1932

Abstract

Spiders (Araneae) make up a remarkably diverse lineage of predators that have successfully colonized most terrestrial ecosystems. All spiders produce silk, and many species use it to build capture webs with an extraordinary diversity of forms. Spider diversity is distributed in a highly uneven fashion across lineages. This strong imbalance in species richness has led to several causal hypotheses, such as codiversification with insects, key innovations in silk structure and web architecture, and loss of foraging webs. Recent advances in spider phylogenetics have allowed testing of some of these hypotheses, but results are often contradictory, highlighting the need to consider additional drivers of spider diversification. The spatial and historical patterns of diversity and diversification remain contentious. Comparative analyses of spider diversification will advance only if we continue to make progress with studies of species diversity, distribution, and phenotypic traits, together with finer-scale phylogenies and genomic data.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-061520-083414
2021-01-07
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/en/66/1/annurev-ento-061520-083414.html?itemId=/content/journals/10.1146/annurev-ento-061520-083414&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Agnarsson I, Coddington JA, Kuntner M 2013. Systematics: progress in the study of spider diversity and evolution. Spider Research in the 21st Century: Trends & Perspectives D Penney, 58–111 London: NHBS Ltd.
    [Google Scholar]
  2. 2. 
    Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A et al. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. PNAS 106:3213410–14
    [Google Scholar]
  3. 3. 
    Altman N, Krzywinski M. 2015. Points of significance: association, correlation and causation. Nat. Methods 12:899–900
    [Google Scholar]
  4. 4. 
    Arnedo MA, Oromí P, Ribera C 2001. Radiation of the spider genus Dysdera (Araneae, Dysderidae) in the Canary Islands: cladistic assessment based on multiple data sets. Cladistics 17:4313–53
    [Google Scholar]
  5. 5. 
    Arnqvist G, Edvardsson M, Friberg U, Nilsson T 2000. Sexual conflict promotes speciation in insects. PNAS 97:1910460–64
    [Google Scholar]
  6. 6. 
    Baião GC, Schneider DI, Miller WJ, Klasson L 2019. The effect of Wolbachia on gene expression in Drosophila paulistorum and its implications for symbiont-induced host speciation. BMC Genom 20:1465
    [Google Scholar]
  7. 7. 
    Baldissera R, Rodrigues ENL, Hartz SM 2012. Metacommunity composition of web-spiders in a fragmented neotropical forest: relative importance of environmental and spatial effects. PLOS ONE 7:10e48099
    [Google Scholar]
  8. 8. 
    Ballesteros JA, Santibáñez López CE, Kováč Ĺ, Gavish-Regev E, Sharma PP 2019. Ordered phylogenomic subsampling enables diagnosis of systematic errors in the placement of the enigmatic arachnid order Palpigradi. Proc. R. Soc. B. 286:191720192426
    [Google Scholar]
  9. 9. 
    Ballesteros JA, Sharma PP. 2019. A critical appraisal of the placement of Xiphosura (Chelicerata) with account of known sources of phylogenetic error. Syst. Biol. 68:6896–917
    [Google Scholar]
  10. 10. 
    Barth FG. 1997. Vibratory communication in spiders: adaptation and compromise at many levels. Orientation and Communication in Arthropods M Lehrer 247–72 Basel: Birkhäuser
    [Google Scholar]
  11. 11. 
    Barton PS, Evans MJ, Foster CN, Cunningham SA, Manning AD 2017. Environmental and spatial drivers of spider diversity at contrasting microhabitats. Austral Ecol 42:700–10
    [Google Scholar]
  12. 12. 
    Benton MJ, Wills MA, Hitchin R 2000. Quality of the fossil record through time. Nature 403:6769534–37
    [Google Scholar]
  13. 13. 
    Berner D, Salzburger W. 2015. The genomics of organismal diversification illuminated by adaptive radiations. Trends Genet 31:9491–99
    [Google Scholar]
  14. 14. 
    Bidegaray-Batista L, Arnedo MA. 2011. Gone with the plate: the opening of the Western Mediterranean basin drove the diversification of ground-dweller spiders. BMC Evol. Biol. 11:1317
    [Google Scholar]
  15. 15. 
    Blackledge TA. 2012. Spider silk: a brief review and prospectus on research linking biomechanics and ecology in draglines and orb webs. J. Arachnol. 40:11–12
    [Google Scholar]
  16. 16. 
    Blackledge TA, Kuntner M, Marhabaie M, Leeper TC, Agnarsson I 2012. Biomaterial evolution parallels behavioral innovation in the origin of orb-like spider webs. Sci. Rep. 2:833
    [Google Scholar]
  17. 17. 
    Blackledge TA, Scharff N, Coddington JA, Szüts T, Wenzel JW et al. 2009. Reconstructing web evolution and spider diversification in the molecular era. PNAS 106:135229–34
    [Google Scholar]
  18. 18. 
    Blamires SJ, Blackledge TA, Tso I-M 2017. Physicochemical property variation in spider silk: ecology, evolution, and synthetic production. Annu. Rev. Entomol. 62:443–60
    [Google Scholar]
  19. 19. 
    Bond JE, Garrison NL, Hamilton CA, Godwin RL, Hedin M, Agnarsson I 2014. Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Curr. Biol. 24:151765–71
    [Google Scholar]
  20. 20. 
    Bond JE, Opell BD. 1998. Testing adaptive radiation and key innovation hypotheses in spiders. Evolution 52:2403–14
    [Google Scholar]
  21. 21. 
    Bott RA, Baumgartner W, Bräunig P, Menzel F, Joel A-C 2017. Adhesion enhancement of cribellate capture threads by epicuticular waxes of the insect prey sheds new light on spider web evolution. Proc. R. Soc. B. 284:185520170363
    [Google Scholar]
  22. 22. 
    Brawand D, Wagner CE, Li YI, Malinsky M, Keller I et al. 2014. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513:7518375–81
    [Google Scholar]
  23. 23. 
    Brazeau MD. 2011. Problematic character coding methods in morphology and their effects. Biol. J. Linn. Soc. 104:3489–98
    [Google Scholar]
  24. 24. 
    Brewer MS, Carter RA, Croucher PJP, Gillespie RG 2015. Shifting habitats, morphology, and selective pressures: developmental polyphenism in an adaptive radiation of Hawaiian spiders. Evolution 69:1162–78
    [Google Scholar]
  25. 25. 
    Brunetta L, Craig CL. 2010. Spider Silk: Evolution and 400 Million Years of Spinning, Waiting, Snagging, and Mating New Haven, CT: Yale Univ. Press
    [Google Scholar]
  26. 26. 
    Campbell CR, Poelstra JW, Yoder AD 2018. What is speciation genomics? The roles of ecology, gene flow, and genomic architecture in the formation of species. Biol. J. Linn. Soc. 124:4561–83
    [Google Scholar]
  27. 27. 
    Cardoso P. 2012. Diversity and community assembly patterns of epigean versus troglobiont spiders in the Iberian Peninsula. Int. J. Speleol. 41:183–94
    [Google Scholar]
  28. 28. 
    Cardoso P, Arnedo MA, Triantis KA, Borges PAV 2010. Drivers of diversity in Macaronesian spiders and the role of species extinctions. J. Biogeogr. 37:61034–46
    [Google Scholar]
  29. 29. 
    Cardoso P, Pekár S, Jocqué R, Coddington JA 2011. Global patterns of guild composition and functional diversity of spiders. PLOS ONE 6:6e21710
    [Google Scholar]
  30. 30. 
    Carvalho JC, Malumbres‐Olarte J, Arnedo MA, Crespo LC, Domenech M, Cardoso P 2020. Taxonomic divergence and functional convergence in Iberian spider forest communities: insights from beta diversity partitioning. J. Biogeogr. 47:1288–300
    [Google Scholar]
  31. 31. 
    Challis RJ, Goodacre SL, Hewitt GM 2006. Evolution of spider silks: conservation and diversification of the C-terminus. Insect Mol. Biol. 15:145–56
    [Google Scholar]
  32. 32. 
    Charlesworth J, Weinert LA, Araujo EV Jr, Welch JJ 2019. Wolbachia,. Cardinium and climate: an analysis of global data. Biol. Lett. 14:20190273
    [Google Scholar]
  33. 33. 
    Clarke A, Gaston KJ. 2006. Climate, energy and diversity. Proc. Biol. Sci. B. 273:15992257–66
    [Google Scholar]
  34. 34. 
    Coddington JA. 1986. The monophyletic origin of the orb web. Spiders: Webs, Behavior and Evolution WA Shear 319–63 Stanford, CA: Stanford Univ. Press
    [Google Scholar]
  35. 35. 
    Coddington JA, Agnarsson I, Hamilton CA, Bond JE 2019. Spiders did not repeatedly gain, but repeatedly lost, foraging webs. PeerJ 7:e6703
    [Google Scholar]
  36. 36. 
    Condamine FL, Rolland J, Morlon H 2019. Assessing the causes of diversification slowdowns: temperature-dependent and diversity-dependent models receive equivalent support. Ecol. Lett. 22:111900–12
    [Google Scholar]
  37. 37. 
    Craig CL. 1987. The significance of spider size to the diversification of spider-web architectures and spider reproductive modes. Am. Nat. 129:147–68
    [Google Scholar]
  38. 38. 
    Craig CL. 1992. Aerial web-weaving spiders: linking molecular and organismal processes in evolution. Trends Ecol. Evol. 7:8270–73
    [Google Scholar]
  39. 39. 
    Dawkins R. 2016. The Extended Phenotype: The Long Reach of the Gene Oxford, UK: Oxford Univ. Press. Revis. ed.
    [Google Scholar]
  40. 40. 
    Dederichs TM, Müller CHG, Sentenská L, Lipke E, Uhl G, Michalik P 2019. The innervation of the male copulatory organ of spiders (Araneae): a comparative analysis. Front. Zool. 16:39
    [Google Scholar]
  41. 41. 
    Didier G, Fau M, Laurin M 2017. Likelihood of tree topologies with fossils and diversification rate estimation. Syst. Biol. 66:6964–87
    [Google Scholar]
  42. 42. 
    Dimitrov D, Arnedo MA, Ribera C 2008. Colonization and diversification of the spider genus Pholcus Walckenaer, 1805 (Araneae, Pholcidae) in the Macaronesian archipelagos: evidence for long-term occupancy yet rapid recent speciation. Mol. Phylogenet. Evol. 48:2596–614
    [Google Scholar]
  43. 43. 
    Dimitrov D, Benavides LR, Arnedo MA, Giribet G, Griswold CE et al. 2017. Rounding up the usual suspects: a standard target-gene approach for resolving the interfamilial phylogenetic relationships of ecribellate orb-weaving spiders with a new family-rank classification (Araneae, Araneoidea). Cladistics 33:3221–50
    [Google Scholar]
  44. 44. 
    Dimitrov D, Lopardo L, Giribet G, Arnedo MA, Álvarez-Padilla F, Hormiga G 2012. Tangled in a sparse spider web: single origin of orb weavers and their spinning work unravelled by denser taxonomic sampling. Proc. R. Soc. B. 279:17321341–50
    [Google Scholar]
  45. 45. 
    Donoghue PCJ, Benton MJ. 2007. Rocks and clocks: calibrating the Tree of Life using fossils and molecules. Trends Ecol. Evol. 22:8424–31
    [Google Scholar]
  46. 46. 
    Dunlop JA, Penney D, Jekel D 2019. A summary list of fossil spiders and their relatives World Spider Cat., version 20.0. https://wsc.nmbe.ch/resources/fossils/Fossils20.5.pdf
    [Google Scholar]
  47. 47. 
    Eberhard WG. 1982. Behavioral characters for the higher classification of orb-weaving spiders. Evolution 36:51067–95
    [Google Scholar]
  48. 48. 
    Eberhard WG. 1990. Function and phylogeny of spider webs. Annu. Rev. Ecol. Syst. 21:341–72
    [Google Scholar]
  49. 49. 
    Eberhard WG. 2018. Modular patterns in behavioural evolution: webs derived from orbs. Behaviour 155:6531–66
    [Google Scholar]
  50. 50. 
    Eberle J, Dimitrov D, Valdez-Mondragón A, Huber BA 2018. Microhabitat change drives diversification in pholcid spiders. BMC Evol. Biol. 18:1141
    [Google Scholar]
  51. 51. 
    Eisner T, Alsop R, Ettershank G 1964. Adhesiveness of spider silk. Science 146:36471058–61
    [Google Scholar]
  52. 52. 
    Elias DO, Hebets EA, Hoy RR, Mason AC 2005. Seismic signals are crucial for male mating success in a visual specialist jumping spider (Araneae: Salticidae). Anim. Behav. 69:4931–38
    [Google Scholar]
  53. 53. 
    Feiner N. 2016. Accumulation of transposable elements in Hox gene clusters during adaptive radiation of Anolis lizards. Proc. R. Soc. B. 283:184020161555
    [Google Scholar]
  54. 54. 
    Fernández R, Hormiga G, Giribet G 2014. Phylogenomic analysis of spiders reveals nonmonophyly of orb weavers. Curr. Biol. 24:151772–77
    [Google Scholar]
  55. 55. 
    Fernández R, Kallal RJ, Dimitrov D, Ballesteros JA, Arnedo MA et al. 2018. Phylogenomics, diversification dynamics, and comparative transcriptomics across the spider tree of life. Curr. Biol. 28:91489–97.e5
    [Google Scholar]
  56. 56. 
    Finch O-D, Blick T, Schuldt A 2008. Macroecological patterns of spider species richness across Europe. Biodivers. Conserv. 17:122849–68
    [Google Scholar]
  57. 57. 
    Garrison NL, Rodriguez J, Agnarsson I, Coddington JA, Griswold CE et al. 2016. Spider phylogenomics: untangling the Spider Tree of Life. PeerJ 4:e1719
    [Google Scholar]
  58. 58. 
    Gillespie RG, Benjamin SP, Brewer MS, Rivera MAJ, Roderick GK 2018. Repeated diversification of ecomorphs in Hawaiian stick spiders. Curr. Biol. 28:6941–47.e3
    [Google Scholar]
  59. 59. 
    Giribet G. 2018. Current views on chelicerate phylogeny—a tribute to Peter Weygoldt. Zool. Anz. 273:7–13
    [Google Scholar]
  60. 60. 
    Giribet G, Hormiga G, Edgecombe GD 2016. The meaning of categorical ranks in evolutionary biology. Org. Divers. Evol. 16:3427–30
    [Google Scholar]
  61. 61. 
    Goodacre SL, Martin OY. 2012. Modification of insect and arachnid behaviours by vertically transmitted endosymbionts: infections as drivers of behavioural change and evolutionary novelty. Insects 3:4246–61
    [Google Scholar]
  62. 62. 
    Goodacre SL, Martin OY, Bonte D, Hutchings L, Woolley C et al. 2009. Microbial modification of host long-distance dispersal capacity. BMC Biol 7:132
    [Google Scholar]
  63. 63. 
    Griswold CE, Coddington JA, Hormiga G, Scharff N 1998. Phylogeny of the orb-web building spiders (Araneae, Orbiculariae: Deinopoidea, Araneoidea). Zool. J. Linn. Soc. 123:11–99
    [Google Scholar]
  64. 64. 
    Griswold CE, Ramírez MJ, Coddington JA, Platnick NI 2005. Atlas of phylogenetic data for entelegyne spiders (Araneae: Araneomorphae: Entelegynae) with comments on their phylogeny. Proc. Calif. Acad. Sci. 56:Suppl. II1–324
    [Google Scholar]
  65. 65. 
    Hawthorn AC, Opell BD. 2003. Van der Waals and hygroscopic forces of adhesion generated by spider capture threads. J. Exp. Biol. 206:Part 223905–11
    [Google Scholar]
  66. 66. 
    Hore U, Uniyal VP. 2008. Diversity and composition of spider assemblages in five vegetation types of the Terai Conservation Area, India. J. Arachnol. 36:2251–58
    [Google Scholar]
  67. 67. 
    Hormiga G, Arnedo M, Gillespie RG 2003. Speciation on a conveyor belt: sequential colonization of the Hawaiian Islands by Orsonwelles spiders (Araneae, Linyphiidae). Syst. Biol. 52:170–88
    [Google Scholar]
  68. 68. 
    Hormiga G, Griswold CE. 2014. Systematics, phylogeny, and evolution of orb-weaving spiders. Annu. Rev. Entomol. 59:487–512
    [Google Scholar]
  69. 69. 
    Huang D, Hormiga G, Cai C, Su Y, Yin Z et al. 2018. Origin of spiders and their spinning organs illuminated by mid-Cretaceous amber fossils. Nat. Ecol. Evol. 2:4623–27
    [Google Scholar]
  70. 70. 
    Huber BA. 2005. Sexual selection research on spiders: progress and biases. Biol. Rev. 80:3363–85
    [Google Scholar]
  71. 71. 
    Huber BA, Chao A. 2019. Inferring global species richness from megatransect data and undetected species estimates. Contrib. Zool. 88:142–53
    [Google Scholar]
  72. 72. 
    Janicke T, Ritchie MG, Morrow EH, Marie-Orleach L 2018. Sexual selection predicts species richness across the animal kingdom. Proc. R. Soc. B. 285:187820180173
    [Google Scholar]
  73. 73. 
    Jiménez‐Valverde A, Baselga A, Melic A, Txasko N 2010. Climate and regional beta-diversity gradients in spiders: dispersal capacity has nothing to say. Insect Conserv. Divers. 3:151–60
    [Google Scholar]
  74. 74. 
    Kallal RJ, Dimitrov D, Arnedo MA, Giribet G, Hormiga G 2020. Monophyly, taxon sampling, and the nature of ranks in the classification of orb-weaving spiders (Araneae: Araneoidea). Syst. Biol. 69:401–11
    [Google Scholar]
  75. 75. 
    Kallal RJ, Hormiga G. 2018. Systematics, phylogeny and biogeography of the Australasian leaf-curling orb-weaving spiders (Araneae: Araneidae: Zygiellinae), with a comparative analysis of retreat evolution. Zool. J. Linn. Soc. 184:41055–141
    [Google Scholar]
  76. 76. 
    King GF, Hardy MC. 2013. Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. Annu. Rev. Entomol. 58:475–96
    [Google Scholar]
  77. 77. 
    Kozak KH, Wiens JJ. 2010. Accelerated rates of climatic-niche evolution underlie rapid species diversification. Ecol. Lett. 13:111378–89
    [Google Scholar]
  78. 78. 
    Kraaijeveld K, Kraaijeveld‐Smit FJL, Maan ME 2011. Sexual selection and speciation: the comparative evidence revisited. Biol. Rev. 86:2367–77
    [Google Scholar]
  79. 79. 
    Krehenwinkel H, Rödder D, Tautz D 2015. Eco-genomic analysis of the poleward range expansion of the wasp spider Argiope bruennichi shows rapid adaptation and genomic admixture. Glob. Change Biol. 21:124320–32
    [Google Scholar]
  80. 80. 
    Kulkarni S, Wood H, Lloyd M, Hormiga G 2020. Spider-specific probe set for ultraconserved elements offers new perspectives on the evolutionary history of spiders (Arachnida, Araneae). Mol. Ecol. Resour. 20:1185–203
    [Google Scholar]
  81. 81. 
    Kuntner M, Arnedo MA, Trontelj P, Lokovšek T, Agnarsson I 2013. A molecular phylogeny of nephilid spiders: evolutionary history of a model lineage. Mol. Phylogenet. Evol. 69:3961–79
    [Google Scholar]
  82. 82. 
    Kuntner M, Hamilton CA, Cheng R-C, Gregorič M, Lupše N et al. 2019. Golden orbweavers ignore biological rules: Phylogenomic and comparative analyses unravel a complex evolution of sexual size dimorphism. Syst. Biol. 68:4555–72
    [Google Scholar]
  83. 83. 
    Levi HW. 1978. Orb-webs and the phylogeny of orb-weavers. Symp. Zool. Soc. Lond. 42:1–15
    [Google Scholar]
  84. 84. 
    Liu J, May-Collado LJ, Pekár S, Agnarsson I 2016. A revised and dated phylogeny of cobweb spiders (Araneae, Araneoidea, Theridiidae): a predatory Cretaceous lineage diversifying in the era of the ants (Hymenoptera, Formicidae). Mol. Phylogenet. Evol. 94:658–75
    [Google Scholar]
  85. 85. 
    Loboda S, Buddle CM. 2018. Small to large-scale patterns of ground-dwelling spider (Araneae) diversity across northern Canada. FACETS 3:880–95
    [Google Scholar]
  86. 86. 
    Louca S, Pennell MW. 2019. Phylogenies of extant species are consistent with an infinite array of diversification histories. bioRxiv 719435. https://doi.org/10.1101/719435
    [Crossref]
  87. 87. 
    Machado HE, Jui G, Joyce DA, Reilly CR, Lunt DH, Renn SC 2014. Gene duplication in an African cichlid adaptive radiation. BMC Genom 15:1161
    [Google Scholar]
  88. 88. 
    Maddison WP. 1993. Missing data versus missing characters in phylogenetic analysis. Syst. Biol. 42:4576–81
    [Google Scholar]
  89. 89. 
    Magalhaes ILF, Azevedo GHF, Michalik P, Ramírez MJ 2019. The fossil record of spiders revisited: implications for calibrating trees and evidence for a major faunal turnover since the Mesozoic. Biol. Rev. 95:184–217
    [Google Scholar]
  90. 90. 
    Majer M, Svenning J-C, Bilde T 2015. Habitat productivity predicts the global distribution of social spiders. Front. Ecol. Evol. 3:101
    [Google Scholar]
  91. 91. 
    Mammola S, Cardoso P, Angyal D, Balázs G, Blick T et al. 2019. Local- versus broad-scale environmental drivers of continental β-diversity patterns in subterranean spider communities across Europe. Proc. R. Soc. B. 286:191420191579
    [Google Scholar]
  92. 92. 
    Masta SE, Maddison WP. 2002. Sexual selection driving diversification in jumping spiders. PNAS 99:74442–47
    [Google Scholar]
  93. 93. 
    McCambridge JE, Walker LA, Holwell GI 2019. Natural history and ecology of the New Zealand sheet-web spiders Cambridgea plagiata and C. foliata (Araneae: Desidae). J. Nat. Hist. 53:19–201153–67
    [Google Scholar]
  94. 94. 
    Mitter C, Farrell B, Wiegmann B 1988. The phylogenetic study of adaptive zones: Has phytophagy promoted insect diversification. Am. Nat. 132:1107–28
    [Google Scholar]
  95. 95. 
    Nentwig W. 1987. The prey of spiders. Ecophysiology of Spiders W Nentwig 249–63 Berlin: Springer
    [Google Scholar]
  96. 96. 
    Nyffeler M, Birkhofer K. 2017. An estimated 400–800 million tons of prey are annually killed by the global spider community. Sci. Nat. 104:3–430
    [Google Scholar]
  97. 97. 
    Opell BD. 1990. The relationship of book lung and tracheal systems in the spider family Uloboridae. J. Morphol. 206:2211–16
    [Google Scholar]
  98. 98. 
    Opell BD. 1997. The material cost and stickiness of capture threads and the evolution of orb-weaving spiders. Biol. J. Linn. Soc. 62:3443–58
    [Google Scholar]
  99. 99. 
    Opell BD. 1998. Economics of spider orb-webs: the benefits of producing adhesive capture thread and of recycling silk. Funct. Ecol. 12:4613–24
    [Google Scholar]
  100. 100. 
    Opell BD, Bond JE, Warner DA 2006. The effects of capture spiral composition and orb-web orientation on prey interception. Zoology 109:4339–45
    [Google Scholar]
  101. 101. 
    Parham JF, Donoghue PCJ, Bell CJ, Calway TD, Head JJ et al. 2012. Best practices for justifying fossil calibrations. Syst. Biol. 61:2346–59
    [Google Scholar]
  102. 102. 
    Pekár S, Coddington JA, Blackledge TA 2012. Evolution of stenophagy in spiders (Araneae): evidence based on the comparative analysis of spider diets. Evolution 66:3776–806
    [Google Scholar]
  103. 103. 
    Pekár S, Toft S. 2015. Trophic specialisation in a predatory group: the case of prey-specialised spiders (Araneae). Biol. Rev. 90:3744–61
    [Google Scholar]
  104. 104. 
    Penney D. 2003. Does the fossil record of spiders track that of their principal prey, the insects. Earth Environ. Sci. Trans. R. Soc. Edinb. 94:3275–81
    [Google Scholar]
  105. 105. 
    Piel WH. 2018. The global latitudinal diversity gradient pattern in spiders. J. Biogeogr. 45:81896–904
    [Google Scholar]
  106. 106. 
    Platt RN, Vandewege MW, Kern C, Schmidt CJ, Hoffmann FG, Ray DA 2014. Large numbers of novel miRNAs originate from DNA transposons and are coincident with a large species radiation in bats. Mol. Biol. Evol. 31:61536–45
    [Google Scholar]
  107. 107. 
    Pyron RA, Burbrink FT. 2013. Phylogenetic estimates of speciation and extinction rates for testing ecological and evolutionary hypotheses. Trends Ecol. Evol. 28:12729–36
    [Google Scholar]
  108. 108. 
    Rabosky DL. 2013. Diversity-dependence, ecological speciation, and the role of competition in macroevolution. Annu. Rev. Ecol. Evol. Syst. 44:481–502
    [Google Scholar]
  109. 109. 
    Rainford JL, Mayhew PJ. 2015. Diet evolution and clade richness in Hexapoda: a phylogenetic study of higher taxa. Am. Nat. 186:6777–91
    [Google Scholar]
  110. 110. 
    Ramírez MJ. 2014. The morphology and phylogeny of dionychan spiders (Araneae, Araneomorphae). Bull. Am. Mus. Nat. Hist. 390:1–374
    [Google Scholar]
  111. 111. 
    Ricklefs RE. 2004. A comprehensive framework for global patterns in biodiversity. Ecol. Lett. 7:11–15
    [Google Scholar]
  112. 112. 
    Rosenzweig ML. 1995. Species Diversity in Space and Time Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  113. 113. 
    Santer RD, Hebets EA. 2011. The sensory and behavioural biology of whip spiders (Arachnida, Amblypygi). Advances in Insect Physiology 4 ed. J Casas 1–64 Cambridge, MA: Academic
    [Google Scholar]
  114. 114. 
    Sauquet H. 2013. A practical guide to molecular dating. C. R. Palevol. 12:6355–67
    [Google Scholar]
  115. 115. 
    Scharff N, Coddington JA, Blackledge TA, Agnarsson I, Framenau VW et al. 2020. Phylogeny of the orb-weaving spider family Araneidae (Araneae: Araneoidea). Cladistics 36:11–21
    [Google Scholar]
  116. 116. 
    Schmitz A. 2013. Tracheae in spiders: respiratory organs for special functions. Spider Ecophysiology W Nentwig 29–39 Berlin: Springer
    [Google Scholar]
  117. 117. 
    Schmitz A. 2016. Respiration in spiders (Araneae). J. Comp. Physiol. B. 186:4403–15
    [Google Scholar]
  118. 118. 
    Schwager EE, Sharma PP, Clarke T, Leite DJ, Wierschin T et al. 2017. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biol 15:162
    [Google Scholar]
  119. 119. 
    Selden PA, Penney D. 2010. Fossil spiders. Biol. Rev. 85:1171–206
    [Google Scholar]
  120. 120. 
    Selden PA, Penney D. 2017. Imaging techniques in the study of fossil spiders. Earth-Sci. Rev. 166:111–31
    [Google Scholar]
  121. 121. 
    Servedio MR, Boughman JW. 2017. The role of sexual selection in local adaptation and speciation. Annu. Rev. Ecol. Evol. Syst. 48:85–109
    [Google Scholar]
  122. 122. 
    Shao L, Li S. 2018. Early Cretaceous greenhouse pumped higher taxa diversification in spiders. Mol. Phylogenet. Evol. 127:146–55
    [Google Scholar]
  123. 123. 
    Sharma PP, Kaluziak ST, Pérez-Porro AR, González VL, Hormiga G et al. 2014. Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal. Mol. Biol. Evol. 31:2963–84
    [Google Scholar]
  124. 124. 
    Sheffer MM, Uhl G, Prost S, Lueders T, Urich T, Bengtsson MM 2020. Tissue- and population-level microbiome analysis of the wasp spider Argiope bruennichi identified a novel dominant bacterial symbiont. Microorganisms 8:18
    [Google Scholar]
  125. 125. 
    Shultz JW. 1990. Evolutionary morphology and phylogeny of Arachnida. Cladistics 6:11–38
    [Google Scholar]
  126. 126. 
    Starrett J, Garb JE, Kuelbs A, Azubuike UO, Hayashi CY 2012. Early events in the evolution of spider silk genes. PLOS ONE 7:6e38084
    [Google Scholar]
  127. 127. 
    Stein A, Gerstner K, Kreft H 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17:7866–80
    [Google Scholar]
  128. 128. 
    Strong EE, Lipscomb D. 1999. Character coding and inapplicable data. Cladistics 15:4363–71
    [Google Scholar]
  129. 129. 
    Stroud JT, Losos JB. 2016. Ecological opportunity and adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 47:507–32
    [Google Scholar]
  130. 130. 
    Swenson NG. 2011. The role of evolutionary processes in producing biodiversity patterns, and the interrelationships between taxonomic, functional and phylogenetic biodiversity. Am. J. Bot. 98:472–80
    [Google Scholar]
  131. 131. 
    Tarasov S. 2019. Integration of anatomy ontologies and evo-devo using structured Markov models suggests a new framework for modeling discrete phenotypic traits. Syst. Biol. 68:5698–716
    [Google Scholar]
  132. 132. 
    Turnbull AL. 1973. Ecology of the true spiders (Araneomorphae). Annu. Rev. Entomol. 18:305–48
    [Google Scholar]
  133. 133. 
    Vassilevski AA, Kozlov SA, Grishin EV 2009. Molecular diversity of spider venom. Biochemistry 74:131505–34
    [Google Scholar]
  134. 134. 
    Vizueta J, Frías-López C, Macías-Hernández N, Arnedo MA, Sánchez-Gracia A, Rozas J 2017. Evolution of chemosensory gene families in arthropods: insight from the first inclusive comparative transcriptome analysis across spider appendages. Genome Biol. Evol. 9:1178–96
    [Google Scholar]
  135. 135. 
    Vollrath F. 1999. Biology of spider silk. Int. J. Biol. Macromol. 24:281–88
    [Google Scholar]
  136. 136. 
    Vollrath F, Selden P. 2007. The role of behavior in the evolution of spiders, silks, and webs. Annu. Rev. Ecol. Evol. Syst. 38:819–46
    [Google Scholar]
  137. 137. 
    Wagner CE, Harmon LJ, Seehausen O 2012. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487:7407366–69
    [Google Scholar]
  138. 138. 
    Wang B, Dunlop JA, Selden PA, Garwood RJ, Shear WA et al. 2018. Cretaceous arachnid Chimerarachne yingi gen. et sp. nov. illuminates spider origins. Nat. Ecol. Evol. 2:4614–22
    [Google Scholar]
  139. 139. 
    Wernegreen JJ. 2017. In it for the long haul: evolutionary consequences of persistent endosymbiosis. Curr. Opin. Genet. Dev. 47:83–90
    [Google Scholar]
  140. 140. 
    Wheeler WC, Coddington JA, Crowley LM, Dimitrov D, Goloboff PA et al. 2017. The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics 33:6574–616
    [Google Scholar]
  141. 141. 
    White JA. 2011. Caught in the act: rapid, symbiont-driven evolution. BioEssays 33:11823–29
    [Google Scholar]
  142. 142. 
    Whitehouse MEA, Shochat E, Shachak M, Lubin Y 2002. The influence of scale and patchiness on spider diversity in a semi-arid environment. Ecography 25:4395–404
    [Google Scholar]
  143. 143. 
    Wiens JJ. 2011. The causes of species richness patterns across space, time, and clades and the role of “ecological limits. .” Q. Rev. Biol. 86:275–96
    [Google Scholar]
  144. 144. 
    Wolff JO. 2020. The evolution of dragline initiation in spiders: multiple transitions from multi- to single-gland usage. Diversity 12:14
    [Google Scholar]
  145. 145. 
    Wolff JO, Nentwig W, Gorb SN 2013. The great silk alternative: multiple co-evolution of web loss and sticky hairs in spiders. PLOS ONE 8:5e62682
    [Google Scholar]
  146. 146. 
    Wolff JO, Paterno GB, Liprandi D, Ramírez MJ, Bosia F et al. 2019. Evolution of aerial spider webs coincided with repeated structural optimization of silk anchorages. Evolution 73:2122–34
    [Google Scholar]
  147. 147. 
    World Spider Cat. 2020. World Spider Catalog, Version 20.5 http://wsc.nmbe.ch
    [Google Scholar]
  148. 148. 
    Wunderlich Jed 2015.Mesozoic Spiders (Araneae)Hirschberg, Ger.: Jörg Wunderlich
  149. 149. 
    Xu X, Liu F, Cheng R-C, Chen J, Xu X et al. 2015. Extant primitively segmented spiders have recently diversified from an ancient lineage. Proc. R. Soc. B. 282:180820142486
    [Google Scholar]
  150. 150. 
    Zchori-Fein E, Bourtzis K 2011. Manipulative Tenants: Bacteria Associated with Arthropods Boca Raton, FL: CRC Press
    [Google Scholar]
/content/journals/10.1146/annurev-ento-061520-083414
Loading
/content/journals/10.1146/annurev-ento-061520-083414
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error