1932

Abstract

Insect cytochrome P450 monooxygenases (P450s) perform a variety of important physiological functions, but it is their role in the detoxification of xenobiotics, such as natural and synthetic insecticides, that is the topic of this review. Recent advances in insect genomics and postgenomic functional approaches have provided an unprecedented opportunity to understand the evolution of insect P450s and their role in insect toxicology. These approaches have also been harnessed to provide new insights into the genomic alterations that lead to insecticide resistance, the mechanisms by which P450s are regulated, and the functional determinants of P450-mediated insecticide resistance. In parallel, an emerging body of work on the role of P450s in defining the sensitivity of beneficial insects to insecticides has been developed. The knowledge gained from these studies has applications for the management of P450-mediated resistance in insect pests and can be leveraged to safeguard the health of important beneficial insects.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-070621-061328
2022-01-07
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/ento/67/1/annurev-ento-070621-061328.html?itemId=/content/journals/10.1146/annurev-ento-070621-061328&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adolfi A, Poulton B, Anthousi A, Macilwee S, Ranson H, Lycett GJ 2019. Functional genetic validation of key genes conferring insecticide resistance in the major malaria vector, Anopheles gambiae. PNAS 116:25764–72Overexpression of individual P450s in genetically modified Anopheles gambiae determines their contribution to resistance when expressed in different tissues.
    [Google Scholar]
  2. 2. 
    Amezian D, Nauen R, Le Goff G. 2021. Transcriptional regulation of xenobiotic detoxification genes in insects: an overview. Pestic. . Biochem. Physiol. 174:104822
    [Google Scholar]
  3. 3. 
    Amichot M, Tarès S, Brun-Barale A, Arthaud L, Bride JM, Bergé JB 2004. Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2 enable DDT metabolism. Eur. J. Biochem. 27:1250–57
    [Google Scholar]
  4. 4. 
    Balabanidou V, Kampouraki A, MacLean M, Blomquist GJ, Tittiger C et al. 2016. Cytochromes P450 associated with insecticide resistance catalyze cuticular hydrocarbon production in Anopheles gambiae. PNAS 113:9268–73
    [Google Scholar]
  5. 5. 
    Bass C, Zimmer CT, Riveron JM, Wilding CS, Wondji CS et al. 2013. Gene amplification and microsatellite polymorphism underlie a recent insect host shift. PNAS 110:19460–65P450 enzymes that detoxify plant defense chemistry can be preadapted to confer resistance to synthetic insecticides.
    [Google Scholar]
  6. 6. 
    Beadle K, Singh KS, Troczka BJ, Randall E, Zaworra M et al. 2019. Genomic insights into neonicotinoid sensitivity in the solitary bee Osmia bicornis. PLOS Genet 15:e1007903
    [Google Scholar]
  7. 7. 
    Berenbaum MR, Johnson R. 2015. Xenobiotic detoxification pathways in honey bees. Curr. Opin. Insect Sci. 10:51–58
    [Google Scholar]
  8. 8. 
    Brattsten LB, Wilkinson CF, Eisner T. 1977. Herbivore-plant interactions: mixed-function oxidases and secondary plant substances. Science 196:1349–52
    [Google Scholar]
  9. 9. 
    Calla B, Wu WY, Dean CAE, Schuler MA, Berenbaum MR. 2020. Substrate-specificity of cytochrome P450-mediated detoxification as an evolutionary strategy for specialization on furanocoumarin-containing hostplants: CYP6AE89 in parsnip webworms. Insect Mol. Biol. 29:112–23
    [Google Scholar]
  10. 10. 
    Carareto CM, Hernandez EH, Vieira C. 2014. Genomic regions harboring insecticide resistance-associated Cyp genes are enriched by transposable element fragments carrying putative transcription factor binding sites in two sibling Drosophila species. Gene 537:93–99
    [Google Scholar]
  11. 11. 
    Carino FA, Koener JF, Plapp FW Jr., Feyereisen R. 1994. Constitutive overexpression of the cytochrome P450 gene CYP6A1 in a house fly strain with metabolic resistance to insecticides. Insect Biochem. Mol. Biol. 24:411–18
    [Google Scholar]
  12. 12. 
    Casida JE. 2018. Pesticide detox by design. J. Agric. Food Chem. 66:9379–83
    [Google Scholar]
  13. 13. 
    Chen S, Li X 2007. Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes. BMC Evol. Biol. 7:46
    [Google Scholar]
  14. 14. 
    Chandor-Proust A, Bibby J, Régent-Kloeckner M, Roux J, Guittard-Crilat E et al. 2013. The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural modelling. Biochem. J. 455:75–85
    [Google Scholar]
  15. 15. 
    Chouaibou MS, Chabi J, Bingham GV, Knox TB, N'Dri L et al. 2012. Increase in susceptibility to insecticides with aging of wild Anopheles gambiae mosquitoes from Côte d'Ivoire. BMC Infect. Dis. 12:214
    [Google Scholar]
  16. 16. 
    Chung H, Bogwitz MR, McCart C, Andrianopoulos A, Ffrench-Constant RH et al. 2007. Cis-regulatory elements in the Accord retrotransposon result in tissue-specific expression of the Drosophila melanogaster insecticide resistance gene Cyp6g1. Genetics 175:1071–77
    [Google Scholar]
  17. 17. 
    Cohen MB, Schuler MA, Berenbaum MR. 1992. A host-inducible cytochrome P-450 from a host-specific caterpillar: molecular cloning and evolution. PNAS 89:10920–24
    [Google Scholar]
  18. 18. 
    Cooper AMW, Silver K, Zhang J, Park Y, Zhu KY 2019. Molecular mechanisms influencing efficiency of RNA interference in insects. Pest Manag. Sci. 75:18–28
    [Google Scholar]
  19. 19. 
    Cui S, Wang L, Ma L, Geng X 2016. P450-mediated detoxification of botanicals in insects. Phytoparasitica 44:585–99
    [Google Scholar]
  20. 20. 
    Daborn PJ, Yen JL, Bogwitz MR, Le Goff G, Feil E et al. 2002. A single P450 allele associated with insecticide resistance in Drosophila. Science 297:2253–56
    [Google Scholar]
  21. 21. 
    Demaeght P, Dermauw W, Tsakireli D, Khajehali J, Nauen R et al. 2013. Molecular analysis of resistance to acaricidal spirocyclic tetronic acids in Tetranychus urticae: CYP392E10 metabolizes spirodiclofen, but not its corresponding enol. Insect Biochem. Mol. Biol. 43:544–54
    [Google Scholar]
  22. 22. 
    Dermauw W, Van Leeuwen T, Feyereisen R. 2020. Diversity and evolution of the P450 family in arthropods. Insect Biochem. Mol. Biol. 127:103490
    [Google Scholar]
  23. 23. 
    Dermauw W, Wybouw N, Rombauts S, Menten B, Vontas J et al. 2013. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. PNAS 110:E113–22
    [Google Scholar]
  24. 24. 
    Douris V, Denecke S, Van Leeuwen T, Bass C, Nauen R, Vontas J 2020. Using CRISPR/Cas9 genome modification to understand the genetic basis of insecticide resistance: Drosophila and beyond. Pestic. Biochem. Physiol. 167:104595
    [Google Scholar]
  25. 25. 
    Duffy JB. 2002. GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis 34:1–15
    [Google Scholar]
  26. 26. 
    Durairaj P, Fan L, Du W, Ahmad S, Mebrahtu D et al. 2019. Functional expression and activity screening of all human cytochrome P450 enzymes in fission yeast. FEBS Lett 593:1372–80
    [Google Scholar]
  27. 27. 
    Edi CV, Djogbénou L, Jenkins AM, Regna K, Muskavitch MAT et al. 2014. CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae. PLOS Genet 10:e1004236
    [Google Scholar]
  28. 28. 
    Feyereisen R. 2011. Arthropod CYPomes illustrate the tempo and mode in P450 evolution. Biochim. Biophys. Acta Proteins Proteom. 1814:19–28
    [Google Scholar]
  29. 29. 
    Feyereisen R 2012. Insect CYP genes and P450 enzymes. Insect Molecular Biology and Biochemistry LI Gilbert 236–316 Amsterdam: Elsevier
    [Google Scholar]
  30. 30. 
    Feyereisen R. 2020. Origin and evolution of the CYP4G subfamily in insects, cytochrome P450 enzymes involved in cuticular hydrocarbon synthesis. Mol. Phylogenet. Evol. 143:106695
    [Google Scholar]
  31. 31. 
    Fogleman JC, Danielson PB, Macintyre RJ. 1998. The molecular basis of adaptation in Drosophila: the role of cytochrome P450s. Evol. Biol. 30:15–77
    [Google Scholar]
  32. 32. 
    Gimenez S, Abdelgaffar H, Le Goff G, Hilliou F, Blanco CA et al. 2020. Adaptation by copy number variation increases insecticide resistance in the fall armyworm. Commun. Biol. 3:664
    [Google Scholar]
  33. 33. 
    Giraudo M, Hilliou F, Fricaux T, Audant P, Feyereisen R, Le, Goff G. 2015. Cytochrome P450s from the fall armyworm (Spodoptera frugiperda): responses to plant allelochemicals and pesticides. Insect Mol. Biol. 24:115–28
    [Google Scholar]
  34. 34. 
    Haas J, Nauen R. 2021. Pesticide risk assessment at the molecular level using honey bee cytochrome P450 enzymes: a complementary approach Environ. Int. 147:106372First description of a mechanistic approach for bee pollinator risk assessment and azole-mediated neonicotinoid synergism by CYP9Q enzyme inhibition.
    [Google Scholar]
  35. 35. 
    Hamada A, Wahl GD, Nesterov A, Nakao T, Kawashima M, Banba S. 2019. Differential metabolism of imidacloprid and dinotefuran by Bemisia tabaci CYP6CM1 variants. Pestic. Biochem. Physiol. 159:27–33
    [Google Scholar]
  36. 36. 
    Harrop TWR, Denecke S, Yang YT, Chan J, Daborn PJ et al. 2018. Evidence for activation of nitenpyram by a mitochondrial cytochrome P450 in Drosophila melanogaster. Pest Manag. Sci. 74:1616–22
    [Google Scholar]
  37. 37. 
    Hayward A, Beadle K, Singh KS, Exeler N, Zaworra M et al. 2019. The leafcutter bee, Megachile rotundata, is more sensitive to N-cyanoamidine neonicotinoid and butenolide insecticides than other managed bees. Nat. Ecol. Evol. 3:1521–24P450s that are preadapted to detoxify certain insecticides are not ubiquitous across all managed bee species.
    [Google Scholar]
  38. 38. 
    Homem RA, Davies TGE. 2018. An overview of functional genomic tools in deciphering insecticide resistance. Curr. Opin. Insect Sci. 27:103–10
    [Google Scholar]
  39. 39. 
    Hu B, Zhang SH, Ren MM, Tian XR, Wei Q et al. 2019. The expression of Spodoptera exigua P450 and UGT genes: tissue specificity and response to insecticides. Insect Sci 26:199–216
    [Google Scholar]
  40. 40. 
    Hung CF, Holzmacher R, Connolly E, Berenbaum MR, Schuler MA 1996. Conserved promoter elements in the CYP6B gene family suggest common ancestry for cytochrome P450 monooxygenases mediating furanocoumarin detoxification. PNAS 93:12200–5
    [Google Scholar]
  41. 41. 
    Ibrahim SS, Riveron JM, Bibby J, Irving H, Yunta C et al. 2015. Allelic variation of cytochrome P450s drives resistance to bednet insecticides in a major malaria vector. PLOS Genet 11:e1005618
    [Google Scholar]
  42. 42. 
    Ingham VA, Jones CM, Pignatelli P, Balabanidou V, Vontas J et al. 2014. Dissecting the organ specificity of insecticide resistance candidate genes in Anopheles gambiae: known and novel candidate genes. BMC Genom. 15:1018
    [Google Scholar]
  43. 43. 
    Itokawa K, Komagata O, Kasai S, Okamura Y, Masada M, Tomita T. 2010. Genomic structures of Cyp9m10 in pyrethroid resistant and susceptible strains of Culex quinquefasciatus. Insect Biochem. Mol. Biol. 40:631–40
    [Google Scholar]
  44. 44. 
    Itokawa K, Komagata O, Kasai S, Tomita T 2015. A single nucleotide change in a core promoter is involved in the progressive overexpression of the duplicated CYP9M10 haplotype lineage in Culex quinquefasciatus. . Insect Biochem. Mol. Biol. 66:96–102
    [Google Scholar]
  45. 45. 
    Jones CM, Daniels M, Andrews M, Slater R, Lind RJ et al. 2011. Age-specific expression of a P450 monooxygenase (CYP6CM1) correlates with neonicotinoid resistance in Bemisia tabaci. . Pestic. Biochem. Physiol. 101:53–58
    [Google Scholar]
  46. 46. 
    Jones CM, Haji KA, Khatib BO, Bagi J, Mcha J et al. 2013. The dynamics of pyrethroid resistance in Anopheles arabiensis from Zanzibar and an assessment of the underlying genetic basis. Parasit. Vectors 6:343
    [Google Scholar]
  47. 47. 
    Joußen N, Agnolet S, Lorenz S, Schöne SE, Ellinger R et al. 2012. Resistance of Australian Helicoverpa armigera to fenvalerate is due to the chimeric P450 enzyme CYP337B3. PNAS 109:15206–11Novel P450s that confer resistance to insecticides can arise from unequal crossing-over between two parental P450 genes, resulting in a chimeric enzyme.
    [Google Scholar]
  48. 48. 
    Joußen N, Heckel DG. 2021. Saltational evolution of a pesticide-metabolizing cytochrome P450 in a global crop pest. Pest Manag. Sci. 77:3325–32
    [Google Scholar]
  49. 49. 
    Kalsi M, Palli SR. 2015. Transcription factors, CncC and Maf, regulate expression of CYP6BQ genes responsible for deltamethrin resistance in Tribolium castaneum. Insect Biochem. Mol. Biol. 65:47–56
    [Google Scholar]
  50. 50. 
    Kalsi M, Palli SR. 2017. Transcription factor cap n collar C regulates multiple cytochrome P450 genes conferring adaptation to potato plant allelochemicals and resistance to imidacloprid in Leptinotarsa decemlineata (Say). Insect Biochem. Mol. Biol. 83:1–12
    [Google Scholar]
  51. 51. 
    Karunker I, Benting J, Lueke B, Ponge T, Nauen R et al. 2008. Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem. Mol. Biol. 38:634–44
    [Google Scholar]
  52. 52. 
    Kefia M, Balabanidou V, Douris V, Lycett G, Feyereisen R, Vontas J 2019. Two functionally distinct CYP4G genes of Anopheles gambiae contribute to cuticular hydrocarbon biosynthesis. Insect Biochem. Mol. Biol. 110:52–59
    [Google Scholar]
  53. 53. 
    Kim JH, Gellatly KJ, Nauen R, Kohler M, Lueke B et al. 2018. Detoxification of ivermectin by ABC transporter C4 and CYP6CJ1 in the human body louse, Pediculus humanus. . Insect Mol. Biol. 27:73–82
    [Google Scholar]
  54. 54. 
    Kim YH, Issa MS, Cooper AMW, Zhu KY. 2015. RNA interference: applications and advances in insect toxicology and insect pest management. Pestic. Biochem. Physiol. 120:109–17
    [Google Scholar]
  55. 55. 
    King-Jones K, Horner MA, Lam G, Thummel CS. 2006. The DHR96 nuclear receptor regulates xenobiotic responses in Drosophila. Cell Metab 4:37–48
    [Google Scholar]
  56. 56. 
    Konno T, Hodgson E, Dauterman WC. 1989. Studies on methyl parathion resistance in Heliothis virescens. Pestic. Biochem. Physiol. 33:189–99
    [Google Scholar]
  57. 57. 
    Le Goff G, Hilliou F 2017. Resistance evolution in Drosophila: the case of CYP6G1. Pest Manag. Sci. 73:493–99
    [Google Scholar]
  58. 58. 
    Li T, Cao C, Yang T, Zhang L, He L et al. 2015. A G-protein-coupled receptor regulation pathway in cytochrome P450-mediated permethrin-resistance in mosquitoes, Culex quinquefasciatus. Sci. Rep. 5:17772
    [Google Scholar]
  59. 59. 
    Li T, Liu L, Zhang L, Liu N. 2014. Role of G-protein-coupled receptor-related genes in insecticide resistance of the mosquito, Culex quinquefasciatus. Sci. Rep. 4:6474
    [Google Scholar]
  60. 60. 
    Li T, Liu N 2017. Regulation of P450-mediated permethrin resistance in Culex quinquefasciatus by the GPCR/Gαs/AC/cAMP/PKA signaling cascade. Biochem. Biophys. Rep. 12:12–19
    [Google Scholar]
  61. 61. 
    Li X, Schuler MA, Berenbaum MR. 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52:231–53
    [Google Scholar]
  62. 62. 
    Li X, Shan C, Li F, Liang P, Smagghe G, Gao X. 2019. Transcription factor FTZ-F1 and cis-acting elements mediate expression of CYP6BG1 conferring resistance to chlorantraniliprole in Plutella xylostella. Pest Manag. Sci. 75:1172–80
    [Google Scholar]
  63. 63. 
    Liu N, Li M, Gong Y, Liu F, Li T. 2015. Cytochrome P450s: their expression, regulation, and role in insecticide resistance. Pestic. Biochem. Physiol. 120:77–81
    [Google Scholar]
  64. 64. 
    Lopez-Osorio F, Wurm Y. 2020. Healthy pollinators: evaluating pesticides with molecular medicine approaches. Trends Ecol. Evol. 35:380–83
    [Google Scholar]
  65. 65. 
    Lu K, Cheng Y, Li W, Li Y, Zeng R, Song Y. 2020. Activation of CncC pathway by ROS burst regulates cytochrome P450 CYP6AB12 responsible for λ-cyhalothrin tolerance in Spodoptera litura. J. Hazard. Mater. 387:121698
    [Google Scholar]
  66. 66. 
    Manjon C, Troczka BJ, Zaworra M, Beadle K, Randall E et al. 2018. Unravelling the molecular determinants of bee sensitivity to neonicotinoid insecticides. Curr. Biol. 28:1137–43Recombinant expression of the entire honey bee CYP3 clan revealed CYP9Q2/3 to be the key determinants of bee sensitivity to neonicotinoids.
    [Google Scholar]
  67. 67. 
    Mao W, Schuler MA, Berenbaum MR. 2011. CYP9Q-mediated detoxification of acaricides in the honey bee (Apis mellifera). PNAS 108:12657–62First description of CYP9Q enzymes involved in honey bee sensitivity to acaricides.
    [Google Scholar]
  68. 68. 
    Mao W, Schuler MA, Berenbaum MR. 2015. Task-related differential expression of four cytochrome P450 genes in honey bee appendages. Insect Mol. Biol. 24:582–88
    [Google Scholar]
  69. 69. 
    McDonnell CM, Petersen Brown R, Berenbaum MR, Schuler MA. 2004. Conserved regulatory elements in the promoters of two allelochemical-inducible cytochrome P450 genes differentially regulate transcription. Insect Biochem. Mol. Biol. 34:1129–39
    [Google Scholar]
  70. 70. 
    McLeman Α, Troczka BJ, Homem RA, Duarte A, Zimmer C et al. 2020. Fly-Tox: a panel of transgenic flies expressing pest and pollinator cytochrome P450s. Pestic. Biochem. Physiol. 169:104674
    [Google Scholar]
  71. 71. 
    Mitchell S, Stevenson B, Muller P, Wilding C, Yawson A et al. 2012. Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana. PNAS 109:6147–52
    [Google Scholar]
  72. 72. 
    Mugenzi LMJ, Menze BD, Tchouakui M, Wondji MJ, Irving H et al. 2019. Cis-regulatory CYP6P9b P450 variants associated with loss of insecticide-treated bed net efficacy against Anopheles funestus. . Nat. Commun. 10:4652This study showed that cis-regulatory P450 variants confer operationally relevant pyrethroid resistance in Anopheles funestus.
    [Google Scholar]
  73. 73. 
    Muller P, Warr E, Stevenson BJ, Pignatelli PM, Morgan JC et al. 2008. Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolizes pyrethroids. PLOS Genet. 4:e1000286
    [Google Scholar]
  74. 74. 
    Nakata K, Tanaka Y, Nakano T, Adachi T, Tanaka H et al. 2006. Nuclear receptor-mediated transcriptional regulation in Phase I, II, and III xenobiotic metabolizing systems. Drug Metab. Pharmacokinet. 21:437–57
    [Google Scholar]
  75. 75. 
    Nauen R, Bielza P, Denholm I, Gorman K 2008. Age-specific expression of resistance to a neonicotinoid insecticide in the whitefly Bemisia tabaci. . Pest Manag. Sci. 64:1106–10
    [Google Scholar]
  76. 76. 
    Nauen R, Vontas J, Kaussmann M, Wölfel K 2013. Pymetrozine is hydroxylated by CYP6CM1, a cytochrome P450 conferring neonicotinoid-resistance in Bemisia tabaci. Pest Manag. Sci. 69:457–61
    [Google Scholar]
  77. 77. 
    Nauen R, Wölfel K, Lueke B, Myridakis A, Tsakireli D et al. 2015. Development of a lateral flow test to detect metabolic resistance in Bemisia tabaci mediated by CYP6CM1, a cytochrome P450 with broad spectrum catalytic efficiency. Pestic. Biochem. Physiol. 121:3–11
    [Google Scholar]
  78. 78. 
    Nauen R, Zimmer C, Vontas J. 2021. Heterologous expression of insect P450 enzymes that metabolize xenobiotics. Curr. Opin. Insect Sci. 43:78–84
    [Google Scholar]
  79. 79. 
    Nelson DR. 2018. Cytochrome P450 diversity in the tree of life. Biochim. Biophys. Acta Proteins Proteom. 1866:141–54
    [Google Scholar]
  80. 80. 
    Palli SR. 2020. CncC/Maf-mediated xenobiotic response pathway in insects. Arch. Insect Biochem. Physiol. 104:e21674
    [Google Scholar]
  81. 81. 
    Pang R, Chen M, Liang Z, Yue X, Ge H, Zhang W 2016. Functional analysis of CYP6ER1, a P450 gene associated with imidacloprid resistance in Nilaparvata lugens. Sci. Rep. 6:34992
    [Google Scholar]
  82. 82. 
    Perry T, Batterham P 2018. Harnessing model organisms to study insecticide resistance. Curr. Opin. Insect Sci. 27:61–67
    [Google Scholar]
  83. 83. 
    Perry T, Batterham P, Daborn PJ. 2011. The biology of insecticidal activity and resistance. Insect Biochem. Mol. Biol. 41:411–22
    [Google Scholar]
  84. 84. 
    Poupardin R, Reynaud S, Strode C, Ranson H, Vontas J, David JP. 2008. Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact on larval tolerance to chemical insecticides. Insect Biochem. Mol. Biol. 38:540–51
    [Google Scholar]
  85. 85. 
    Pu J, Sun H, Wang J, Wu M, Wang K et al. 2016. Multiple cis-acting elements involved in up-regulation of a cytochrome P450 gene conferring resistance to deltamethrin in small brown planthopper, Laodelphax striatellus (Fallén). Insect Biochem. Mol. Biol. 78:20–28
    [Google Scholar]
  86. 86. 
    Pym A, Singh KS, Nordgren Å, Davies TGE, Zimmer CT et al. 2019. Host plant adaptation in the polyphagous whitefly, Trialeurodes vaporariorum, is associated with transcriptional plasticity and altered sensitivity to insecticides. BMC Genom. 20:996
    [Google Scholar]
  87. 87. 
    Rane RV, Ghodke AB, Hoffmann AA, Edwards OR, Walsh TK, Oakeshott JG. 2019. Detoxifying enzyme complements and host use phenotypes in 160 insect species. Curr. Opin. Insect Sci. 31:131–38
    [Google Scholar]
  88. 88. 
    Rasool A, Joußen N, Lorenz S, Ellinger R, Schneider B et al. 2014. An independent occurrence of the chimeric P450 enzyme CYP337B3 of Helicoverpa armigera confers cypermethrin resistance in Pakistan. Insect Biochem. Mol. Biol. 53:54–65
    [Google Scholar]
  89. 89. 
    Riga M, Ilias A, Vontas J, Douris V. 2020. Co-expression of a homologous cytochrome P450 reductase is required for in vivo validation of the Tetranychus urticae CYP392A16-based abamectin resistance in Drosophila. Insects 11:829
    [Google Scholar]
  90. 90. 
    Riga M, Myridakis A, Tsakireli D, Morou E, Stephanou EG et al. 2015. Functional characterization of the Tetranychus urticae CYP392A11, a cytochrome P450 that hydroxylates the METI acaricides cyenopyrafen and fenpyroximate. Insect Biochem. Mol. Biol. 65:91–99
    [Google Scholar]
  91. 91. 
    Riga M, Tsakireli D, Ilias A, Morou E, Myridakis A et al. 2014. Abamectin is metabolized by CYP392A, a cytochrome P450 associated with high levels of acaricide resistance in Tetranychus urticae. Insect Biochem. Mol. Biol. 46:43–53
    [Google Scholar]
  92. 92. 
    Riveron JM, Irving H, Ndula M, Barnes KG, Ibrahim SS et al. 2013. Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus. PNAS 110:252–57
    [Google Scholar]
  93. 93. 
    Roditakis E, Morou E, Tsagkarakou A, Riga M, Nauen R et al. 2011. Assessment of the Bemisia tabaci CYP6CM1vQ transcript and protein levels in laboratory and field-caught imidacloprid resistant insects, and cross-metabolism potential of the recombinant enzyme. Insect Sci 18:23–29
    [Google Scholar]
  94. 94. 
    Sabourault C, Guzov VM, Koener JF, Claudianos C, Plapp FW Jr., Feyereisen R. 2001. Overproduction of a P450 that metabolizes diazinon is linked to a loss-of-function in the chromosome 2 ali-esterase (MdαE7) gene in resistant house flies. Insect Mol. Biol. 10:609–18
    [Google Scholar]
  95. 95. 
    Salgado V, David MD. 2017. Chance and design in proinsecticide discovery. Pest Manag. Sci. 73:723–30
    [Google Scholar]
  96. 96. 
    Samantsidis GR, Panteleri R, Denecke S, Kounadi S, Christou I et al. 2020. ‘What I cannot create, I do not understand’: functionally validated synergism of metabolic and target site insecticide resistance. Proc. R. Soc. B 287:20200838
    [Google Scholar]
  97. 97. 
    Scanlan JL, Gledhill-Smith RS, Battlay P, Robin C 2020. Genomic and transcriptomic analyses in Drosophila suggest that the ecdysteroid kinase-like (EcKL) gene family encodes the ‘detoxification-by-phosphorylation’ enzymes of insects. Insect Biochem. Mol. Biol. 123:103429
    [Google Scholar]
  98. 98. 
    Schmidt JM, Good RT, Appleton B, Sherrard J, Raymant GC et al. 2010. Copy number variation and transposable elements feature in recent, ongoing adaptation at the Cyp6g1 locus. PLOS Genet 6:e1000998
    [Google Scholar]
  99. 99. 
    Schuler MA, Berenbaum MR. 2013. Structure and function of cytochrome P450s in insect adaptation to natural and synthetic toxins: insights gained from molecular modeling. J. Chem. Ecol. 39:1232–45
    [Google Scholar]
  100. 100. 
    Scott JG, Buchon N. 2019. Drosophila melanogaster as a powerful tool for studying insect toxicology. Pestic. Biochem. Physiol. 161:95–103
    [Google Scholar]
  101. 101. 
    Sezutsu H, Le Goff G, Feyereisen R 2013. Origins of P450 diversity. Phil. Trans. R. Soc. B 368:20120428
    [Google Scholar]
  102. 102. 
    Shi Y, Wang H, Liu Z, Wu S, Yang Y et al. 2018. Phylogenetic and functional characterization of ten P450 genes from the CYP6AE subfamily of Helicoverpa armigera involved in xenobiotic metabolism. Insect Biochem. Mol. Biol. 93:79–91
    [Google Scholar]
  103. 103. 
    Singh KS, Troczka BJ, Duarte A, Balabanidou V, Triss N et al. 2020. The genetic architecture of a host shift: An adaptive walk protected an aphid and its endosymbiont from plant chemical defences. Sci. Adv. 6:eaba1070
    [Google Scholar]
  104. 104. 
    Smith LB, Sears C, Sun H, Mertz RW, Kasai S, Scott JG 2019. CYP-mediated resistance and cross-resistance to pyrethroids and organophosphates in Aedes aegypti in the presence and absence of kdr. Pestic. Biochem. Physiol. 160:119–26
    [Google Scholar]
  105. 105. 
    Snyder MJ, Glendinning JI. 1996. Causal connection between detoxification enzyme activity and consumption of a toxic plant compound. J. Comp. Physiol. A 179:255–61
    [Google Scholar]
  106. 106. 
    Stevenson BJ, Pignatelli P, Nikou D, Paine M 2012. Characterization of cytochrome P450s associated with pyrethroids resistance in Aedes aegypti. . PLOS Negl. Trop. Dis. 6:e1595
    [Google Scholar]
  107. 107. 
    Sun X, Gong Y, Ali S, Hou M 2018. Mechanisms of resistance to thiamethoxam and dinotefuran compared to imidacloprid in the brown planthopper: roles of cytochrome P450 monooxygenase and a P450 gene CYP6ER1. Pestic. Biochem. Physiol. 150:17–26
    [Google Scholar]
  108. 108. 
    Troczka BJ, Homem RA, Reid R, Beadle K, Kohler M et al. 2019. Identification and functional characterisation of a novel N-cyanoamidine neonicotinoid metabolising cytochrome P450, CYP9Q6, from the buff-tailed bumblebee Bombus terrestris. . Insect Biochem. Mol. Biol. 111:103171
    [Google Scholar]
  109. 109. 
    Van Leeuwen T, Dermauw W. 2016. The molecular evolution of xenobiotic metabolism and resistance in chelicerate mites. Annu. Rev. Entomol. 61:475–98
    [Google Scholar]
  110. 110. 
    Vandenhole M, Dermauw W, Van Leeuwen T. 2021. Short term transcriptional responses of P450s to phytochemicals in insects and mites. Curr. Opin. Insect Sci. 43:117–27
    [Google Scholar]
  111. 111. 
    Vlogiannitis S, Mavridis K, Dermauw W, Snoeck S, Katsavou E et al. 2021. Reduced pro-insecticide activation by cytochrome P450 confers coumaphos resistance in the major bee parasite Varroa destructor. PNAS 118:e2020380118Reduced proinsecticide activation as a mechanism of resistance in Varroa destructor by underexpression of a P450.
    [Google Scholar]
  112. 112. 
    Vontas J, Grigoraki L, Morgan J, Tsakireli D, Fuseini G et al. 2018. Rapid selection of a pyrethroid metabolic enzyme CYP9K1 by operational malaria control activities. PNAS 115:4619–24
    [Google Scholar]
  113. 113. 
    Vontas J, Katsavou E, Mavridis K 2020. Cytochrome P450-based metabolic insecticide resistance in Anopheles and Aedes mosquito vectors: muddying the waters. Pestic. Biochem. Physiol. 170:104666
    [Google Scholar]
  114. 114. 
    Walsh TK, Joußen N, Tian K, McGaughran A, Anderson CJ et al. 2018. Multiple recombination events between two cytochrome P450 loci contribute to global pyrethroid resistance in Helicoverpa armigera. PLOS ONE 13:e0197760
    [Google Scholar]
  115. 115. 
    Wan H, Liu Y, Li M, Zhu S, Li X et al. 2014. Nrf2/Maf-binding-site-containing functional Cyp6a2 allele is associated with DDT resistance in Drosophilamelanogaster. Pest Manag. Sci. 70:1048–58
    [Google Scholar]
  116. 116. 
    Wang H, Shi Y, Wang L, Liu S, Wu S et al. 2018. CYP6AE gene cluster knockout in Heli-coverpa armigera reveals role in detoxification of phytochemicals and insecticides. . Nat. Commun. 9:4820First report of a complete P450 gene cluster knock-out in a global lepidopteran pest of agricultural importance.
    [Google Scholar]
  117. 117. 
    Wang R, Zhu Y, Deng L, Zhang H, Wang Q et al. 2017. Imidacloprid is hydroxylated by Laodelphax striatellus CYP6AY3v2. Insect Mol. Biol. 26:543–51
    [Google Scholar]
  118. 118. 
    Weedall GD, Mugenzi LMJ, Menze BD, Tchouakui M, Ibrahim SS et al. 2019. A cytochrome P450 allele confers pyrethroid resistance on a major African malaria vector, reducing insecticide-treated bednet efficacy. Sci. Transl. Med. 11:eaat7386
    [Google Scholar]
  119. 119. 
    Wilding CS. 2018. Regulating resistance: CncC:Maf, antioxidant response elements and the overexpression of detoxification genes in insecticide resistance. Curr. Opin. Insect Sci. 27:89–96
    [Google Scholar]
  120. 120. 
    Wilding CS, Smith I, Lynd A, Yawson AE, Weetman D et al. 2012. A cis-regulatory sequence driving metabolic insecticide resistance in mosquitoes: functional characterization and signatures of selection. Insect Biochem. Mol. Biol. 42:699–707
    [Google Scholar]
  121. 121. 
    Wondji CS, Irving H, Morgan J, Lobo NF, Collins FH et al. 2009. Two duplicated P450 genes are associated with pyrethroid resistance in Anopheles funestus, a major malaria vector. Genome Res 19:452–59
    [Google Scholar]
  122. 122. 
    Wu L, Yu Z, Jia Q, Zhang X, Ma E et al. 2020. Knockdown of LmCYP303A1 alters cuticular hydrocarbon profiles and increases the susceptibility to desiccation and insecticides in Locusta migratoria. Pestic. Biochem. Physiol. 168:104637
    [Google Scholar]
  123. 123. 
    Yang X, Deng S, Wei X, Yang J, Zhao Q et al. 2020. MAPK-directed activation of the whitefly transcription factor CREB leads to P450-mediated imidacloprid resistance. PNAS 117:10246–53
    [Google Scholar]
  124. 124. 
    Yunta C, Hemmings K, Stevenson B, Koekemoer LL, Matambo T et al. 2019. Cross-resistance profiles of malaria mosquito P450s associated with pyrethroid resistance against WHO insecticides. Pestic. Biochem. Physiol. 161:61–67
    [Google Scholar]
  125. 125. 
    Zhang X, Dong J, Wu H, Zhang H, Zhang J, Ma E. 2019. Knockdown of cytochrome P450 CYP6 family genes increases susceptibility to carbamates and pyrethroids in the migratory locust, Locusta migratoria. Chemosphere 223:48–57
    [Google Scholar]
  126. 126. 
    Zhu F, Parthasarathy R, Bai H, Woithe K, Kaussmann M et al. 2010. A brain-specific cytochrome P450 responsible for the majority of deltamethrin resistance in the QTC279 strain of Tribolium castaneum. PNAS 107:8557–62
    [Google Scholar]
  127. 127. 
    Zimmer CT, Bass C, Williamson MS, Kaussmann M, Wölfel K et al. 2014. Molecular and functional characterization of CYP6BQ23, a cytochrome P450 conferring resistance to pyrethroids in European populations of pollen beetle, Meligethes aeneus. Insect Biochem. Mol. Biol. 45:18–29
    [Google Scholar]
  128. 128. 
    Zimmer CT, Garrood WT, Singh KS, Randall E, Lueke B et al. 2018. Neofunctionalization of duplicated P450 genes drives the evolution of insecticide resistance in the brown planthopper. Curr. Biol. 28:268–74
    [Google Scholar]
/content/journals/10.1146/annurev-ento-070621-061328
Loading
/content/journals/10.1146/annurev-ento-070621-061328
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error