1932

Abstract

Hyperparasitoids are some of the most diverse members of insect food webs. True hyperparasitoids parasitize the larvae of other parasitoids, reaching these larvae with their ovipositor through the herbivore that hosts the parasitoid larva. During pupation, primary parasitoids also may be attacked by pseudohyperparasitoids that lay their eggs on the parasitoid (pre)pupae. By attacking primary parasitoids, hyperparasitoids may affect herbivore population dynamics, and they have been identified as a major challenge in biological control. Over the past decades, research, especially on aphid- and caterpillar-associated hyperparasitoids, has revealed that hyperparasitoids challenge rules on nutrient use efficiency in trophic chains, account for herbivore outbreaks, or stabilize competitive interactions in lower trophic levels, and they may use cues derived from complex interaction networks to locate their hosts. This review focuses on the fascinating ecology of hyperparasitoids related to how they exploit and locate their often inconspicuous hosts and the insect community processes in which hyperparasitoids are prominent players.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-060921-072718
2022-01-07
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/ento/67/1/annurev-ento-060921-072718.html?itemId=/content/journals/10.1146/annurev-ento-060921-072718&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aartsma Y, Cusumano A, de Bobadilla MF, Rusman Q, Vosteen I, Poelman EH. 2019. Understanding insect foraging in complex habitats by comparing trophic levels: insights from specialist host-parasitoid-hyperparasitoid systems. Curr. Opin. Insect Sci. 32:54–60
    [Google Scholar]
  2. 2. 
    Agosta SJ, Joshi KA, Kester KM. 2018. Upper thermal limits differ among and within component species in a tritrophic hostparasitoid-hyperparasitoid system. PLOS ONE 13:e0198803
    [Google Scholar]
  3. 3. 
    Araj SE, Wratten S, Lister A, Buckley H. 2008. Floral diversity, parasitoids and hyperparasitoids: a laboratory approach. Basic Appl. Ecol. 9:588–97
    [Google Scholar]
  4. 4. 
    Araj SE, Wratten S, Lister A, Buckley H, Ghabeish I. 2011. Searching behavior of an aphid parasitoid and its hyperparasitoid with and without floral nectar. Biol. Control 57:79–84
    [Google Scholar]
  5. 5. 
    Ashfaq M, Erlandson M, Braun L 2005. Hyperparasitism by Mesochorus spp. (Hymenoptera: Ichneumonidae) in Peristenus sp. (Hymenoptera: Braconidae) and development of PCR primers for hyperparasitoid detection. Biol. Control 32:371–77
    [Google Scholar]
  6. 6. 
    Askew AR, Shaw MR. 1986. Parasitoid communities: their size, structure and development. Insect Parasitoids J Waage, D Greathead 225–64 London: Academic
    [Google Scholar]
  7. 7. 
    Broadley HJ, Kelly EA, Elkinton JS, Kula RR, Boettner GH. 2018. Identification and impact of hyperparasitoids and predators affecting Cyzenis albicans (Tachinidae), a recently introduced biological control agent of winter moth (Operophtera brumata L.) in the northeastern USA. Biol. Control 121:99–108
    [Google Scholar]
  8. 8. 
    Brodeur J. 2000. Host specificity and trophic relationships of hyperparasitoids. Parasitoid Population Biology ME Hochberg, AR Ives 163–83 Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  9. 9. 
    Buitenhuis R, McNeil JN, Boivin G, Brodeur J. 2004. The role of honeydew in host searching of aphid hyperparasitoids. J. Chem. Ecol. 30:273–85
    [Google Scholar]
  10. 10. 
    Buitenhuis R, Vet LEM, Boivin G, Brodeur J. 2005. Foraging behaviour at the fourth trophic level: a comparative study of host location in aphid hyperparasitoids. Entomol. Exp. Appl. 114:107–17
    [Google Scholar]
  11. 11. 
    Bukovinszky T, van Veen FJF, Jongema Y, Dicke M 2008. Direct and indirect effects of resource quality on food web structure. Science 319:804–7
    [Google Scholar]
  12. 12. 
    Carew WP, Sullivan DJ. 1993. Interspecific parasitism between 2 aphid hyperparasitoids, Dendrocerus carpenteri (Hymenoptera, Megaspilidae) and Asaphes lucens (Hymenoptera, Pteromalidae). Ann. Entomol. Soc. Am. 86:794–98
    [Google Scholar]
  13. 13. 
    Chaianunporn T, Hovestadt T. 2019. Dispersal evolution in metacommunities of tri-trophic systems. Ecol. Model. 395:28–38
    [Google Scholar]
  14. 14. 
    Chen C, Donner SH, Biere A, Gols R, Harvey JA 2019. Simulated heatwave conditions associated with global warming affect development and competition between hyperparasitoids. Oikos 128:121783–92
    [Google Scholar]
  15. 15. 
    Chen C, Gols R, Biere A, Harvey JA 2019. Differential effects of climate warming on reproduction and functional responses on insects in the fourth trophic level. Funct. Ecol. 33:693–702
    [Google Scholar]
  16. 16. 
    Chen Y, Pike KS, Greenstone MH, Shufran KA. 2006. Molecular markers for identification of the hyperparasitoids Dendrocerus carpenteri and Alloxysta xanthopsis in Lysiphlebus testaceipes parasitizing cereal aphids. BioControl 51:183–94
    [Google Scholar]
  17. 17. 
    Cloutier C. 1986. Amino acid utilization in the aphid Acyrtosiphon pisum infected by the parasitoid Aphidius smithi. J. Insect Physiol. 32:263–67
    [Google Scholar]
  18. 18. 
    Cobb LM, Cobb VA. 2004. Occurrence of parasitoid wasps, Baeus sp. and Gelis sp., in the egg sacs of the wolf spiders Pardosa moesta and Pardosa sternalis (Araneae, Lycosidae) in southeastern Idaho. Can. Field-Nat. 118:122–23
    [Google Scholar]
  19. 19. 
    Colvin SM, Yeargan KV. 2013. Effects of milkweed host species on interactions between Aphis nerii (Hemiptera: Aphididae) and its parasitoids. J. Kans. Entomol. Soc. 86:193–205
    [Google Scholar]
  20. 20. 
    Cusumano A, Harvey JA, Bourne ME, Poelman EH, de Boer JG. 2020. Exploiting chemical ecology to manage hyperparasitoids in biological control of arthropod pests. Pest Manag. Sci. 76:432–43
    [Google Scholar]
  21. 21. 
    Cusumano A, Harvey JA, Dicke M, Poelman EH 2019. Hyperparasitoids exploit herbivore-induced plant volatiles during host location to assess host quality and non-host identity. Oecologia 189:699–709
    [Google Scholar]
  22. 22. 
    Cusumano A, Peri E, Colazza S 2016. Interspecific competition/facilitation among insect parasitoids. Curr. Opin. Insect Sci. 14:12–16
    [Google Scholar]
  23. 23. 
    Darsouei R, Karimi J, Modarres-Awal M. 2011. Parasitic wasps as natural enemies of aphid populations in the Mashhad region of Iran: new data from DNA barcodes and SEM. Arch. Biol. Sci. 63:1225–34
    [Google Scholar]
  24. 24. 
    de Boer JG, Hollander PJ, Heinen D, Jagger D, van Sliedregt P et al. 2020. Do plant volatiles confuse rather than guide foraging behavior of the aphid hyperparasitoid Dendrocerus aphidum?. Chemoecology 30:315–25
    [Google Scholar]
  25. 25. 
    de Boer JG, Salis L, Tollenaar W, van Heumen LJM, Costaz TPM et al. 2019. Effects of temperature and food source on reproduction and longevity of aphid hyperparasitoids of the genera Dendrocerus and Asaphes. BioControl 64:277–90
    [Google Scholar]
  26. 26. 
    Dicke M, Cusumano A, Poelman EH. 2020. Microbial symbionts of parasitoids. Annu. Rev. Entomol. 65:171–90
    [Google Scholar]
  27. 27. 
    Dong Z, Men X, Liu S, Zhang Z. 2019. Food web structure of parasitoids in greenhouses is affected by surrounding landscape at different spatial scales. Sci. Rep. 9:8442
    [Google Scholar]
  28. 28. 
    Duplouy A, Couchoux C, Hanski I, van Nouhuys S. 2015. Wolbachia infection in a natural parasitoid wasp population. PLOS ONE 10:e0134843
    [Google Scholar]
  29. 29. 
    Eichhorn O. 1996. Experimental studies upon the parasitoid complex of the gypsy moth (Lymantria dispar L.) (Lep., Lymantriidae) in lower host populations in eastern Austria. J. Appl. Entomol. 120:205–12
    [Google Scholar]
  30. 30. 
    Espinoza-Gavilanez R, Grilli MP. 2019. First record of the spatio-temporal variation of Plutella xylostella (Lepidoptera: Plutellidae) and its parasitoids complex in the horticultural area of Cordoba city in central Argentina. Biol. Control 133:1–8
    [Google Scholar]
  31. 31. 
    Fagan WF, Denno RF. 2004. Stoichiometry of actual versus potential predator-prey interactions: insights into nitrogen limitation for arthropod predators. Ecol. Lett. 7:876–83
    [Google Scholar]
  32. 32. 
    Fergusson NDM. 1980. A revision of the British species of Dendrocerus Ratzeburg (Hymenoptera: Ceraphronoidae) with a review of their biology of aphid hyperparasites. Bull. Br. Mus. 41:255–314
    [Google Scholar]
  33. 33. 
    Ferrer-Suay M, Selfa J, Pujade-Villar J. 2013. A review of Alloxysta species (Hymenoptera: Cynipoidea: Figitidae: Charipinae) from Africa. Afr. Entomol. 21:255–66
    [Google Scholar]
  34. 34. 
    Frago E. 2016. Interactions between parasitoids and higher order natural enemies: intraguild predation and hyperparasitoids. Curr. Opin. Insect Sci. 14:81–86
    [Google Scholar]
  35. 35. 
    Gariepy TD, Messing RH. 2012. Development and use of molecular diagnostic tools to determine trophic links and interspecific interactions in aphid-parasitoid communities in Hawaii. Biol. Control 60:26–38
    [Google Scholar]
  36. 36. 
    Godfray HCJ. 1994. Parasitoids: Behavioral and Evolutionary Ecology. Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  37. 37. 
    Goelen T, Baets D, Kos M, Paulussen C, Lenaerts M et al. 2018. Gustatory response and longevity in Aphidius parasitoids and their hyperparasitoid Dendrocerus aphidum. J. Pest Sci. 91:351–60
    [Google Scholar]
  38. 38. 
    Goelen T, Sobhy IS, Vanderaa C, de Boer JG, Delvigne F et al. 2020. Volatiles of bacteria associated with parasitoid habitats elicit distinct olfactory responses in an aphid parasitoid and its hyperparasitoid. Funct. Ecol. 34:507–20
    [Google Scholar]
  39. 39. 
    Gómez-Marco F, Urbaneja A, Jaques JA, Rugman-Jones PF, Stouthamer R, Tena A 2015. Untangling the aphid-parasitoid food web in citrus: Can hyperparasitoids disrupt biological control?. Biol. Control 81:111–21
    [Google Scholar]
  40. 40. 
    Graham MWRdV. 1969. The Pteromalidae of north-western Europe (Hymenoptera, Chalcidoidea). Bull. Br. Mus. 16:77–83
    [Google Scholar]
  41. 41. 
    Grasswitz TR. 1998. Contact kairomones mediating the foraging behavior of the aphid hyperparasitoid Alloxysta victrix (Westwood) (Hymenoptera: Charipidae). J. Insect Behav. 11:539–48
    [Google Scholar]
  42. 42. 
    Harvey JA. 2008. Comparing and contrasting development and reproductive strategies in the pupal hyperparasitoids Lysibia nana and Gelis agilis (Hymenoptera: Ichneumonidae). Evol. Ecol. 22:153–66
    [Google Scholar]
  43. 43. 
    Harvey JA, de Haan L, Verdeny-Vilalta O, Visser B, Gols R. 2019. Reproduction and offspring sex ratios differ markedly among closely related hyperparasitoids living in the same microhabitats. J. Insect Behav. 32:243–51
    [Google Scholar]
  44. 44. 
    Harvey JA, Fei M, Lammers M, Kos M, Zhu F et al. 2016. Development of a solitary koinobiont hyperparasitoid in different instars of its primary and secondary hosts. J. Insect Physiol. 90:36–42
    [Google Scholar]
  45. 45. 
    Harvey JA, Pashalidou F, Soler R, Bezemer TM. 2011. Intrinsic competition between two secondary hyperparasitoids results in temporal trophic switch. Oikos 120:226–33
    [Google Scholar]
  46. 46. 
    Harvey JA, Poelman EH, Tanaka T. 2013. Intrinsic inter- and intraspecific competition in parasitoid wasps. Annu. Rev. Entomol. 58:333–51
    [Google Scholar]
  47. 47. 
    Harvey JA, Snaas H, Malcicka M, Visser B, Bezemer TM. 2014. Small-scale spatial resource partitioning in a hyperparasitoid community. Arthropod-Plant Interact 8:393–401
    [Google Scholar]
  48. 48. 
    Harvey JA, Tanaka T, Kruidhof M, Vet LEM, Gols R. 2011. The “usurpation hypothesis” revisited: dying caterpillar repels attack from a hyperparasitoid wasp. Anim. Behav. 81:1281–87
    [Google Scholar]
  49. 49. 
    Harvey JA, van Dam NM, Gols R. 2003. Interactions over four trophic levels: foodplant quality affects development of a hyperparasitoid as mediated through a herbivore and its primary parasitoid. J. Anim. Ecol. 72:520–31
    [Google Scholar]
  50. 50. 
    Harvey JA, van Dam NM, Witjes LMA, Soler R, Gols R. 2007. Effects of dietary nicotine on the development of an insect herbivore, its parasitoid and secondary hyperparasitoid over four trophic levels. Ecol. Entomol. 32:15–23
    [Google Scholar]
  51. 51. 
    Harvey JA, Wagenaar R, Bezemer TM. 2009. Interactions to the fifth trophic level: Secondary and tertiary parasitoid wasps show extraordinary efficiency in utilizing host resources. J. Anim. Ecol. 78:686–92
    [Google Scholar]
  52. 52. 
    Harvey JA, Witjes LMA. 2005. Comparing and contrasting life history and development strategies in the pupal hyperparasitoids Lysibia nana and Gelis agilis (Hymenoptera: Ichneumonidae). Appl. Entomol. Zool. 40:309–16
    [Google Scholar]
  53. 53. 
    Hassell MP. 2000. Host-parasitoid population dynamics. J. Anim. Ecol. 69:543–66
    [Google Scholar]
  54. 54. 
    Heimpel GE. 2019. Linking parasitoid nectar feeding and dispersal in conservation biological control. Biol. Control 132:36–41
    [Google Scholar]
  55. 55. 
    Heimpel GE, Collier TR. 1996. The evolution of host-feeding behaviour in insect parasitoids. Biol. Rev. Camb. Philos. Soc. 71:373–400
    [Google Scholar]
  56. 56. 
    Heinen R, Harvey JA. 2019. Spatial and temporal diversity in hyperparasitoid communities of Cotesia glomerata on garlic mustard, Alliaria petiolata. Ecol. Entomol. 44:357–66
    [Google Scholar]
  57. 57. 
    Hemidi W, Laamari M. 2020. Aphid's parasitoid fauna and their trophic associations in the oasis ecosystems of Zibans (Biskra, Algeria). Egypt. . J. Biol. Pest Control 30:14
    [Google Scholar]
  58. 58. 
    Höller C, Bargen H, Vinson SB, Braune HJ. 1993. Sources of the marking pheromones used for host discrimination in the hyperparasitoid Dendrocerus carpenteri. J. Insect Physiol. 39:649–56
    [Google Scholar]
  59. 59. 
    Höller C, Williams HJ, Vinson SB 1991. Evidence for a 2-component external marking pheromone system in an aphid hyperparasitoid. J. Chem. Ecol. 17:1021–35
    [Google Scholar]
  60. 60. 
    Hrček J, Godfray HCJ. 2015. What do molecular methods bring to host-parasitoid food webs?. Trends Parasitol 31:30–35
    [Google Scholar]
  61. 61. 
    Hulle M, Chaubet B, Turpeau E, Simon J-C 2020. Encyclop'Aphid: a website on aphids and their natural enemies. Entomol. Gen. 40:97–101
    [Google Scholar]
  62. 62. 
    Jervis MA, Ellers J, Harvey JA 2008. Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annu. Rev. Entomol. 53:361–85
    [Google Scholar]
  63. 63. 
    Jervis MA, Kidd NAC 1986. Host-feeding strategies in hymenopteran parasitoids. Biol. Rev. Camb. Philos. Soc. 61:395–434
    [Google Scholar]
  64. 64. 
    Jervis MA, Kidd NAC, Fitton MG, Huddleston T, Dawah HA. 1993. Flower-visiting by hymenopteran parasitoids. J. Nat. Hist. 27:67–105
    [Google Scholar]
  65. 65. 
    Kaplan I. 2012. Attracting carnivorous arthropods with plant volatiles: the future of biocontrol or playing with fire?. Biol. Control 60:77–89
    [Google Scholar]
  66. 66. 
    Keller LJ, Sullivan DJ. 1976. Oviposition behavior and host feeding of Asaphes lucens an aphid hyperparasitoid. J. N. Y. Entomol. Soc. 84:206–11
    [Google Scholar]
  67. 67. 
    Lefort M, Wratten SD, Cusumano A, Varennes Y, Boyer S. 2017. Disentangling higher trophic level interactions in the cabbage aphid food web using high-throughput DNA sequencing. Metabarcoding Metagen 1:e13709
    [Google Scholar]
  68. 68. 
    Lim UT, Mainali BP, Kim J. 2014. Demonstration of interspecific competition between two sympatric egg parasitoids of Riptortus pedestris (Fabricius) in laboratory condition. J. Asia-Pac. Entomol. 17:885–91
    [Google Scholar]
  69. 69. 
    Lucia M, Aquino DA, Hansson C, Abrahamovich AH. 2010. The first record of conopid flies (Diptera: Conopidae) and eulophid wasps (Hymenoptera: Eulophidae) as parasitoids and hyperparasitoids associated with carpenter bees (Apidae: Xylocopinae) in Argentina. J. Apic. Res. 49:208–11
    [Google Scholar]
  70. 70. 
    Mackauer M, Chow A. 2015. Facultative gregarious development in a solitary parasitoid wasp, Dendrocerus carpenteri: Larvae may share nutritional resources. Entomol. Exp. Appl. 157:170–80
    [Google Scholar]
  71. 71. 
    Mackauer M, Chow A. 2016. Females of the parasitoid wasp, Dendrocerus carpenteri (Hymenoptera: Megaspilidae), adjust offspring sex allocation when competing for hosts. Eur. J. Entomol. 113:542–50
    [Google Scholar]
  72. 72. 
    McLean AHC, Hrček J, Parker BJ, Godfray HCJ. 2017. Cascading effects of herbivore protective symbionts on hyperparasitoids. Ecol. Entomol. 42:601–9
    [Google Scholar]
  73. 73. 
    Miall JH, Abram PK, Cappuccino N, Mason PG 2019. Effects of floral resources on the efficacy of a primary parasitoid and a facultative hyperparasitoid. J. Appl. Entomol. 143:776–86
    [Google Scholar]
  74. 74. 
    Mohammadpour M, Jalali MA, Michaud JP, Ziaaddini M, Hashemirad H 2014. Multiparasitism of stink bug eggs: competitive interactions between Ooencyrtus pityocampae and Trissolcus agriope. BioControl 59:279–86
    [Google Scholar]
  75. 75. 
    Mohan P, Sinu PA 2017. Parasitoid wasp usurps its host to guard its pupa against hyperparasitoids and induces rapid behavioral changes in the parasitized host. PLOS ONE 12:e0178108
    [Google Scholar]
  76. 76. 
    Mohan P, Sinu PA 2020. Does the solitary parasitoid Microplitis pennatulae use a combinatorial approach to manipulate its host?. Entomol. Exp. Appl. 168:295–303
    [Google Scholar]
  77. 77. 
    Moraglio ST, Tortorici F, Pansa MG, Castelli G, Pontini M et al. 2020. A 3-year survey on parasitism of Halyomorpha halys by egg parasitoids in northern Italy. J. Pest Sci. 93:183–94
    [Google Scholar]
  78. 78. 
    Morris RJ, Muller CB, Godfray HCJ. 2001. Field experiments testing for apparent competition between primary parasitoids mediated by secondary parasitoids. J. Anim. Ecol. 70:301–9
    [Google Scholar]
  79. 79. 
    Nair A, Fountain T, Ikonen S, Ojanen SP, van Nouhuys S. 2016. Spatial and temporal genetic structure at the fourth trophic level in a fragmented landscape. Proc. R. Soc. B 283:20160668
    [Google Scholar]
  80. 80. 
    Nair A, Nonaka E, van Nouhuys S. 2018. Increased fluctuation in a butterfly metapopulation leads to diploid males and decline of a hyperparasitoid. Proc. R. Soc. B 285:20180372
    [Google Scholar]
  81. 81. 
    Nakashima Y, Higashimura Y, Mizutani K. 2016. Host discrimination and ovicide by aphid hyperparasitoids Asaphes suspensus (Hymenoptera: Pteromalidae) and Dendrocerus carpenteri (Hymenoptera: Megaspilidae). Appl. Entomol. Zool. 51:609–14
    [Google Scholar]
  82. 82. 
    Nenzen HK, Martel V, Gravel D. 2018. Can hyperparasitoids cause large-scale outbreaks of insect herbivores?. Oikos 127:1344–54
    [Google Scholar]
  83. 83. 
    Nieminen M, van Nouhuys S. 2017. The roles of trophic interactions, competition and landscape in determining metacommunity structure of a seed-feeding weevil and its parasitoids. Ann. Zool. Fenn. 54:83–95
    [Google Scholar]
  84. 84. 
    Nurkomar I, Pudjianto Manuwoto S, Kainoh Y, Buchori D 2018. Multitrophic interaction between cucumber moth Diaphania indica Saunders (Lepidoptera: Crambidae) and its natural enemies. IOP Conf. Ser. Earth Environ. Sci. 197:012026
    [Google Scholar]
  85. 85. 
    Ochieng SA, Park KC, Zhu JW, Baker TC. 2000. Functional morphology of antennal chemoreceptors of the parasitoid Microplitis croceipes (Hymenoptera: Braconidae). Arthropod Struct. Dev. 29:231–40
    [Google Scholar]
  86. 86. 
    Pashalidou FG, Frago E, Griese E, Poelman EH, van Loon JJA et al. 2015. Early herbivore alert matters: plant-mediated effects of egg deposition on higher trophic levels benefit plant fitness. Ecol. Lett. 18:927–36
    [Google Scholar]
  87. 87. 
    Phillips DS. 1993. Host-feeding and egg maturation by Pachycrepoideus vindemia. Entomol. Exp. Appl. 69:75–82
    [Google Scholar]
  88. 88. 
    Pimm SL, Lawton JH. 1977. Number of trophic levels in ecological communities. Nature 268:329–31
    [Google Scholar]
  89. 89. 
    Poelman EH, Bruinsma M, Zhu F, Weldegergis BT, Boursault AE et al. 2012. Hyperparasitoids use herbivore-induced plant volatiles to locate their parasitoid host. PLOS Biol 10:e1001435
    [Google Scholar]
  90. 90. 
    Poelman EH, Harvey JA, van Loon JJA, Vet LEM, Dicke M. 2013. Variation in herbivore-induced plant volatiles corresponds with spatial heterogeneity in the level of parasitoid competition and parasitoid exposure to hyperparasitism. Funct. Ecol. 27:1107–16
    [Google Scholar]
  91. 91. 
    Poelman EH, Kos M 2016. Complexity of plant volatile-mediated interactions beyond the third trophic level. Deciphering Chemical Language of Plant Communication JD Blande, R Glinwood 211–25 Berlin: Springer
    [Google Scholar]
  92. 92. 
    Polidori C, Freitas-Cerqueira A, Pujade-Villar J, Oliva F, Ferrer-Suay M 2016. Flagellar sensillar equipment of two morphologically closely related aphid hyperparasitoids (Hymenoptera: Figitidae: Alloxysta). J. Insect Sci. 16:10
    [Google Scholar]
  93. 93. 
    Quicke DLJ. 1997. Parasitic Wasps London: Chapman & Hall
    [Google Scholar]
  94. 94. 
    Sanders D, Kehoe R, Thebault E, van Veen FJF 2018. Trophic redundancy reduces vulnerability to extinction cascades. PNAS 115:2419–24
    [Google Scholar]
  95. 95. 
    Sanders D, Kehoe R, van Veen FJF. 2015. Experimental evidence for the population-dynamic mechanisms underlying extinction cascades of carnivores. Curr. Biol. 25:3106–9
    [Google Scholar]
  96. 96. 
    Sanders D, Moser A, Newton J, van Veen FJF. 2016. Trophic assimilation efficiency markedly increases at higher trophic levels in four-level host-parasitoid food chain. Proc. R. Soc. B 283:20153043
    [Google Scholar]
  97. 97. 
    Sanders D, Van Veen FJF. 2010. The impact of an ant-aphid mutualism on the functional composition of the secondary parasitoid community. Ecol. Entomol. 35:704–10
    [Google Scholar]
  98. 98. 
    Schär S, Vorburger C. 2013. Host specialization of parasitoids and their hyperparasitoids on a pair of syntopic aphid species. Bull. Entomol. Res. 103:530–37
    [Google Scholar]
  99. 99. 
    Schwarz M, Boriani M. 1994. Redescription of Gelis longulus (Hymenoptera, Ichneumonidae), a parasitoid of Ocnerostoma piniariellum (Lepidoptera, Yponomeutidae). Eur. J. Entomol. 91:331–34
    [Google Scholar]
  100. 100. 
    Schwarz M, Shaw MR. 2000. Palearctic Cryptinae (Hymenoptera: Ichneumonidae) in the National Museums of Scotland, with nomenclatural changes, taxonomic notes, rearing records and special reference to the British check list. Part 3. Tribe Phygadeuontini, subtribes Chiroticina, Acrolytina, Hemitelina and Gelina (excluding Gelis), with descriptions of new species. Entomol. Gaz. 51:147–86
    [Google Scholar]
  101. 101. 
    Shen S, Wu W, Zhang Z, Wang Y, Kong X-B et al. 2019. Morphological analysis of sensilla on different organs in Pachyneuron aphidis, a hyperparasitoid of Myzus persicae. Microsc. Res. Technol. 82:1810–18
    [Google Scholar]
  102. 102. 
    Siri N. 1993. Analysis of host finding behaviour of two aphid hyperparasitoids (Hymenoptera: Alloxystidae, Megaspilidae) Ph.D. thesis Christian-Albrechts Univ. Kiel, Ger.
    [Google Scholar]
  103. 103. 
    Slansky F. 1986. Nutritional ecology of endoparasitic insects and their hosts: an overview. J. Insect Physiol. 32:255–61
    [Google Scholar]
  104. 104. 
    Slansky F 1993. Nutritional ecology: the fundamental quest for nutrients. Caterpillars, Ecological and Evolutionary Constraints on Foraging NE Stamp, TM Casey 29–91 London: Chapman & Hall
    [Google Scholar]
  105. 105. 
    Steinbauer MJ, Sinai KMJ, Anderson A, Taylor GS, Horton BM 2015. Trophic cascades in bell miner-associated dieback forests: quantifying relationships between leaf quality, psyllids and Psyllaephagus parasitoids. Austral Ecol 40:77–89
    [Google Scholar]
  106. 106. 
    Sterner RW, Bajpai A, Adams T. 1997. The enigma of food chain length: absence of theoretical evidence for dynamic constraints. Ecology 78:2258–62
    [Google Scholar]
  107. 107. 
    Stiling P, Rossi AM 1994. The window of parasitoid vulnerability to hyperparasitism: template for parasitoid complex structure. Parasitoid Community Ecology BA Hawkins, W Sheehan 228–44 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  108. 108. 
    Sullivan DJ. 1987. Insect hyperparasitism. Annu. Rev. Entomol. 32:49–70
    [Google Scholar]
  109. 109. 
    Sullivan DJ, Völkl W. 1999. Hyperparasitism: multitrophic ecology and behavior. Annu. Rev. Entomol. 44:291–315
    [Google Scholar]
  110. 110. 
    Tavares MT, Villanueva-Bonilla GA, Sobczak JF. 2019. Conura baturitei sp. nov. (Hymenoptera: Chalcididae): a hyperparasitoid of spiders through Zatypota riverai (Hymenoptera: Ichneumonidae). Zootaxa 4624:267–74
    [Google Scholar]
  111. 111. 
    Temerak SA. 1983. Studies on Pediobius bruchicida (Rond.) (Hym., Eulophidae) a hyperparasitoid of Sesamia cretica Led. (Lep., Noctuidae). J. Appl. Entomol. 95:267–72
    [Google Scholar]
  112. 112. 
    Tougeron K, Tena A. 2018. Hyperparasitoids as new targets in biological control in a global change context. Biol. Control 130:164–71
    [Google Scholar]
  113. 113. 
    Traugott M, Bell JR, Broad GR, Powell W, van Veen JF et al. 2008. Endoparasitism in cereal aphids: molecular analysis of a whole parasitoid community. Mol. Ecol. 17:3928–38
    [Google Scholar]
  114. 114. 
    Turlings TCJ, Erb M. 2018. Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu. Rev. Entomol. 63:433–52
    [Google Scholar]
  115. 115. 
    Ulina ES, Rizali A, Manuwoto S, Pudjianto Buchori D 2019. Does composition of tropical agricultural landscape affect parasitoid diversity and their host-parasitoid interactions?. Agric. For. Entomol. 21:318–25
    [Google Scholar]
  116. 116. 
    Valentini A, Pompanon F, Taberlet P. 2009. DNA barcoding for ecologists. Trends Ecol. Evol. 24:110–17
    [Google Scholar]
  117. 117. 
    van Baaren J, Wist T, Soroka J, Tougeron K. 2020. Host-parasitoid network in extreme conditions: the case of cereal aphids in wheat crops in Saskatchewan, Canada. Entomol. Gen. 40:63–77
    [Google Scholar]
  118. 118. 
    van Neerbos FAC, de Boer JG, Salis L, Tollenaar W, Kos M et al. 2020. Honeydew composition and its effect on life-history parameters of hyperparasitoids. Ecol. Entomol. 45:278–89
    [Google Scholar]
  119. 119. 
    van Nouhuys S, Hanski I. 2000. Apparent competition between parasitoids mediated by a shared hyperparasitoid. Ecol. Lett. 3:82–84
    [Google Scholar]
  120. 120. 
    van Nouhuys S, Kaartinen R. 2008. A parasitoid wasp uses landmarks while monitoring potential resources. Proc. R. Soc. B 275:377–85
    [Google Scholar]
  121. 121. 
    van Nouhuys S, Reudler JH, Biere A, Harvey JA 2012. Performance of secondary parasitoids on chemically defended and undefended hosts. Basic Appl. Ecol. 13:241–49
    [Google Scholar]
  122. 122. 
    Varennes Y-D, Boyer S, Wratten SD. 2014. Un-nesting DNA Russian dolls: the potential for constructing food webs using residual DNA in empty aphid mummies. Mol. Ecol. 23:3925–33
    [Google Scholar]
  123. 123. 
    Vet LEM, Dicke M. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37:141–72
    [Google Scholar]
  124. 124. 
    Vet LEM, Wäckers FL, Dicke M. 1991. How to hunt for hiding hosts: the reliability-detectability problem in foraging parasitoids. Neth. J. Zool. 41:202–13
    [Google Scholar]
  125. 125. 
    Viggiani G. 1984. Bionomics of the Aphelinidae. Annu. Rev. Entomol. 29:257–76
    [Google Scholar]
  126. 126. 
    Viggiani G. 2020. The complex of parasitoids of Asphondylia spp. (Diptera Cecidomyiidae), flower gall midges of Lamiaceae, with description of a new species of Baryscapus (Hymenoptera Eulophidae). Bull. Insectol. 73:45–52
    [Google Scholar]
  127. 127. 
    Visser B, Le Lann C, Snaas H, Hardy ICW, Harvey JA 2014. Consequences of resource competition for sex allocation and discriminative behaviors in a hyperparasitoid wasp. Behav. Ecol. Sociobiol. 68:105–13
    [Google Scholar]
  128. 128. 
    Visser B, Le Lann C, Snaas H, Verdeny-Vilalta O, Harvey JA 2016. Divergent life history strategies in congeneric hyperparasitoids. Evol. Ecol. 30:535–49
    [Google Scholar]
  129. 129. 
    Vyas DK, Paul RL, Gates MW, Kubik T, Harvey JA et al. 2020. Shared enemies exert differential mortality on two competing parasitic wasps. Basic Appl. Ecol. 47:107–19
    [Google Scholar]
  130. 130. 
    Wäckers FL, van Rijn PCJ, Heimpel GE. 2008. Honeydew as a food source for natural enemies: making the best of a bad meal?. Biol. Control 45:176–84
    [Google Scholar]
  131. 131. 
    Weseloh R. 1972. Sense organs of hyperparasite Cheiloneurus noxius (Hymenoptera: Encyrtidae) important in host selection processes. Ann. Entomol. Soc. Am. 65:41–46
    [Google Scholar]
  132. 132. 
    Wu PX, Ma BX, Yan S, Xu J, Zhang RZ 2018. The hyperparasitoid Marietta picta (Hymenoptera: Aphelinidae) mediates competitive interactions between two parasitoids of Paratrioza sinica (Hemiptera: Psyllidae): Tamarixia lyciumi (Hymenoptera: Eulophidae) and Psyllaephagus arenarius (Hymenoptera: Encyrtidae). Biol. Control 126:169–76
    [Google Scholar]
  133. 133. 
    Yang F, Xu L, Wu Y-K, Wang Q, Yao Z-W et al. 2017. Species composition and seasonal dynamics of aphid parasitoids and hyperparasitoids in wheat fields in northern China. Sci. Rep. 7:13989
    [Google Scholar]
  134. 134. 
    Ye Z, Vollhardt IMG, Girtler S, Wallinger C, Tomanovic Z, Traugott M 2017. An effective molecular approach for assessing cereal aphid-parasitoid-endosymbiont networks. Sci. Rep. 7:3138
    [Google Scholar]
  135. 135. 
    Ye ZP, Vollhardt IMG, Parth N, Rubbmark O, Traugott M 2018. Facultative bacterial endosymbionts shape parasitoid food webs in natural host populations: a correlative analysis. J. Anim. Ecol. 87:1440–51
    [Google Scholar]
  136. 136. 
    Yefremova ZA, Lubin Y. 2020. Tachinobia repanda (Hymenoptera: Eulophidae) from egg sacs of a colonial spider, Cyrtophora moluccensis (Araneae: Araneidae) in Papua New Guinea. J. Insect Sci. 20:12
    [Google Scholar]
  137. 137. 
    Zapponi L, Bon MC, Fouani JM, Anfora G, Schmidt S, Falagiarda M. 2020. Assemblage of the egg parasitoids of the invasive stink bug Halyomorpha halys: insights on plant host associations. Insects 11:588
    [Google Scholar]
  138. 138. 
    Zhao Z-H, Hui C, Li Z-H, Li B-L. 2015. Habitat heterogeneity stabilizes the spatial and temporal interactions between cereal aphids and parasitic wasps. Basic Appl. Ecol. 16:510–18
    [Google Scholar]
  139. 139. 
    Zhu F, Broekgaarden C, Weldegergis BT, Harvey JA, Vosman B et al. 2015. Parasitism overrides herbivore identity allowing hyperparasitoids to locate their parasitoid host by using herbivore-induced plant volatiles. Mol. Ecol. 24:2886–99
    [Google Scholar]
  140. 140. 
    Zhu F, Cusumano A, Bloem J, Weldegergis BT, Villela A et al. 2018. Symbiotic polydnavirus and venom reveal parasitoid to its hyperparasitoids. PNAS 115:5205–10
    [Google Scholar]
  141. 141. 
    Zhu F, Lammers M, Harvey JA, Poelman EH. 2016. Intrinsic competition between primary hyperparasitoids of the solitary endoparasitoid Cotesia rubecula. Ecol. Entomol. 41:292–300
    [Google Scholar]
  142. 142. 
    Zhu F, Weldegergis BT, Lhie B, Harvey JA, Dicke M, Poelman EH 2014. Body odors of parasitized caterpillars give away the presence of parasitoid larvae to their primary hyperparasitoid enemies. J. Chem. Ecol. 40:986–95
    [Google Scholar]
/content/journals/10.1146/annurev-ento-060921-072718
Loading
/content/journals/10.1146/annurev-ento-060921-072718
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error