The National Research Council issued a report in 2009 that heavily criticized the forensic sciences. The report made several recommendations that if addressed would allow the forensic sciences to develop a stronger scientific foundation. We suggest a roadmap for decomposition ecology and forensic entomology hinging on a framework built on basic research concepts in ecology, evolution, and genetics. Unifying both basic and applied research fields under a common umbrella of terminology and structure would facilitate communication in the field and the production of scientific results. It would also help to identify novel research areas leading to a better understanding of principal underpinnings governing ecosystem structure, function, and evolution while increasing the accuracy of and ability to interpret entomological evidence collected from crime scenes. By following the proposed roadmap, a bridge can be built between basic and applied decomposition ecology research, culminating in science that could withstand the rigors of emerging legal and cultural expectations.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abbott I, Abbott LK, Grant PR. 1.  1977. Comparative ecology of Galapagos ground finches (Geospiza-Gould)—evaluation of importance of floristic diversity and inter-specific competition. Ecol. Monogr. 47:151–84 [Google Scholar]
  2. Alessandrini F, Mazzanti M, Onofri V, Turchi C, Tagliabracci A. 2.  2008. MtDNA analysis for genetic identification of forensically important insects. Forensic Sci. Int. Genet. Suppl. Ser. 1:584–85 [Google Scholar]
  3. Alexandersson R, Agren J. 3.  2000. Genetic structure in the nonrewarding, bumblebee-pollinated orchid Calypso bulbosa. Heredity 85:401–9 [Google Scholar]
  4. Amendt J, Campobasso CP, Gaudry E, Reiter C, LeBlanc HN, Hall MJR. 4.  2007. Best practice in forensic entomology—standards and guidelines. Int. J. Legal Med. 121:90–104 [Google Scholar]
  5. Amendt J, Zehner R, Reckel F. 5.  2007. The nocturnal oviposition behavior of blowflies (Diptera: Calliphoridae) in Central Europe and its forensic implications. Forensic Sci. Int. 175:61–64 [Google Scholar]
  6. Ames C, Turner B. 6.  2003. Low temperature episodes in development of blowflies: implications for postmortem interval estimation. Med. Vet. Entomol. 17:178–86 [Google Scholar]
  7. Anderson AR, Hoffmann AA, McKechnie SW, Umina PA, Weeks AR. 7.  2005. The latitudinal cline in the In(3R)Payne inversion polymorphism has shifted in the last 20 years in Australian Drosophila melanogaster populations. Mol. Ecol. 14:851–58 [Google Scholar]
  8. Anderson GS. 8.  2005. Effects of arson on forensic entomology evidence. Can. Soc. Forensic Sci. J. 38:49–67 [Google Scholar]
  9. Arbeitman MN, Furlong EE, Imam F, Johnson E, Null BH. 9.  et al. 2002. Gene expression during the life cycle of Drosophila melanogaster. Science 297:2270–75 [Google Scholar]
  10. Arnaldos MI, Garcia MD, Romera E, Presa JJ, Luna A. 10.  2005. Estimation of postmortem interval in real cases based on experimentally obtained entomological evidence. Forensic Sci. Int. 149:57–65 [Google Scholar]
  11. Arnott S, Turner B. 11.  2008. Post-feeding larval behaviour in the blowfly, Calliphora vicina: effects on postmortem interval estimates. Forensic Sci. Int. 177:162–67 [Google Scholar]
  12. Avise JC. 12.  2004. Molecular Markers, Natural History, and Evolution Sunderland, MA: Sinauer Assoc684 [Google Scholar]
  13. Bergeret M. 13.  1855. Infanticide, momification du cadaver. Decouverte du cadaver d'un enfant nouveau-ne dans une dheminee ou il setait momifie. Determination de l'epoque de la naissance par la presence de numphes et de larves d'insectes dans le cadaver et par l'etude de leurs metamorphoses. Ann. Hyg. Legal Med. 4:442–52 [Google Scholar]
  14. Blanckenhorn WU. 14.  2002. The consistency of quantitative genetic estimates in field and laboratory in the yellow dung fly. Genetica 114:171–82 [Google Scholar]
  15. Bruce TJA, Wadhams LJ, Woodcock CM. 15.  2005. Insect host location: a volatile situation. Trends Plant Sci. 10:269–74 [Google Scholar]
  16. Burkepile DE, Parker JD, Woodson CB, Mills HJ, Kubanek J. 16.  et al. 2006. Chemically mediated competition between microbes and animals: microbes as consumers in food webs. Ecology 87:2821–31Demonstrated that microbes associated with decomposing tissue regulate consumption by animals in higher trophic levels. [Google Scholar]
  17. Byrd JH, Butler JF. 17.  1996. Effects of temperature on Cochliomyia macellaria (Diptera: Calliphoridae) development. J. Med. Entomol. 33:901–5 [Google Scholar]
  18. Byrd JH, Butler JF. 18.  1997. Effects of temperature on Chrysomya rufifacies (Diptera: Calliphoridae) development. J. Med. Entomol. 34:353–58 [Google Scholar]
  19. Byrd JH, Castner JL. 19.  2010. Forensic Entomology: The Utility of Arthropods in Legal Investigations Boca Raton, FL: CRC681, 2nd.A summary of the use of entomological evidence in criminal investigations. [Google Scholar]
  20. Byrne AL, Camann MA, Cyr TL, Catts EP, Espelie KE. 20.  1995. Forensic implications of biochemical differences among geographic populations of the black blow fly, Phormia regina (Meigen). J. Forensic Sci. 40:372–77 [Google Scholar]
  21. Calboli FCF, Gilchrist GW, Partridge L. 21.  2003. Different cell size and cell number contribution in two newly established and one ancient body size cline of Drosophila subobscura. Evolution 57:566–73 [Google Scholar]
  22. Calboli FCF, Kennington WJ, Partridge L. 22.  2003. QTL mapping reveals a striking coincidence in the positions of genomic regions associated with adaptive variation in body size in parallel clines of Drosophila melanogaster on different continents. Evolution 57:2653–58 [Google Scholar]
  23. Catts EP. 23.  1992. Problems in estimating the postmortem interval in death investigations. J. Agric. Entomol. 9:245–55 [Google Scholar]
  24. Catts EP, Goff ML. 24.  1992. Forensic entomology in criminal investigations. Annu. Rev. Entomol. 37:253–72 [Google Scholar]
  25. Catts EP, Haskell NH. 25.  1990. Entomology and Death: A Procedural Guide Clemson, SC: Joyce's Print Shop, Inc.182 [Google Scholar]
  26. Chapman RF. 26.  2003. Contact chemoreception in feeding by phytophagous insects. Annu. Rev. Entomol. 48:455–84 [Google Scholar]
  27. Clark K, Evans L, Wall R. 27.  2006. Growth rates of the blowfly, Lucilia sericata, on different body tissues. Forensic Sci. Int. 156:145–49 [Google Scholar]
  28. Conner JK, Hartl DL. 28.  2004. A Primer of Ecological Genetics Sunderland, MA: Sinauer Assoc.304 [Google Scholar]
  29. Connor EF, Simberloff D. 29.  1978. Species number and compositional similarity of 635 Galapagos flora and avifauna. Ecol. Monogr. 48:219–48 [Google Scholar]
  30. Coyne JA, Wicker-Thomas C, Jallon JM. 30.  1999. A gene responsible for a cuticular hydrocarbon polymorphism in Drosophila melanogaster. Genet. Res. 73:189–203 [Google Scholar]
  31. Davies L. 31.  1999. Seasonal and spatial changes in blowfly production from small and large carcasses at Durham in lowland northeast England. Med. Vet. Entomol. 13:245–51 [Google Scholar]
  32. De'ath G, Fabricius KE. 32.  2000. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–92 [Google Scholar]
  33. Dethier VG. 33.  1947. Chemical Insect Attractants and Repellents Philadelphia, PA: The Blakiston Co. [Google Scholar]
  34. Demont M, Blanckenhorn WU, Hosken DJ, Garner TWJ. 34.  2008. Molecular and quantitative genetic differentiation across Europe in yellow dung flies. J. Evol. Biol. 21:1492–503 [Google Scholar]
  35. Dorchin N, Scott ER, Clarkin CE, Luongo MP, Jordan S, Abrahamson WG. 35.  2009. Behavioural, ecological and genetic evidence confirm the occurrence of host-associated differentiation in goldenrod gall-midges. J. Evol. Biol. 22:729–39 [Google Scholar]
  36. Etges WJ, de Oliveira CC, Ritchie MG, Noor MAF. 36.  2009. Genetics of incipient speciation in Drosophila mojavensis: II. Host plants and mating status influence cuticular hydrocarbon QTL expression and G×E interactions. Evolution 63:1712–30 [Google Scholar]
  37. Faigman DL. 37.  2002. Science and the law: Is science different for lawyers?. Science 297:339–40 [Google Scholar]
  38. Falconer DS. 38.  1989. Introduction to Quantitative Genetics New York: Longman Wiley438 [Google Scholar]
  39. Fauvergue X, Lo Genco A, Lo Pinto M. 39.  2008. Virgins in the wild: Mating status affects the behavior of a parasitoid foraging in the field. Oecologia 156:913–20 [Google Scholar]
  40. Feder JL, Berlocher SH, Roethele JB, Dambroski H, Smith JJ. 40.  et al. 2003. Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis. Proc. Natl. Acad. Sci. USA 100:10314–19 [Google Scholar]
  41. Florin AB, Gyllenstrand N. 41.  2002. Isolation and characterization of polymorphic microsatellite markers in the blowflies Lucilia illustris and Lucilia sericata. Mol. Ecol. Notes 2:113–16 [Google Scholar]
  42. Forrest AD, Hollingsworth ML, Hollingsworth PM, Sydes C, Bateman RM. 42.  2004. Population genetic structure in European populations of Spiranthes romanzoffiana set in the context of other genetic studies on orchids. Heredity 92:218–27 [Google Scholar]
  43. Frechette B, Dixon AFG, Claude A, Jean L. 43.  2004. Age and experience influence patch assessment for oviposition by an insect predator. Ecol. Entomol. 29:578–83 [Google Scholar]
  44. Gallagher MB, Sandhu S, Kimsey R. 44.  2010. Variation in development time for geographically distinct populations of the common green bottle fly, Lucilia sericata (Meigen). J. Forensic Sci. 55:438–42A comparison of development rates of different blow fly populations raised in the same environment, demonstrating population-specific growth rates. [Google Scholar]
  45. Gião J, Godoy W. 45.  2007. Ovipositional behavior in predator and prey blowflies. J. Insect Behav. 20:77–86 [Google Scholar]
  46. Gilbert GS. 46.  2002. Evolutionary ecology of plant diseases in natural ecosystems. Annu. Rev. Phytopathol. 40:13–43 [Google Scholar]
  47. Gilchrist GW, Huey RB, Serra L. 47.  2001. Rapid evolution of wing size clines in Drosophila subobscura. Genetica 112:273–86 [Google Scholar]
  48. Goff ML. 48.  1992. Problems in estimation of postmortem interval resulting from wrapping of the corpse: a case study from Hawaii. J. Agric. Entomol. 9:237–43 [Google Scholar]
  49. Goff ML. 49.  2000. A Fly for the Prosecution: How Insect Evidence Helps Solve Crimes Cambridge, MA: Harvard Univ. Press225 [Google Scholar]
  50. Goff ML, Win BH. 50.  1997. Estimation of postmortem interval based on colony development time for Anoplolepsis longipes (Hymenoptera: Formicidae). J. Forensic Sci. 42:1176–79 [Google Scholar]
  51. Gomes L, Godoy WA, Von Zuben CJ. 51.  2006. A review of postfeeding larval dispersal in blowflies: implications for forensic entomology. Naturwissenschaften 93:207–15 [Google Scholar]
  52. Gomes L, Gomes G, Von Zuben CJ. 52.  2009. The influence of temperature on the behavior of burrowing in larvae of the blowflies, Chrysomya albiceps and Lucilia cuprina, under controlled conditions. J. Insect. Sci. 9:14 [Google Scholar]
  53. Gomes L, Von Zuben CJ. 53.  2005. Postfeeding radial dispersal in larvae of Chrysomya albiceps (Diptera: Calliphoridae): implications for forensic entomology. Forensic Sci. Int. 155:61–64 [Google Scholar]
  54. Goodbrod JR, Goff ML. 54.  1990. Effects of larval population density on rates of development and interactions between two species of Chrysomya (Diptera: Calliphoridae) in laboratory culture. J. Med. Entomol. 27:338–43 [Google Scholar]
  55. Grant PR, Abbott I. 55.  1980. Inter-specific competition, island biogeography and null hypotheses. Evolution 34:332–41 [Google Scholar]
  56. Grassberger M, Frank C. 56.  2004. Initial study of arthropod succession on pig carrion in a central European urban habitat. J. Med. Entomol. 41:511–23 [Google Scholar]
  57. Grassberger M, Reiter C. 57.  2001. Effect of temperature on Lucilia sericata (Diptera: Calliphoridae) development with special reference to the isomegalen- and isomorphen-diagram. Forensic Sci. Int. 120:32–36 [Google Scholar]
  58. Greenberg B. 58.  1990. Behavior of postfeeding larvae of some Calliphoridae and a muscid (Diptera). Ann. Entomol. Soc. Am. 83:1210–14 [Google Scholar]
  59. Greenberg B. 59.  1991. Flies as forensic indicators. J. Med. Entomol. 20:565–77 [Google Scholar]
  60. Griffiths AM, Evans LM, Stevens JR. 60.  2009. Characterization and utilization of microsatellite loci in the New World screwworm fly, Cochliomyia hominivorax. Med Vet. Entomol. 23:Suppl.)1: 8–13 [Google Scholar]
  61. Grünbaum D.61.  1998. Using spatially explicit models to characterize foraging performance in heterogeneous landscapes. Am. Nat. 151:97–113 [Google Scholar]
  62. Hahn DA, Ragland GJ, Shoemaker DD, Denlinger DL. 62.  2009. Gene discovery using massively parallel pyrosequencing to develop ESTs for the flesh fly Sarcophaga crassipalpis. BMC Genomics 10:234 [Google Scholar]
  63. Harvey PH, Colwell RK, Silvertown JW, May RM. 63.  1983. Null models in ecology. Annu. Rev. Ecol. Syst. 14:189–211 [Google Scholar]
  64. Haskell NH. 64.  2007. Insect evidence distribution: tabulation of primary indicator species, the life stage, and the season of year used in final analysis from 100 random North American cases. Proc. Am. Acad. Forensic Sci., San Antonio, Tex., 2007 13220 Colorado Springs: Am. Acad. Forensic Sci. [Google Scholar]
  65. Hengeveld GM, van Langevelde F, Groen TA, de Knegt HJ. 65.  2009. Optimal foraging for multiple resources in several food species. Am. Nat. 174:102–10 [Google Scholar]
  66. Hobson RP. 66.  1936. Sheep blow fly investigations. III. Obsrevations on the chemotropism of Lucilia sericata. Ann. Appl. Biol. 23:845–51 [Google Scholar]
  67. Hoffmann AA, Watson M. 67.  1993. Geographical variation in the acclimation responses of Drosophila to temperature extremes. Am. Nat. 142:S93–113 [Google Scholar]
  68. Holsinger KE, Weir BS. 68.  2009. Genetics in geographically structured populations: defining, estimating and interpreting F(ST). Nat. Rev. Genet. 10:639–50 [Google Scholar]
  69. Huntington TE, Higley LG, Baxendale FP. 69.  2007. Maggot development during morgue storage and its effect on estimating the post-mortem interval. J. Forensic Sci. 52:453–58 [Google Scholar]
  70. Introna F, Campobasso CP, Goff ML. 70.  2001. Entomotoxicology. Forensic Sci. Int. 120:42–47 [Google Scholar]
  71. James AC, Azevedo RB, Partridge L. 71.  1997. Genetic and environmental responses to temperature of Drosophila melanogaster from a latitudinal cline. Genetics 146:881–90 [Google Scholar]
  72. Janzen DH. 72.  1977. Why fruits rot, seeds mold, and meat spoils. Am. Nat. 111:691–713Recognized that microbes have ecological roles in nature other than nutrient recyclers. [Google Scholar]
  73. Johnson FM, Schaffer HE. 73.  1973. Isozyme variability in species of the genus Drosophila. VII. Genotype-environment relationships in populations of D. melanogaster from the Eastern United States. Biochem. Genet. 10:149–63 [Google Scholar]
  74. Jones CD. 74.  2005. The genetics of adaptation in Drosophila sechellia. Genetica 123:137–45 [Google Scholar]
  75. Kaneshrajah G, Turner B. 75.  2004. Calliphora vicina larvae grow at different rates on different body tissues. Int. J. Legal Med. 118:242–44 [Google Scholar]
  76. Karlsson S, Mork J. 76.  2005. Deviation from Hardy-Weinberg equilibrium, and temporal instability in allele frequencies at microsatellite loci in a local population of Atlantic cod. ICES J. Mar. Sci. 62:1588–96 [Google Scholar]
  77. Kennington WJ, Hoffmann AA, Partridge L. 77.  2007. Mapping regions within cosmopolitan inversion In(3R)Payne associated with natural variation in body size in Drosophila melanogaster. Genetics 177:549–56 [Google Scholar]
  78. Koppl R. 78.  2005. How to improve forensic science. Eur. J. Law Econ. 20:255–86 [Google Scholar]
  79. Koppl R. 79.  2007. CSI for real: how to improve forensic science. Reason Found. Policy Study 364: [Google Scholar]
  80. Lam K, Babor D, Duthie B, Babor EM, Moore M, Gries G. 80.  2007. Proliferating bacterial symbionts on house fly eggs affect oviposition behaviour of adult flies. Anim. Behav. 74:81–92 [Google Scholar]
  81. Levins R, Lewontin R. 81.  1980. Dialectics and reductionism in ecology. Synthese 43:47–78 [Google Scholar]
  82. Loehle C. 82.  1983. Evaluation of theories and calculation tools in ecology. Ecol. Model. 19:239–47 [Google Scholar]
  83. Lopez-Fanjul C, Fernandez A, Toro MA. 83.  2003. The effect of neutral nonadditive gene action on the quantitative index of population divergence. Genetics 164:1627–33 [Google Scholar]
  84. Lynch M, Walsh B. 84.  1998. Genetics and Analysis of Quantitative Traits Sunderland, MA: Sinauer Assoc980 [Google Scholar]
  85. MacArthur RH, Pianka ER. 85.  1966. On the optimal use of a patchy environment. Am Nat 100:603–9 [Google Scholar]
  86. Mackay TF.86.  2001. The genetic architecture of quantitative traits. Annu. Rev. Genet. 35:303–39 [Google Scholar]
  87. Mégnin P. 87.  1894. La faune des cadavres, application de l'entomologie a la médecine légale. Volume 101B. Encyclopédie Scientifique des Aide-Mémoire Paris: Masson, Francen [Google Scholar]
  88. Merritt RW, Benbow ME. 88.  2009. Forensic entomology. Encyclopedia of Forensic Science A Jamieson, A Moenssens 1–12 Hoboken, NJ: Wiley [Google Scholar]
  89. Mittelstaedt H. 89.  1962. Control systems of orientation in insects. Annu. Rev. Entomol. 7:177–98 [Google Scholar]
  90. Motter MG. 90.  1898. A contribution to the study of the fauna of the grave. A study of one hundred and fifty disinterments, with some additional experimental observations. J. N.Y. Entomol. Soc. 6:201–31 [Google Scholar]
  91. Nabity PD, Higley LG, Heng-Moss TM. 91.  2006. Effects of temperature on development of Phormia regina (Diptera: Calliphoridae) and use of developmental data in determining time intervals in forensic entomology. J. Med. Entomol. 43:1276–86 [Google Scholar]
  92. 92. Natl. Res. Counc. (U.S.). Comm. DNA Forensic Sci.: An Update 1996. The Evaluation of Forensic DNA Evidence Washington, DC: Natl. Acad. Press254 [Google Scholar]
  93. 93. Natl. Res. Counc. (U.S.). Comm. Identifying Needs Forensic Sci. Community; Comm. Sci. Law Policy Glob. Aff.; Comm. Appl. Theor. Stat. Div. Eng. Phys. Sci. 2009. Strengthening Forensic Science in the United States: A Path Forward352 Washington, DC: Natl. Acad. Press [Google Scholar]
  94. Olshen AB, Gold B, Lohmueller KE, Struewing JP, Satagopan J. 94.  et al. 2008. Analysis of genetic variation in Ashkenazi Jews by high density SNP genotyping. BMC Genet. 9:14 [Google Scholar]
  95. Oudman L, Van Delden W, Kamping A, Bijlsma R. 95.  1991. Polymorphism at the Adh and alpha Gpdh loci in Drosophila melanogaster: effects of rearing temperature on developmental rate, body weight, and some biochemical parameters. Heredity 67:Pt. 1103–15 [Google Scholar]
  96. Papaj DR. 96.  2000. Ovarian dynamics and host use. Annu. Rev. Entomol. 45:423–48 [Google Scholar]
  97. Parmenter RR, MacMahon JA. 97.  2009. Carrion decomposition and nutrient cycling in a semiarid shrub–steppe ecosystem. Ecol. Monogr. 79:637–61Offers a comprehensive review of carrion decomposition ecology. [Google Scholar]
  98. Parsch J, Russell JA, Beerman I, Hartl DL, Stephan W. 98.  2000. Deletion of a conserved regulatory element in the Drosophila Adh gene leads to increased alcohol dehydrogenase activity but also delays development. Genetics 156:219–27 [Google Scholar]
  99. Payne JA. 99.  1965. A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46:592–602A seminal work in decomposition ecology that serves as part of the foundation of forensic entomology. [Google Scholar]
  100. Peters RH.100.  1976. Tautology in evolution and ecology. Am. Nat. 110:1–12 [Google Scholar]
  101. Picard CJ, Wells JD. 101.  2009. Survey of the genetic diversity of Phormia regina (Diptera: Calliphoridae) using amplified fragment length polymorphisms. J. Med. Entomol. 46:664–70A population genetic analysis of U.S. populations of a forensically informative blow fly species, demonstrating genetic relatedness of flies collected at the same time, but little spatial genetic structure. [Google Scholar]
  102. Picard CJ, Wells JD. 102.  2010. The population genetic structure of North American Lucilia sericata (Diptera: Calliphoridae), and the utility of genetic assignment methods for reconstruction of postmortem corpse relocation. Forensic. Sci. Int. 195:63–67 [Google Scholar]
  103. Piechnik DA, Lawler SP, Martinez ND. 103.  2008. Food-web assembly during a classic biogeographic study: Species' “trophic breadth” corresponds to colonization order. Oikos 117:665–74 [Google Scholar]
  104. Prokopy RJ, Owens ED. 104.  1983. Visual detection of plants by herbivorous insects. Annu. Rev. Entomol. 28:337–64 [Google Scholar]
  105. Pyke GH. 105.  1984. Optimal foraging theory: a critical review. Annu. Rev. Ecol. Syst. 15:523–75 [Google Scholar]
  106. Quicke DLJ. 106.  1997. Parasitic Wasps London: Chapman & Hall470 [Google Scholar]
  107. Quinn JF, Dunham AE. 107.  1983. On hypothesis-testing in ecology and evolution. Am. Nat. 122:602–17 [Google Scholar]
  108. Rako L, Blacket MJ, McKechnie SW, Hoffmann AA. 108.  2007. Candidate genes and thermal phenotypes: identifying ecologically important genetic variation for thermotolerance in the Australian Drosophila melanogaster cline. Mol. Ecol. 16:2948–57 [Google Scholar]
  109. Rako L, Hoffmann AA. 109.  2006. Complexity of the cold acclimation response in Drosophila melanogaster. J. Insect Physiol. 52:94–104 [Google Scholar]
  110. Reim C, Teuschl Y, Blanckenhorn WU. 110.  2006. Size-dependent effects of larval and adult food availability on reproductive energy allocation in the Yellow Dung Fly. Funct. Ecol. 20:1012–21 [Google Scholar]
  111. Riginos C, Nachman MW. 111.  2001. Population subdivision in marine environments: the contributions of biogeography, geographical distance and discontinuous habitat to genetic differentiation in a blennioid fish, Axoclinus nigricaudus. Mol. Ecol. 10:1439–53 [Google Scholar]
  112. Rosa GS, de Carvalho LR, dos Reis SF, Godoy WAC. 112.  2006. The dynamics of intraguild predation in Chrysomya albiceps Wied. (Diptera: Calliphoridae): interactions between instars and species under different abundances of food. Neotropical Entomol. 35:775–80 [Google Scholar]
  113. Rozen DE, Engelmoer DJP, Smiseth PT. 113.  2008. Antimicrobial strategies in burying beetles breeding on carrion. Proc. Natl. Acad. Sci. USA 105:17890–95 [Google Scholar]
  114. Saks MJ. 114.  2001. Model prevention and remedy of erroneous convictions act. Ariz. State Law J. 33:665–718 [Google Scholar]
  115. Saks MJ, Koehler JJ. 115.  2005. The coming paradigm shift in forensic identification science. Science 309:892–95 [Google Scholar]
  116. Saks MJ, Koehler JJ. 116.  2008. The individualization fallacy in forensic science evidence. Vanderbilt Law Rev. 61:199–219 [Google Scholar]
  117. 117.  Deleted in proof
  118. Schoenly K. 118.  1992. A statistical analysis of successional patterns in carrion-arthropod assemblages: implications for forensic entomology and determination of the postmortem interval. J. Forensic Sci. 37:1489–513 [Google Scholar]
  119. Schröder R, Hilker M. 119.  2008. The relevance of background odor in resource location by insects: a behavioral approach. BioScience 58:308–16 [Google Scholar]
  120. Schweitzer NJ, Saks MJ. 120.  2007. The CSI effect: Popular fiction about forensic science affects the public's expectations about real forensic science. Jurimetrics 47:357–64 [Google Scholar]
  121. Shalaby OA, deCarvalho LM, Goff ML. 121.  2000. Comparison of patterns of decomposition in a hanging carcass and a carcass in contact with soil in a xerophytic habitat on the Island of Oahu, Hawaii. J. Forensic Sci. 45:1267–73 [Google Scholar]
  122. Simberloff D. 122.  1980. Succession of paradigms in ecology: essentialism to materialism and probabilism. Synthese 43:3–39 [Google Scholar]
  123. Solomon SM, Hackett EJ. 123.  1996. Setting boundaries between science and law: lessons from Daubert v. Merrell Dow Pharmaceuticals, Inc. Sci. Technol. Hum. Values 21:131–56 [Google Scholar]
  124. Statheropoulos M, Spiliopoulou C, Agapiou A. 124.  2005. A study of volatile organic compounds evolved from the decaying human body. Forensic Sci. Int. 153:147–55 [Google Scholar]
  125. Strong DR, Szyska LA, Simberloff DS. 125.  1979. Tests of community-wide character displacement against null hypotheses. Evolution 33:897–913 [Google Scholar]
  126. Tarone AM. 126.  2007. Lucilia sericata Development: Plasticity, Population Differences, and Gene Expression East Lansing: Mich. State Univ.248 [Google Scholar]
  127. Tarone AM, Foran DR. 127.  2006. Components of developmental plasticity in a Michigan population of Lucilia sericata (Diptera: Calliphoridae). J. Med. Entomol. 43:1023–33 [Google Scholar]
  128. Tarone AM, Foran DR. 128.  2008. Generalized additive models and Lucilia sericata growth: assessing confidence intervals and error rates in forensic entomology. J. Forensic Sci. 53:942–49 [Google Scholar]
  129. Tarone AM, Foran DR. 129.  2010. Gene expression during blow fly development: improving the precision of age estimates in forensic entomology. J. Forensic Sci. In press [Google Scholar]
  130. Tarone AM, Jennings KC, Foran DR. 130.  2007. Aging blow fly eggs using gene expression: a feasibility study. J. Forensic Sci. 52:1350–54 [Google Scholar]
  131. Tessmer JW, Meek CL. 131.  1996. Dispersal and distribution of Calliphoridae (Diptera) immatures from animal carcasses in southern Louisiana. J. Med. Entomol. 33:665–69 [Google Scholar]
  132. Tinbergen N. 132.  1963. On aims and methods of ethology. Z. Tierpsychol. 20:410–33 [Google Scholar]
  133. Tomberlin JK, Sheppard DC, Joyce JA. 133.  2005. Black soldier fly (Diptera: Stratiomyidae) colonization of pig carrion in south Georgia. J. Forensic Sci. 50:152–53 [Google Scholar]
  134. Tomberlin JK, Wallace JR, Byrd JH. 134.  2006. Forensic entomology: myths busted. ! Forensic Mag. 3:10–14 [Google Scholar]
  135. Toolson EC, Kupersimbron R. 135.  1989. Laboratory evolution of epicuticular hydrocarbon composition and cuticular permeability in Drosophila pseudoobscura: effects on sexual dimorphism and thermal-acclimation ability. Evolution 43:468–73 [Google Scholar]
  136. Trotta V, Calboli FC, Ziosi M, Guerra D, Pezzoli MC. 136.  et al. 2006. Thermal plasticity in Drosophila melanogaster: a comparison of geographic populations. BMC Evol. Biol. 6:67 [Google Scholar]
  137. Turner TL, Hahn MW, Nuzhdin SV. 137.  2005. Genomic islands of speciation in Anopheles gambiae. PloS Biol. 3:e285 [Google Scholar]
  138. Ueno K, Ueno T. 138.  2005. Effect of wasp size, physiological state, and prior host experience on host-searching behavior in a parasitoid wasp (Hymenoptera: Ichneumonidae). J. Ethol. 23:43–49 [Google Scholar]
  139. VanLaerhoven SL. 139.  2010. Ecological theory and its application in forensic entomology. See Ref. 19 493–518
  140. VanLaerhoven SL, Anderson GS. 140.  1999. Insect succession on buried carrion in two biogeoclimatic zones of British Columbia. J. Forensic Sci. 44:32–43 [Google Scholar]
  141. Vass AA, Barshick SA, Sega G, Caton J, Skeen JT. 141.  et al. 2002. Decomposition chemistry of human remains: a new methodology for determining the postmortem interval. J. Forensic Sci. 47:542–53 [Google Scholar]
  142. Vet LEM, Dicke M. 142.  1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37:141–72 [Google Scholar]
  143. Via S. 143.  1984. The quantitative genetics of polyphagy in an insect herbivore. 1. Genotype-environment interaction in larval performance on different host plant-species. Evolution 38:881–95 [Google Scholar]
  144. Vinson SB. 144.  1976. Host selection by insect parasitoids. Annu. Rev. Entomol. 21:109–33 [Google Scholar]
  145. Vinson SB. 145.  1985. The behavior of parasitoids. Comprehensive Insect Physiology, Biochemistry, and Pharmacology: Nervous System GA Kerkut, LI Gilbert 417–69 New York: Pergamon [Google Scholar]
  146. Vinson SB. 146.  1991. Chemical signals used by insect parasitoids. Redia, Geornale Zool. 124:15–42 [Google Scholar]
  147. Visser JH. 147.  1986. Host odor perception in phytophagous insects. Annu. Rev. Entomol. 31:121–44 [Google Scholar]
  148. Voss SC, Spafford H, Dadour IR. 148.  2009. Annual and seasonal patterns of insect succession on decomposing remains at two locations in Western Australia. Forensic Sci. Int. 193:26–36 [Google Scholar]
  149. Watson EJ, Carlton CE. 149.  2003. Spring succession of necrophilous insects on wildlife carcasses in Louisiana. J. Med. Entomol. 40:338–47 [Google Scholar]
  150. Watts JE, Merritt GC, Goodrich BS. 150.  1981. The ovipositional response of the Australian sheep blowfly, Lucilia cuprina, to fleece-rot odours. Aust. Vet. J. 57:450–54 [Google Scholar]
  151. Wayne RK, Ostrander EA. 151.  2007. Lessons learned from the dog genome. Trends Genet. 23:557–67 [Google Scholar]
  152. Wells JD, Lamotte LR. 152.  2010. Estimating the postmortem interval. See Ref. 19 367–88
  153. Wells JD, Stevens JR. 153.  2008. Application of DNA-based methods in forensic entomology. Annu. Rev. Entomol. 53:103–20 [Google Scholar]
  154. Williams H. 154.  1984. A model for the aging of fly larvae in forensic entomology. Forensic Sci. Int. 25:191–99 [Google Scholar]
  155. Wright S. 155.  1965. The interpretation of population-structure by F-statistics with special regard to systems of mating. Evolution 19:395–420 [Google Scholar]
  156. Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C. 156.  et al. 2007. An Arabidopsis example of association mapping in structured samples. PLoS Genet. 3:e4 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error