Champaign, IL: Illinois Nat. Hist. Surv.
    [Google Scholar]
  61. 61. 
    Kettle PR. 1983. The seasonal incidence of parasitism by Phthiraptera on starlings (Sturnus vulgaris) in England. N. Z. Entomol. 7:403–8
    [Google Scholar]
  62. 62. 
    Koh LP, Dunn RR, Sodhi NS, Colwell RK, Proctor HC, Smith VS 2004. Species coextinctions and the biodiversity crisis. Science 305:1632–34
    [Google Scholar]
  63. 63. 
    Kose M, Mänd R, Møller AP 1999. Sexual selection for white tail spots in the barn swallow in relation to habitat choice by feather lice. Anim. Behav. 58:1201–5
    [Google Scholar]
  64. 64. 
    Krasnov BR, Shenbrot GI, Khokholova IS, Poulin R 2006. Is abundance a species attribute? An example with haematophagous ectoparasites. Oecologia 150:132–40
    [Google Scholar]
  65. 65. 
    Kumar V, Hasan SS, Saxena AK, Arya G, Ahmed Z 2013. Population levels of Phthiraptera on greylag goose, Anser anser (L.). Turk. Parazitol. Derg 37:273–76
    [Google Scholar]
  66. 66. 
    Lamb RJ, Galloway TD. 2016. Seasonal population dynamics of chewing lice (Phthiraptera: Amblycera and Ischnocera) infesting three species of woodpeckers (Aves: Piciformes: Picidae) in Manitoba, Canada. Can. Entomol. 148:683–92
    [Google Scholar]
  67. 67. 
    Lamb RJ, Galloway TD. 2018. Abundance and stability of populations of chewing lice (Phthiraptera: Amblycera and Ischnocera) infesting two species of woodpeckers (Aves: Piciformes: Picidae). Can. Entomol. 150:180–89
    [Google Scholar]
  68. 68. 
    Lamb RJ, Galloway TD. 2019. Host body size and the abundance of chewing lice (Phthiraptera: Amblycera, Ischnocera) infesting eight owl species (Aves: Strigiformes) in Manitoba, Canada. Can. Entomol. 151:621–28
    [Google Scholar]
  69. 69. 
    Lamb RJ, Galloway TD. 2019. Stability of chewing lice (Phthiraptera: Amblycera and Ischnocera) populations infesting great horned owls (Aves: Strigidae). Can. Entomol. 152:60–69
    [Google Scholar]
  70. 70. 
    Lavallée CD, Galloway TD, Rochon K 2019. Infestation parameters of chewing lice (Phthiraptera: Amblycera and Ischnocera) on bald eagles, Haliaeetus leucocephalus (Accipitriformes: Accipitridae), in Manitoba, Canada. Can. Entomol. 152:89–97
    [Google Scholar]
  71. 71. 
    Lee PLM, Clayton DH. 1995. Population biology of swift (Apusapus) ectoparasites in relation to host reproductive success. Ecol. Entomol. 20:43–50
    [Google Scholar]
  72. 72. 
    Lindell CA, Gavin TA, Price RD, Sanders AL 2002. Chewing louse distributions on two Neotropical thrush species. Comp. Parasitol. 69:212–17
    [Google Scholar]
  73. 73. 
    Loye JE, Zuk M. 1991. Bird-Parasite Interactions: Ecology, Evolution, and Behaviour Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  74. 74. 
    Malenke JR, Newbold N, Clayton DH 2011. Condition-specific competition governs the geographic distribution of ectoparasites. Am. Nat. 177:522–34
    [Google Scholar]
  75. 75. 
    Mallory ML, Forbes MR, Galloway TD 2006. Ectoparasites of northern fulmars Fulmarus glacialis (Procellariiformes: Procellariidae) from the Canadian Arctic. Polar Biol 29:353–57
    [Google Scholar]
  76. 76. 
    Marshall AG. 1981. The Ecology of Ectoparasitic Insects London: Academic
    [Google Scholar]
  77. 77. 
    Møller AP. 1991. Parasites, sexual ornaments, and mate choice in the barn swallow. Ecology, Behaviour, and Evolution of Bird-Parasite Interactions JE Loye, M Zuk 328–43 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  78. 78. 
    Moyer BR, Clayton DH. 2004. Avian defences against ectoparasites. Insect and Bird Interactions HF van Emden, M Rothschild 241–57 Andover, UK: Intercept
    [Google Scholar]
  79. 79. 
    Moyer BR, Drown DM, Clayton DH 2002. Low humidity reduces ectoparasite pressure: implications for host life history evolution. Oikos 97:223–28
    [Google Scholar]
  80. 80. 
    Moyer BR, Gardiner DW, Clayton DH 2002. Impact of feather molt on ectoparasites: Looks can be deceiving. Oecologia 131:203–10
    [Google Scholar]
  81. 81. 
    Mullen GR, Durden LA. 2018. Medical and Veterinary Entomology London: Academic. , 3rd ed..
    [Google Scholar]
  82. 82. 
    Nelson BC, Murray MD. 1971. The distribution of Mallophaga on the domestic pigeon (Columba livia). Intern. J. Parasitol. 1:21–29
    [Google Scholar]
  83. 83. 
    Palma RL, Johnson AR, Cezilly F, Thomas F, Renaud F 2002. Diversity and distribution of feather lice on greater flamingoes (Phoenicopterus ruber roseus) in the Camargue, southern France. N. Z. Entomol. 25:87–89
    [Google Scholar]
  84. 84. 
    Pérez JM, Ruiz-Martínez I, Cooper JE 1996. Occurrence of chewing lice on Spanish raptors. Ardeicola 43:129–38
    [Google Scholar]
  85. 85. 
    Pérez JM, Sánchez I, Palma RL 2013. The dilemma of conserving parasites: the case of Felicola (Loriscola) isidoroi (Phthiraptera: Trichodectidae) and its host, the endangered Iberian lynx (Lynx pardinus). Insect Conserv. Divers. 6:680–86
    [Google Scholar]
  86. 86. 
    Poiani A. 1992. Ectoparasitism as a possible cost of social life: a comparative analysis using Australian passerines (Passeriformes). Oecologia 92:429–41
    [Google Scholar]
  87. 87. 
    Potti J, Merino S. 1995. Louse loads of pied flycatchers: effects of host's sex, age, condition and relatedness. J. Avian Biol. 26:203–8
    [Google Scholar]
  88. 88. 
    Poulin R. 1993. The disparity between observed and uniform distributions: a new look at parasite aggregation. Int. J. Parasitol. 23:937–44
    [Google Scholar]
  89. 89. 
    Poulin R. 1997. Species richness of parasite assemblages: evolution and patterns. Annu. Rev. Ecol. System. 28:341–58
    [Google Scholar]
  90. 90. 
    Poulin R. 2007. Evolutionary Ecology of Parasites Princeton, NJ: Princeton Univ. Press. , 2nd ed..
    [Google Scholar]
  91. 91. 
    Price PW. 1980. Evolutionary Biology of Parasites Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  92. 92. 
    Price RD. 1970. The Piagetiella (Mallophaga: Menoponidae) of the Pelecaniformes. Can. Entomol. 102:389–404
    [Google Scholar]
  93. 93. 
    Price RD, Hellenthal RA, Palma RA, Johnson KP, Clayton DH 2003. The Chewing Lice: World Checklist and Biological Overview Champaign, IL: Illinois Nat. Hist. Surv.
    [Google Scholar]
  94. 94. 
    Price RD, Leibovitz L. 1969. A new species of Actornithophilus (Mallophaga: Menoponidae) from the knot. Can. Entomol. 101:997–99
    [Google Scholar]
  95. 95. 
    Radford AN, Du Plessis MA 2006. Dual function of allopreening in the cooperatively breeding green woodhoopoe. Phoeniculus purpureus. Behav. Ecol. Sociobiol. 61:221–30
    [Google Scholar]
  96. 96. 
    Rékási J, Rózsa L, Kiss BJ 1997. Patterns in the distribution of avian lice (Phthiraptera: Amblycera, Ischnocera). J. Avian Biol. 28:150–56
    [Google Scholar]
  97. 97. 
    Roda SA, Isidro de Farias  1999. Aves silvestres infestadas por Phthiraptera (Insecta) na Zona da mata Norte de Pernambuco, Brasil. Rev. Bras. Zool. 16:871–78
    [Google Scholar]
  98. 98. 
    Rosenberg KV, Dokter AM, Blancher PJ, Sauer JR, Smith AC et al. 2019. Decline of the North American avifauna. Science 366:120–24
    [Google Scholar]
  99. 99. 
    Rózsa L. 1997. Patterns in the abundance of avian lice (Phthiraptera: Amblycera, Ischnocera). J. Avian Biol. 28:249–54
    [Google Scholar]
  100. 100. 
    Rózsa L. 1997. Wing-feather mite (Acari: Proctophyllodidae) abundance correlates with body mass of passerine hosts: a comparative study. Can. J. Zool. 75:1535–39
    [Google Scholar]
  101. 101. 
    Rózsa L, Reiczigel J, Majoros G 2000. Quantifying parasites in samples of hosts. J. Parasitol. 86:228–32
    [Google Scholar]
  102. 102. 
    Rózsa L, Rékási J, Reiczigel J 1996. Relationship of host coloniality to the population ecology of avian lice (Insect: Phthiraptera). J. Anim. Ecol. 65:242–48
    [Google Scholar]
  103. 103. 
    Rózsa L, Vas Z. 2014. Co-extinct and critically co-endangered species of parasitic lice, and conservation-induced extinction: Should lice be reintroduced to their hosts. Oryx 49:107–10
    [Google Scholar]
  104. 104. 
    Rudolph D. 1983. The water-uptake system of the Phthiraptera. J. Insect Physiol. 29:15–25
    [Google Scholar]
  105. 105. 
    Santiago-Alarcon D, Whiteman NK, Parker PG, Ricklefs RE, Valkūnas G 2008. Patterns of parasite abundance and distribution in island populations of Galápagos endemic birds. J. Parasitol. 94:584–90
    [Google Scholar]
  106. 106. 
    Sealy K, Guillerme T, Finlay S, Kane A, Kelly SBA et al. 2014. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. B 281:20140298
    [Google Scholar]
  107. 107. 
    Shaw DJ, Dobson AP. 1995. Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology 111:S1S111–33
    [Google Scholar]
  108. 108. 
    Skírnisson K, Thorarinscottir ST, Nielsen OK 2012. The parasite fauna of rock ptarmigan (Lagopus muta) in Iceland: prevalence, intensity, and distribution within the host population. Comp. Parasitol. 79:44–55
    [Google Scholar]
  109. 109. 
    Southwood TRE. 1978. Ecological Methods London: Chapman and Hall
    [Google Scholar]
  110. 110. 
    Srivastava R, Kumar S, Gupta N, Singh SK, Saxena AK 2003. Path coefficient analysis of correlation between breeding cycles of the common myna Acridotheres tristis (Passeriformes: Sturnidae) and its phthirapteran ectoparasites. Folia Parasitol 50:315–16
    [Google Scholar]
  111. 111. 
    Stenkewitz U, Nielsen O, Skírnisson K, Stefánsson G 2016. Host-parasite interactions and population dynamics of rock ptarmigan. PLOS ONE 11:11e0165293
    [Google Scholar]
  112. 112. 
    Sychra O. 2005. Chewing lice (Phthiraptera: Amblycera, Ischnocera) from chukars (Alectoris chukar) from a pheasant farm in Jinacovice (Czech Republic). Vet. Med. Czech 50:213–18
    [Google Scholar]
  113. 113. 
    Sychra O, Harmat P, Literák I 2008. Chewing lice (Phthiraptera) on chickens (Gallus gallus) from small backyard flocks in the eastern part of the Czech Republic. Vet. Parasitol. 152:344–48
    [Google Scholar]
  114. 114. 
    Touati L, Samraoui B. 2013. Diversity and distribution of avian lice in greater flamingo chicks (Phoenicopterus roseus) in Algeria. Avian Biol. Res. 6:261–68
    [Google Scholar]
  115. 115. 
    Vágási CI, Pap PL, Tökölyi J, Székely E, Barta Z 2011. Correlates of variation in flight feather quality in the great tit Parus major. Ardea 99:53–60
    [Google Scholar]
  116. 116. 
    Villa SM, Goodman GB, Ruff JS, Clayton DH 2016. Does allopreening control avian lice. Biol. Lett. 12:20160362
    [Google Scholar]
  117. 117. 
    Ward RA. 1957. A study of the host distribution and some relationships of biting lice (Mallophaga) parasitic on some birds of the order Tinamiformes. Part II. Ann. Entomol. Soc. Am. 50:452–59
    [Google Scholar]
  118. 118. 
    Wheeler TA, Threlfall W. 1986. Observations on the ectoparasites of some Newfoundland passerines (Aves: Passeriformes). Can. J. Zool. 64:630–36
    [Google Scholar]
  119. 119. 
    Whiteman NK, Parker PG. 2004. Effects of host sociality on ectoparasite population biology. J. Parasitol. 90:939–47
    [Google Scholar]
  120. 120. 
    Williamson K. 1954. The Fair Isle apparatus for collecting bird ectoparasites. Br. Birds 47:234–35
    [Google Scholar]
  121. 121. 
    Woodman WJ, Dicke RJ. 1954. Population fluctuations of the mallophagan parasite Brüelia vulgata (Kellogg) upon the sparrow. Wisc. Acad. Sci. Arts Lett. 43:133–35
    [Google Scholar]
/content/journals/10.1146/annurev-ento-041420-075608
Loading
/content/journals/10.1146/annurev-ento-041420-075608
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error