1932

Abstract

Vine weevil, also known as black vine weevil, , has been one of the most economically important pest species of global horticultural crops for the past five decades. This period has seen many changes in crop protection practices, including wide-scale adoption of biological controls such as entomopathogenic nematodes and fungi in place of conventional synthetic insecticides. Despite the experimental efficacy of these controls, growers continue to report significant crop losses associated with vine weevil infestation. We argue that simply switching from synthetic insecticides to biological controls, rather than using these controls as part of an integrated management program, is a key factor in the continued importance of this pest. An improved understanding of vine weevil biology and ecology is at the center of the development of truly integrated pest management programs. To this end, we identify opportunities created through recent vine weevil research and highlight key knowledge gaps in which further research may contribute to improved future management approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-071221-060822
2022-01-07
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/ento/67/1/annurev-ento-071221-060822.html?itemId=/content/journals/10.1146/annurev-ento-071221-060822&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ameye M, Allmann S, Verwaeren J, Smagghe G, Haesaert G et al. 2018. Green leaf volatile production by plants: a meta-analysis. New Phytol 220:3666–83
    [Google Scholar]
  2. 2. 
    Ansari MA, Butt TM. 2013. Influence of the application methods and doses on the susceptibility of black vine weevil larvae Otiorhynchus sulcatus to Metarhizium anisopliae in field-grown strawberries. BioControl 58:2257–67
    [Google Scholar]
  3. 3. 
    Ansari MA, Shah FA, Butt TM. 2008. Combined use of entomopathogenic nematodes and Metarhizium anisopliae as a new approach for black vine weevil, Otiorhynchus sulcatus, control. Entomol. Exp. Appl. 129:3340–47
    [Google Scholar]
  4. 4. 
    Ansari MA, Shah FA, Butt TM. 2010. The entomopathogenic nematode Steinernema kraussei and Metarhizium anisopliae work synergistically in controlling overwintering larvae of the black vine weevil, Otiorhynchus sulcatus, in strawberry growbags. Biocontrol Sci. Technol. 20:199–105
    [Google Scholar]
  5. 5. 
    Backhaus GF. 1996. Vine weevil problems on ornamental plants. Proceedings of the Second International Workshop on Vine Weevil (Otiorhynchus sulcatus Fabr.) (Coleoptera: Curculionidae)12–18 Berlin: Blackwell Wissenschafts
    [Google Scholar]
  6. 6. 
    Barrangou R, Doudna JA. 2016. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34:9933–41
    [Google Scholar]
  7. 7. 
    Bedding RA, Miller LA. 1981. Use of a nematode, Heterorhabditis heliothidis, to control black vine weevil, Otiorhynchus sulcatus, in potted plants. Ann. Appl. Biol. 99:211–16
    [Google Scholar]
  8. 8. 
    Bedding RA, Molyneux AS, Akhurst RJ. 1983. Heterorhabditis spp., Neoaplectana spp., and Steinernema kraussei: interspecific and intraspecific differences in infectivity for insects. Exp. Parasitol. 55:2249–57
    [Google Scholar]
  9. 9. 
    Bennison J, Boardman K, Pooley D, Talbot D, Dyer C et al. 2020. Improving vine weevil control in hardy nursery stock Factsheet 24/16 Auckland Dist. Health Board New Zealand:
    [Google Scholar]
  10. 10. 
    Bennison J, Chandler D, Prince G, Pope T, Atwood J et al. 2014. A review of vine weevil knowledge in order to design best-practice IPM protocols suitable for implementation in UK horticulture Rep., Auckland Dist. Health Board New Zealand:
    [Google Scholar]
  11. 11. 
    Blackshaw RP. 1984. Studies on the chemical control of vine weevil larvae. Proceedings of the British Crop Protection Conference: Pests and Diseases1093–98 Cambridge, UK: BCPC Counc.
    [Google Scholar]
  12. 12. 
    Blackshaw RP. 1986. An evaluation of seven controlled-release insecticides for the control of vine weevil larvae. J. Hortic. Sci. 61:1109–11
    [Google Scholar]
  13. 13. 
    Blackshaw RP. 1996. Importance of overwintering adults to summer oviposition in Northern Ireland. Proceedings of the Second International Workshop on Vine Weevil (Otiorhynchus sulcatus Fabr.) (Coleoptera: Curculionidae)36–40 Berlin: Blackwell Wissenschafts
    [Google Scholar]
  14. 14. 
    Blackshaw RP, O'Neill S. 1987. Chlorpyrifos compost treatment for vine weevil control: growth of ornamental plants compared with an aldrin standard. J. Hortic. Sci. 62:167–69
    [Google Scholar]
  15. 15. 
    Bruce TJA, Wadhams LJ, Woodcock CM. 2005. Insect host location: a volatile situation. Trends Plant Sci 10:6269–74
    [Google Scholar]
  16. 16. 
    Bruck DJ. 2004. Natural occurrence of entomopathogens in Pacific Northwest nursery soils and their virulence to the black vine weevil, Otiorhynchus sulcatus (F.) (Coleoptera: Curculionidae). Environ. Entomol. 33:51335–43
    [Google Scholar]
  17. 17. 
    Bruck DJ. 2005. Ecology of Metarhizium anisopliae in soilless potting media and the rhizosphere: implications for pest management. Biol. Control 32:1155–63
    [Google Scholar]
  18. 18. 
    Bruck DJ. 2006. Effect of potting media components on the infectivity of Metarhizium anisopliae against the black vine weevil (Coleoptera: Curculionidae). J. Environ. Hortic. 24:291–94
    [Google Scholar]
  19. 19. 
    Bruck DJ. 2007. Efficacy of Metarhizium anisopliae as a curative application for black vine weevil (Otiorhynchus sulcatus) infesting container-grown nursery crops. J. Environ. Hortic. 25:150–56
    [Google Scholar]
  20. 20. 
    Bruck DJ, Donahue KM. 2007. Persistence of Metarhizium anisopliae incorporated into soilless potting media for control of the black vine weevil, Otiorhynchus sulcatus in container-grown ornamentals. J. Invertebr. Pathol. 95:2146–50
    [Google Scholar]
  21. 21. 
    Bruck DJ, Shapiro-Ilan DI, Lewis EE. 2005. Evaluation of application technologies of entomopathogenic nematodes for control of the black vine weevil. J. Econ. Entomol. 98:61884–89
    [Google Scholar]
  22. 22. 
    Butt TM. 2008. Development of the entomogenous fungus, Metarhizium anisopliae, for control of vine weevil and thrips in horticultural growing media HNS Rep. 133 Hortic. Dev. Counc. Kenilworth, UK:
    [Google Scholar]
  23. 23. 
    Buxton JH, Pope T. 2011. Host plant range of vine weevil Factsheet 18/10 Hortic. Dev. Counc. Kenilworth, UK:
    [Google Scholar]
  24. 24. 
    Calleja EJ, Ilbery B, Mills PR. 2012. Agricultural change and the rise of the British strawberry industry, 1920–2009. J. Rural Stud. 28:4603–11
    [Google Scholar]
  25. 25. 
    Cardim Ferreira Lima M, Damascena de Almeida Leandro ME, Valero C, Pereira Coronel LC, Gonçalves Bazzo CO. 2020. Automatic detection and monitoring of insect pests—a review. Agriculture 10:5161
    [Google Scholar]
  26. 26. 
    Casteels H, Miduturi JS, Moermans R, De Clercq R. 1994. Laboratory studies on the oviposition and adult-longevity of the black vine weevil Otiorhynchus sulcatus F. Med. Fac. Landbouw. Univ. Gent. 59:2a189–95
    [Google Scholar]
  27. 27. 
    Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP 2011. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. B 366: 1573.1987–98
    [Google Scholar]
  28. 28. 
    Clark KE, Hartley SE, Brennan RM, MacKenzie K, Johnson SN 2012. Investigating preference-performance relationships in aboveground-belowground life cycles: a laboratory and field study with the vine weevil (Otiorhynchus sulcatus). Bull. Entomol. Res. 102:163–70
    [Google Scholar]
  29. 29. 
    Cong L, Ran FA, Cox D, Lin S, Barretto R et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:6121819–23
    [Google Scholar]
  30. 30. 
    Cowles RS. 1995. Black vine weevil biology and management. Am. Rhododendr. Soc. J. 49:295–97
    [Google Scholar]
  31. 31. 
    Cowles RS. 2001. Protecting container-grown crops from black vine weevil larvae with Bifenthrin. J. Environ. Hortic. 19:4184–89
    [Google Scholar]
  32. 32. 
    Cowles RS. 2004. Impact of azadirachtin on vine weevil (Coleoptera: Curculionidae) reproduction. Agric. For. Entomol. 6:4291–94
    [Google Scholar]
  33. 33. 
    Cowles RS. 2004. Susceptibility of strawberry cultivars to the vine weevil Otiorhynchus sulcatus (Coleoptera: Curculionidae). Agric. For. Entomol. 6:4279–84
    [Google Scholar]
  34. 34. 
    Cram WT. 1970. Incongruity between larvae and adults in the acceptability of highbush blueberry-D cultivars by the black vine weevil. J. Entomol. Soc. B. C. 67:17
    [Google Scholar]
  35. 35. 
    Cross JV, Buxton JH, Jacobson R, Richardson DM. 1995. Chemical control of vine weevil larvae on container-grown hardy ornamental nursery stock 1986–1989. Ann. Appl. Biol. 127:3533–42
    [Google Scholar]
  36. 36. 
    Cross JV, Hall DR, Innocenzi PJ, Hesketh H, Jay CN, Burgess CM 2006. Exploiting the aggregation pheromone of strawberry blossom weevil Anthonomus rubi (Coleoptera: Curculionidae): part 2. Pest monitoring and control. Crop Prot 25:2155–66
    [Google Scholar]
  37. 37. 
    Doss RP. 1984. Role of glandular scales of lepidote Rhododendrons in insect resistance. J. Chem. Ecol. 10:121787–98
    [Google Scholar]
  38. 38. 
    Edger PP, Poorten TJ, VanBuren R, Hardigan MA, Colle M et al. 2019. Origin and evolution of the octoploid strawberry genome. Nat. Genet. 51:3541–47
    [Google Scholar]
  39. 39. 
    EFSA 2019. Statement on the available outcomes of the human health assessment in the context of the pesticides peer review of the active substance chlorpyrifos. EFSA J 17:55809
    [Google Scholar]
  40. 40. 
    EPPO 2021. Otiorhynchus sulcatus (OTIOSU) world distribution EPPO Glob. Database, Eur. Mediterr. Plant Prot. Org. Paris: https://gd.eppo.int/taxon/OTIOSU/distribution
    [Google Scholar]
  41. 41. 
    Evenhuis HH, Alofs WJ. 1982. The control of the vine weevil in strawberries. Fruitteelt 72:7242–43
    [Google Scholar]
  42. 42. 
    Feytaud J. 1918. Etude sur l'otiorhynque sillionne (Otiorhynchus sulcatus Fabr.). Ann. Serv. Épiphyt. 5:145–92
    [Google Scholar]
  43. 43. 
    Fisher JR, Bruck DJ. 2008. Biology and control of root weevils on berry and nursery crops in Oregon. Acta Hortic 777:345–52
    [Google Scholar]
  44. 44. 
    Georgis R, Koppenhofer AM, Lacey LA, Bélair G, Duncan LW et al. 2006. Successes and failures in the use of parasitic nematodes for pest control. Biol. Control 38:1103–23
    [Google Scholar]
  45. 45. 
    Georgis R, Poinar GOJ. 1984. Greenhouse control of the black vine weevil Otiorhynchus sulcatus (Coleoptera: Curculionidae) by Heterorhabditid and Steinernematid nematodes. Environ. Entomol. 13:1138–40
    [Google Scholar]
  46. 46. 
    Gill S, Lutz J, Shrewsbury P, Raupp M. 2001. Evaluation of biological and chemical control methods for black vine weevil, Otiorhynchus sulcatus (Fabricius) (Coleoptera: Curculionidae), in container grown perennials. J. Environ. Hortic. 19:3166–70
    [Google Scholar]
  47. 47. 
    Godfray HCJ, Blacquière T, Field LM, Hails RS, Petrokofsky G et al. 2014. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc. R. Soc. B 281:178620140558
    [Google Scholar]
  48. 48. 
    Gordon SC, Woodford JAT, Grassi A, Zini M, Tuovinen T et al. 2003. Monitoring and importance of wingless weevils (Otiorhynchus spp.) in European red raspberry production. IOBC/WPRS Bull 26:255–60
    [Google Scholar]
  49. 49. 
    Graham J, Gordon SC, McNicol RJ 1997. The effect of the CpTi gene in strawberry against attack by vine weevil (Otiorhynchus sulcatus F Coleoptera: Curculionidae). Ann. Appl. Biol. 131:1133–39
    [Google Scholar]
  50. 50. 
    Grbić M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P et al. 2011. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:7374487–92
    [Google Scholar]
  51. 51. 
    Hallett RH, Oehlschlager AC, Borden JH. 1999. Pheromone trapping protocols for the Asian palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Int. J. Pest Manag. 45:3231–37
    [Google Scholar]
  52. 52. 
    Hanula JL. 1990. Monitoring adult emergence, ovary maturation, and control of the black vine weevil (Coleoptera: Curculionidae). J. Entomol. Sci. 25:1134–42
    [Google Scholar]
  53. 53. 
    Hartwig J, Oehmig S. 1992. Behaviour in the soil, and important factors affecting its action. Pflanzenschutz-Nachr. . Bayer 45:1159–76
    [Google Scholar]
  54. 54. 
    Haukeland S, Lola-Luz T. 2010. Efficacy of the entomopathogenic nematodes Steinernema kraussei and Heterorhabditis megidis against the black vine weevil Otiorhynchus sulcatus in open field-grown strawberry plants. Agric. For. Entomol. 12:4363–69
    [Google Scholar]
  55. 55. 
    Head GP, Carroll MW, Evans SP, Rule DM, Willse AR et al. 2017. Evaluation of SmartStax and SmartStaxPRO maize against western corn rootworm and northern corn rootworm: efficacy and resistance management. Pest Manag. Sci. 73:91883–99
    [Google Scholar]
  56. 56. 
    Hirsch J, Reineke A 2014. Efficiency of commercial entomopathogenic fungal species against different members of the genus Otiorhynchus (Coleoptera: Curculionidae) under laboratory and semi-field conditions. J. Plant Dis. Prot. 121:5211–18
    [Google Scholar]
  57. 57. 
    Hirsch J, Strohmeier S, Pfannkuchen M, Reineke A 2012. Assessment of bacterial endosymbiont diversity in Otiorhynchus spp. (Coleoptera: Curculionidae) larvae using a multitag 454 pyrosequencing approach. BMC Microbiol 12:Suppl. 1S6
    [Google Scholar]
  58. 58. 
    Holder PJ, Jones A, Tyler CR, Cresswell JE. 2018. Fipronil pesticide as a suspect in historical mass mortalities of honey bees. PNAS 115:5113033–38
    [Google Scholar]
  59. 59. 
    Johnson SN, Petitjean S, Clark KE, Mitchell C 2010. Protected raspberry production accelerates onset of oviposition by vine weevils (Otiorhynchus sulcatus). Agric. For. Entomol. 12:3277–83
    [Google Scholar]
  60. 60. 
    Kakizaki M. 2001. Aggregation behavior of black vine weevil female adults (Otiorhynchus sulcatus (Fabricius)) (Coleoptera: Curculionidae) occurring in Japan. Soc. Plant Prot. North Jpn. 52:201–3
    [Google Scholar]
  61. 61. 
    Kakouli-Duarte T, Labuschagne L, Hague NGM 1997. Biological control of the black vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae) with entomopathogenic nematodes (Nematoda: Rhabditida). Ann. Appl. Biol. 131:111–27
    [Google Scholar]
  62. 62. 
    Karley AJ, Shepherd T, Hall D, McLaren R, Johnson S. 2012. Characterising vine weevil aggregation pheromone for use in traps at soft fruit and nursery sites HNS Rep. 127 Auckland Dist. Health Board New Zealand:
    [Google Scholar]
  63. 63. 
    Klingen I, Westrum K, Meyling NV. 2015. Effect of Norwegian entomopathogenic fungal isolates against Otiorhynchus sulcatus larvae at low temperatures and persistence in strawberry rhizospheres. Biol. Control 81:1–7
    [Google Scholar]
  64. 64. 
    Kogan M. 1998. Integrated pest management: historical perspectives and contemporary developments. Annu. Rev. Entomol. 43:243–70
    [Google Scholar]
  65. 65. 
    Kowalska J. 2008. The potential of Beauveria brongniartii and botanical insecticides based on neem to control Otiorhynchus sulcatus larvae in containerised plants. Plant Prot. Sci. 44:137–40
    [Google Scholar]
  66. 66. 
    La Lone RS, Clarke RG 1981. Larval development of Otiorhynchus sulcatus (Coleoptera: Curculionidae) and effects of larval density on larval mortality and injury to rhododendron. Environ. Entomol. 10:190–91
    [Google Scholar]
  67. 67. 
    Li SY, Fitzpatrick SM, Henderson DE. 1995. Grooved board traps for monitoring the black vine weevil (Coleoptera: Curculionidae) in raspberry fields. J. Entomol. Soc. B. C. 921983:97–100
    [Google Scholar]
  68. 68. 
    Lieten P. 2005. Strawberry production in central Europe. Int. J. Fruit Sci. 5:191–105
    [Google Scholar]
  69. 69. 
    Lola-Luz T, Downes M 2007. Biological control of black vine weevil Otiorhynchus sulcatus in Ireland using Heterorhabditis megidis. Biol. Control 40:3314–19
    [Google Scholar]
  70. 70. 
    Lola-Luz T, Downes M, Dunne R 2005. Control of black vine weevil larvae Otiorhynchus sulcatus (Fabricius) (Coleoptera: Curculionidae) in grow bags outdoors with nematodes. Agric. For. Entomol. 7:2121–26
    [Google Scholar]
  71. 71. 
    Lundmark M. 2010. Otiorhynchus sulcatus, an autopolyploid general-purpose genotype species?. Hereditas 147:6278–82
    [Google Scholar]
  72. 72. 
    Maier CT. 1978. Dispersal of adults of the black vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae), in an urban area. Environ. Entomol. 7:6854–57
    [Google Scholar]
  73. 73. 
    Maier CT. 1983. Use of trap-boards for detecting adults of the black vine weevil, Otiorhynchus sulcatus (Fabricius) (Coleoptera: Curculionidae). Proc. Entomol. Soc. Wash. 85:2374–76
    [Google Scholar]
  74. 74. 
    Mankin RW, Fisher JR. 2002. Acoustic detection of Otiorhynchus sulcatus (Fabricius) (Coleoptera: Curculionidae) larval infestations in nursery containers. J. Environ. Hortic. 20:3166–70
    [Google Scholar]
  75. 75. 
    Masaki M. 2000. The underground movement of the black vine weevil larvae, Otiorhynchus sulcatus (F.) (Coleoptera: Curculionidae). Res. Bull. Plant Prot. Serv. Jpn. 36:27–32
    [Google Scholar]
  76. 76. 
    Masaki M, Ohmura K, Ichinohe F. 1984. Host range studies of the black vine weevil, Otiorhynchus sulcatus (Fabricius) (Coleoptera: Curculionidae). Appl. Entomol. Zool. 19:195–106
    [Google Scholar]
  77. 77. 
    Masaki M, Ohto K. 1995. Effects of temperature on development of the black vine weevil, Otiorhynchus sulcatus (F.) (Coleoptera: Curculionidae). Res. Bull. Plant Prot. Serv. Jpn. 31:37–45
    [Google Scholar]
  78. 78. 
    Matyjaszczyk E. 2019. Problems of implementing compulsory integrated pest management. Pest Manag. Sci. 75:82063–67
    [Google Scholar]
  79. 79. 
    Moorhouse ER, Charnley AK, Gillespie AT. 1992. A review of the biology and control of the vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae). Ann. Appl. Biol. 121:431–54
    [Google Scholar]
  80. 80. 
    Moorhouse ER, Gillespie AT, Charnley AK. 1990. The progress and prospects for the control of the black vine weevil, Otiorhynchus sulcatus by entomogenous fungi. Proceedings of the 5th International Colloquium on Invertebrate Pathology and Microbial Control381–85 Adelaide: Aust.: Soc. Invertebr Pathol:.
    [Google Scholar]
  81. 81. 
    Moorhouse ER, Gillespie AT, Charnley AK. 1993. Laboratory selection of Metarhizium spp. isolates for control of vine weevil larvae (Otiorhynchus sulcatus). J. Invertebr. Pathol. 62:115–21
    [Google Scholar]
  82. 82. 
    Moorhouse ER, Gillespie AT, Charnley AK. 1993. Selection of virulent and persistent Metarhizium anisopliae isolates to control black vine weevil (Otiorhynchus sulcatus) larvae on glasshouse Begonia. J. Invertebr. Pathol. 62:147–52
    [Google Scholar]
  83. 83. 
    Moorhouse ER, Gillespie AT, Charnley AK. 1994. The influence of temperature on the susceptibility of vine weevil, Otiorhynchus sulcatus (Fabricius) (Coleoptera, Curculionidae), larvae to Metarhizium anisopliae (Deuteromycotina, Hyphomycetes). Ann. Appl. Biol. 124:185–93
    [Google Scholar]
  84. 84. 
    Moorhouse ER, Gillespie AT, Sellers EK, Charnley AK. 1992. Influence of fungicides and insecticides on the entomogenous fungus Metarhizium anisopliae, a pathogen of the vine weevil, Otiorhynchus sulcatus. Biocontrol Sci. Technol. 2:149–58
    [Google Scholar]
  85. 85. 
    Morera-Margarit P, Bulgarelli D, Pope TW, Graham RI, Mitchell C, Karley AJ 2019. The bacterial community associated with adult vine weevil (Otiorhynchus sulcatus) in UK populations growing on strawberry is dominated by Candidatus Nardonella. Entomol. Exp. Appl. 167:3186–96
    [Google Scholar]
  86. 86. 
    Morgan D. 1996. Modelling vine weevil population dynamics. Mitt. Biol. Bundesanst. Land- Forstwirtsch. 316:51–55
    [Google Scholar]
  87. 87. 
    Munford JD, Norton GA. 1984. Economics of decision making in pest management. Annu. Rev. Entomol. 29:157–74
    [Google Scholar]
  88. 88. 
    Nakamuta K, van Tol RWHM, Visser JH. 2005. An olfactometer for analyzing olfactory responses of death-feigning insects. Appl. Entomol. Zool. 40:1173–75
    [Google Scholar]
  89. 89. 
    Nielsen DG. 1983. Comparative toxicities of insecticides to adult black vine weevils (Coleoptera, Curculionidae) under laboratory conditions. J. Georg. Entomol. Soc. 18:153–57
    [Google Scholar]
  90. 90. 
    Nielsen DG, Montgomery ME. 1977. Toxicity and persistence of foliar insecticide sprays against black vine weevil adults. J. Econ. Entomol. 70:4510–12
    [Google Scholar]
  91. 91. 
    Nielsen DG, Niemczyk HD, Balderston CP, Purrington FF. 1975. Black vine weevil: resistance to dieldrin and sensitivity to organophosphate and carbamate insecticides. J. Econ. Entomol. 68:3291–92
    [Google Scholar]
  92. 92. 
    Nielsen DG, Roth JR. 1985. Influence of potting media on toxicity of bendiocarb and carbofuran to first-instar black vine weevil (Coleoptera: Curculionidae). J. Econ. Entomol. 78:4742–47
    [Google Scholar]
  93. 93. 
    Onstad DW. 1987. Calculation of economic-injury levels and economic thresholds for pest management. J. Econ. Entomol. 80:2297–303
    [Google Scholar]
  94. 94. 
    Onstad DW, Crain PR. 2019. The Economics of Integrated Pest Management of Insects Wallingford, UK: Cent. Agric. Biosci. Int .
    [Google Scholar]
  95. 95. 
    Pearcy M, Hardy O, Aron S. 2006. Thelytokous parthenogenesis and its consequences on inbreeding in an ant. Heredity 96:5377–82
    [Google Scholar]
  96. 96. 
    Pedigo LP. 1995. Closing the gap between theory and practice. J. Agric. Entomol. 12:4171–81
    [Google Scholar]
  97. 97. 
    Penman DR, Scott RR. 1976. Adult emergence and egg production of the black vine weevil in Canterbury. N. Z. J. Exp. Agric. 4:385–89
    [Google Scholar]
  98. 98. 
    Phillips PA. 1989. Simple monitoring of black vine weevil in vineyards. Calif. Agric. 43:312–13
    [Google Scholar]
  99. 99. 
    Pickett JA, Bartlet E, Buxton JH, Wadhams LJ, Woodcock CM. 1996. Chemical ecology of adult vine weevil. Mitt. Biol. Bundesanst. Land- Forstwirtsch. 316:41–45
    [Google Scholar]
  100. 100. 
    Pope T, Gundalai E, Elliott L, Blackshaw R, Hough G et al. 2015. Recording the movement of adult vine weevil within strawberry crops using radio frequency identification tags. J. Berry Res. 5:4197–206
    [Google Scholar]
  101. 101. 
    Pope T, Gundalai E, Hough G, Wood A, Bennison J et al. 2013. How far does a weevil walk?. Asp. Appl. Biol. 119:97–104
    [Google Scholar]
  102. 102. 
    Pope TW, Hough G, Arbona C, Roberts H, Bennison J et al. 2018. Investigating the potential of an autodissemination system for managing populations of vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae) with entomopathogenic fungi. J. Invertebr. Pathol. 154:79–84
    [Google Scholar]
  103. 103. 
    Rasmussen AN. 1978. The greenhouse weevil (Otiorhynchus sulcatus) on strawberries in the field: biology and control. Statens Planteavlsforsoeg Medd 80:4
    [Google Scholar]
  104. 104. 
    Reding ME, Persad AB. 2009. Systemic insecticides for control of black vine weevil (Coleoptera: Curculionidae) in container- and field-grown nursery crops. J. Econ. Entomol. 102:3927–33
    [Google Scholar]
  105. 105. 
    Reding ME, Ranger CM. 2011. Systemic insecticides reduce feeding, survival, and fecundity of adult black vine weevils (Coleoptera: Curculionidae) on a variety of ornamental nursery crops. J. Econ. Entomol. 104:2405–13
    [Google Scholar]
  106. 106. 
    Reinecke P, Andersch W, Stenzel K, Hartwig J. 1990. BIO 1020: a new microbial insecticide for use in horticultural crops Rep., Cent. Agric. Biosci. Int. Wallingford, UK:
    [Google Scholar]
  107. 107. 
    Reineke A, Hauck M. 2012. Efficiency of NeemAzal-T/S against different developmental stages of the black vine weevil Otiorhynchus sulcatus (Fabricius 1775) (Coleoptera: Curculionidae). Mitt. Dtch. Ges. Allg. Angew. Entomol. 18:487–90
    [Google Scholar]
  108. 108. 
    Richardson PN. 1990. Use of parasitic nematodes in insect control strategies in protected crops. Asp. Appl. Biol. 24:205–10
    [Google Scholar]
  109. 109. 
    Roberts JM, Jahir A, Graham J, Pope TW 2020. Catch me if you can: the influence of refuge/trap design, previous feeding experience, and semiochemical lures on vine weevil (Coleoptera: Curculionidae) monitoring success. Pest Manag. Sci. 76:2553–60
    [Google Scholar]
  110. 110. 
    Roberts JM, Kundun J, Rowley C, Hall DR, Douglas P, Pope TW 2019. Electrophysiological and behavioral responses of adult vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae), to host plant odors. J. Chem. Ecol. 45:10858–68
    [Google Scholar]
  111. 111. 
    Rodriguez-Saona C, Alborn HT, Oehlschlager C, Calvo C, Kyryczenko-Roth V et al. 2020. Fine-tuning the composition of the cranberry weevil (Coleoptera: Curculionidae) aggregation pheromone. J. Appl. Entomol. 144:5417–21
    [Google Scholar]
  112. 112. 
    Samtani JB, Rom CR, Friedrich H, Fennimore SA, Finn CE et al. 2019. The status and future of the strawberry industry in the United States. Horttechnology 29:111–24
    [Google Scholar]
  113. 113. 
    San Miguel K, Scott JG. 2016. The next generation of insecticides: dsRNA is stable as a foliar-applied insecticide. Pest Manag. Sci. 72:4801–9
    [Google Scholar]
  114. 114. 
    Saunders JL. 1970. Carbofuran drench for black vine weevil control on container-grown spruce. J. Econ. Entomol. 63:51698–99
    [Google Scholar]
  115. 115. 
    Scheepmaker JWA, Butt TM. 2010. Natural and released inoculum levels of entomopathogenic fungal biocontrol agents in soil in relation to risk assessment and in accordance with EU regulations. Biocontrol Sci. Technol. 20:5503–52
    [Google Scholar]
  116. 116. 
    Scherer W. 1987. Control of the larvae of the black vine weevil. Obstbau 12:5228–30
    [Google Scholar]
  117. 117. 
    Shah FA, Ansari MA, Prasad M, Butt TM 2007. Evaluation of black vine weevil (Otiorhynchus sulcatus) control strategies using Metarhizium anisopliae with sublethal doses of insecticides in disparate horticultural growing media. Biol. Control 40:2246–52
    [Google Scholar]
  118. 118. 
    Shah FA, Gaffney M, Ansari MA, Prasad M, Butt TM 2008. Neem seed cake enhances the efficacy of the insect pathogenic fungus Metarhizium anisopliae for the control of black vine weevil, Otiorhynuchs sulcatus (Coleoptera: Curculionidae). Biol. Control 44:1111–15
    [Google Scholar]
  119. 119. 
    Shanks CHJ, Chase DL, Chamberlain JD 1984. Resistance of clones of wild strawberry, Fragaria chiloensis, to adult Otiorhynchus sulcatus and O. ovatus (Coleoptera: Curculionidae). Environ. Entomol. 13:41042–45
    [Google Scholar]
  120. 120. 
    Shanks CHJ, Doss RP. 1986. Black vine weevil (Coleoptera: Curculionidae) feeding and oviposition on leaves of weevil-resistant and -susceptible strawberry clones presented in various quantities. Environ. Entomol. 15:51074–77
    [Google Scholar]
  121. 121. 
    Smith FF. 1932. Biology and control of the black vine weevil Tech. Bull. 235 U. S. Dep. Agric. Washington, DC:
    [Google Scholar]
  122. 122. 
    Son Y, Lewis EE 2005. Effects of temperature on the reproductive life history of the black vine weevil, Otiorhynchus sulcatus. Entomol. Exp. Appl. 114:115–24
    [Google Scholar]
  123. 123. 
    Son Y, Lewis EE 2005. Modelling temperature-dependent development and survival of Otiorhynchus sulcatus (Coleoptera: Curculionidae). Agric. For. Entomol. 7:3201–9
    [Google Scholar]
  124. 124. 
    Son Y, Luckhart S, Zhang X, Lieber MJ, Lewis EE. 2008. Effects and implications of antibiotic treatment on Wolbachia-infected vine weevil (Coleoptera: Curculionidae). Agric. For. Entomol. 10:2147–55
    [Google Scholar]
  125. 125. 
    St Onge A, Cárcamo HA, Evenden ML. 2018. Evaluation of semiochemical-baited traps for monitoring the pea leaf weevil, Sitona lineatus (Coleoptera: Curculionidae) in field pea crops. Environ. Entomol. 47:193–106
    [Google Scholar]
  126. 126. 
    Stenseth C. 1979. Effects of temperature on development of Otiorrhynchus sulcatus (Coleoptera: Curculionidae). Ann. Appl. Biol. 91:2179–85
    [Google Scholar]
  127. 127. 
    Stenseth C, Vik J. 1979. The effect of black polythene mulch on the development of Otiorhynchus sulcatus on strawberry plants. Gartneryrket 69:912–14
    [Google Scholar]
  128. 128. 
    Stenzel K. 1992. Mode of action and spectrum of activity of BIO 1020 (Metarhizium anisopliae). Pflanzenschutz Nachr. . Bayer 45:1143–58
    [Google Scholar]
  129. 129. 
    van Tol RWHM. 1993. Control of the black vine weevil (Otiorhynchus sulcatus) with different isolates of Heterorhabditis sp and Metarhizium anisopliae in nursery stock. Proc. Sect. Exp. Appl. Entomol. Neth. Entomol. Soc. 4:181–86
    [Google Scholar]
  130. 130. 
    van Tol RWHM. 1993. Efficacy of control of the black vine weevil (Otiorhynchus sulcatus) with strains of Heterorhabditis sp. Steinernema sp. and the fungus Metarhizium anisopliae in nursery stock. Med. Fac. Landbouw. Univ. Gent. 58:2a461–66
    [Google Scholar]
  131. 131. 
    van Tol RWHM, Bruck DJ, Griepink FC, de Kogel WJ. 2012. Field attraction of the vine weevil Otiorhynchus sulcatus to kairomones. J. Econ. Entomol. 105:1169–75
    [Google Scholar]
  132. 132. 
    van Tol RWHM, Elberse IAM, Bruck DJ 2020. Development of a refuge-kairomone device for monitoring and control of the vine weevil, Otiorhynchus sulcatus, by lure-and-kill and lure-and-infect. Crop Prot. 129:105045
    [Google Scholar]
  133. 133. 
    van Tol RWHM, Van Dijk N, Sabelis MW. 2004. Host plant preference and performance of the vine weevil Otiorhynchus sulcatus. Agric. For. Entomol. 6:4267–78
    [Google Scholar]
  134. 134. 
    van Tol RWHM, Visser JH. 1998. Host-plant preference and antennal responses of the black vine weevil (Otiorhynchus sulcatus) to plant volatiles. Proc. Exp. Appl. Entomol. 9:35–40
    [Google Scholar]
  135. 135. 
    van Tol RWHM, Visser JH. 2002. Olfactory antennal responses of the vine weevil Otiorhynchus sulcatus to plant volatiles. Entomol. Exp. Appl. 102:49–64
    [Google Scholar]
  136. 136. 
    van Tol RWHM, Visser JH, Sabelis MW. 2000. Responses of the black vine weevil (Otiorhynchus sulcatus) to weevil and host-plant odours. Proc. Sect. Exp. Appl. Entomol. Neth. Entomol. Soc. 11:109–14
    [Google Scholar]
  137. 137. 
    van Tol RWHM, Visser JH, Sabelis MW. 2002. Olfactory responses of the vine weevil, Otiorhynchus sulcatus, to tree odours. Physiol. Entomol. 27:3213–22
    [Google Scholar]
  138. 138. 
    van Tol RWHM, Visser JH, Sabelis MW. 2004. Behavioural responses of the vine weevil, Otiorhynchus sulcatus, to semiochemicals from conspecifics, Otiorhynchus salicicola, and host plants. Entomol. Exp. Appl. 110:2145–50
    [Google Scholar]
  139. 139. 
    Vives-Vallés JA, Collonnier C. 2020. The Judgment of the CJEU of 25 July 2018 on mutagenesis: interpretation and interim legislative proposal. Front. Plant Sci. 10:1813
    [Google Scholar]
  140. 140. 
    Voss-Fels KP, Stahl A, Hickey LT 2019. Q&A: modern crop breeding for future food security. BMC Biol 17:18
    [Google Scholar]
  141. 141. 
    Watt K, Graham J, Gordon SC, Woodhead M, McNicol RJ 1999. Current and future transgenic control strategies to vine weevil and other insect resistance in strawberry. J. Hortic. Sci. Biotechnol. 74:4409–21
    [Google Scholar]
  142. 142. 
    Willmott DM, Hart AJ, Long SJ, Edmondson RN, Richardson PN. 2002. Use of a cold-active entomopathogenic nematode Steinernema kraussei to control overwintering larvae of the black vine weevil Otiorhynchus sulcatus (Coleoptera: Curculionidae) in outdoor strawberry plants. Nematology 4:8925–32
    [Google Scholar]
  143. 143. 
    Wu T-H, Shiao S-F, Okuyama T. 2015. Development of insects under fluctuating temperature: a review and case study. J. Appl. Entomol. 139:8592–99
    [Google Scholar]
  144. 144. 
    Wynn S. 2010. Impact of changing pesticide availability on horticulture and an assessment of all impacts and priorities on a range of arable, horticultural and forage crops Proj. Rep. IF01100 DEFRA London:
    [Google Scholar]
/content/journals/10.1146/annurev-ento-071221-060822
Loading
/content/journals/10.1146/annurev-ento-071221-060822
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error