1932

Abstract

Insect eggs are exposed to a plethora of abiotic and biotic threats. Their survival depends on both an innate developmental program and genetically determined protective traits provided by the parents. In addition, there is increasing evidence that () parents adjust the egg phenotype to the actual needs, () eggs themselves respond to environmental challenges, and () egg-associated microbes actively shape the egg phenotype. This review focuses on the phenotypic plasticity of insect eggs and their capability to adjust themselves to their environment. We outline the ways in which the interaction between egg and environment is two-way, with the environment shaping the egg phenotype but also with insect eggs affecting their environment. Specifically, insect eggs affect plant defenses, host biology (in the case of parasitoid eggs), and insect oviposition behavior. We aim to emphasize that the insect egg, although it is a sessile life stage, actively responds to and interacts with its environment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-120120-100746
2023-01-23
2024-07-19
Loading full text...

Full text loading...

/deliver/fulltext/ento/68/1/annurev-ento-120120-100746.html?itemId=/content/journals/10.1146/annurev-ento-120120-100746&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abdel-latief M, Hilker M 2008. Innate immunity: Eggs of Manduca sexta are able to respond to parasitism by Trichogramma evanescens. Insect Biochem. Mol. Biol. 38:136–45
    [Google Scholar]
  2. 2.
    Abram PK, Guerra-Grenier E, Després-Einspenner M-L, Ito S, Wakamatsu K et al. 2015. An insect with selective control of egg coloration. Curr. Biol. 25:2007–11
    [Google Scholar]
  3. 3.
    Afentoulis DG, Cusumano A, Greenberg LO, Caarls L, Fatouros NE. 2021. Attraction of Trichogramma wasps to butterfly oviposition-induced plant volatiles depends on Brassica species, wasp strain and leaf necrosis. Front. Ecol. Evol. 9:703134
    [Google Scholar]
  4. 4.
    Alfonso E, Stahl E, Glauser G, Bellani E, Raaymakers TM et al. 2021. Insect eggs trigger systemic acquired resistance against a fungal and an oomycete pathogen. New Phytol. 232:2491–505
    [Google Scholar]
  5. 5.
    Anderson P. 2002. Oviposition pheromones in herbivorous and carnivorous insects. See Ref. 52 235–63
  6. 6.
    Ayelo PM, Pirk CWW, Yusuf AA, Chailleux A, Mohamed SA, Deletre E. 2021. Exploring the kairomone-based foraging behaviour of natural enemies to enhance biological control: a review. Front. Ecol. Evol. 9:641974
    [Google Scholar]
  7. 7.
    Bebas P, Kotwica J, Joachimiak E, Giebultowicz JM. 2008. Yolk protein is expressed in the insect testis and interacts with sperm. BMC Dev. Biol. 8:64
    [Google Scholar]
  8. 8.
    Beckage NE 2012. Polydnaviruses as endocrine regulators. Parasitoid Viruses NE Beckage, JM Drezen 163–68 London: Academic Press
    [Google Scholar]
  9. 9.
    Beckage NE, Gelman DB. 2004. Wasp parasitoid disruption of host development: implications for new biologically based strategies for insect control. Annu. Rev. Entomol. 49:299–330
    [Google Scholar]
  10. 10.
    Bertea CM, Casacci LP, Bonelli S, Zampollo A, Barbero F. 2019. Chemical, physiological and molecular responses of host plants to lepidopteran egg-laying. Front. Plant Sci. 10:1768
    [Google Scholar]
  11. 11.
    Betz O 2010. Adhesive exocrine glands in insects: morphology, ultrastructure, and adhesive secretion. Biological Adhesive Systems: From Nature to Technical and Medical Application J von Byern, I Grunwald 111–52 Berlin: Springer
    [Google Scholar]
  12. 12.
    Bittner N, Hundacker J, Achotegui-Castells A, Anderbrant O, Hilker M. 2019. Defense of Scots pine against sawfly eggs (Diprion pini) is primed by exposure to sawfly sex pheromones. PNAS 116:24668–75
    [Google Scholar]
  13. 13.
    Blum MS, Hilker M. 2002. Chemical protection of insect eggs. See Ref. 52 61–90
  14. 14.
    Bonnet C, Lassueur S, Ponzio C, Gols R, Dicke M, Reymond P. 2017. Combined biotic stresses trigger similar transcriptomic responses but contrasting resistance against a chewing herbivore in Brassica nigra. BMC Plant Biol. 17:127
    [Google Scholar]
  15. 15.
    Bowler K, Terblanche JS. 2008. Insect thermal tolerance: What is the role of ontogeny, ageing and senescence?. Biol. Rev. 83:339–55
    [Google Scholar]
  16. 16.
    Bruce TJ, Pickett JA. 2011. Perception of plant volatile blends by herbivorous insects—finding the right mix. Phytochemistry 72:1605–11
    [Google Scholar]
  17. 17.
    Chen TT, Hillen LJ. 1983. Expression of the vitellogenin genes in insects. Gamete Res. 7:179–96
    [Google Scholar]
  18. 18.
    Chen W-B, Vasseur L, Zhang S-Q, Zhang H-F, Mao J et al. 2020. Mechanism and consequences for avoidance of superparasitism in the solitary parasitoid Cotesia vestalis. Sci. Rep. 10:11463
    [Google Scholar]
  19. 19.
    Cusumano A, Volkoff A-N. 2021. Influence of parasitoid-associated viral symbionts on plant-insect interactions and biological control. Curr. Opin. Insect Sci. 44:64–71
    [Google Scholar]
  20. 20.
    de Jager TL, Cockrell AE, Du Plessis SS. 2017. Ultraviolet light induced generation of reactive oxygen species. Adv. Exp. Med. Biol. 996:15–23
    [Google Scholar]
  21. 21.
    Denlinger DL, Armbruster PA. 2014. Mosquito diapause. Annu. Rev. Entomol. 59:73–93
    [Google Scholar]
  22. 22.
    Dicke M, Cusumano A, Poelman EH. 2020. Microbial symbionts of parasitoids. Annu. Rev. Entomol. 65:171–90
    [Google Scholar]
  23. 23.
    Dong Z, Wang X, Zhang Y, Zhang L, Chen Q et al. 2016. Proteome profiling reveals tissue-specific protein expression in male and female accessory glands of the silkworm, Bombyx mori. Amino Acids 48:1173–83
    [Google Scholar]
  24. 24.
    Dose B, Niehs SP, Scherlach K, Flórez LV, Kaltenpoth M, Hertweck C. 2018. Unexpected bacterial origin of the antibiotic icosalide: two-tailed depsipeptide assembly in multifarious Burkholderia symbionts. ACS Chem. Biol. 13:2414–20
    [Google Scholar]
  25. 25.
    Eggert H, Kurtz J, Diddens-de Buhr MF. 2014. Different effects of paternal trans-generational immune priming on survival and immunity in step and genetic offspring. Proc. R. Soc. B 281:20142089
    [Google Scholar]
  26. 26.
    Eisner T, Rossini C, Gonzáles A, Iyengar VK, Siegler MVS, Smedley SR. 2002. Paternal investment in insect egg defence. See Ref. 52 91–116
  27. 27.
    Elsensohn JE, Aly MFK, Schal C, Burrack HJ. 2021. Social signals mediate oviposition site selection in Drosophila suzukii. Sci. Rep. 11:3796
    [Google Scholar]
  28. 28.
    Esch H, Goller F, Heinrich B. 1991. How do bees shiver?. Naturwissenschaften 78:325–28
    [Google Scholar]
  29. 29.
    Farnesi LC, Vargas HCM, Valle D, Rezende GL. 2017. Darker eggs of mosquitoes resist more to dry conditions: Melanin enhances serosal cuticle contribution in egg resistance to desiccation in Aedes, Anopheles and Culex vectors. PLOS Negl. Trop. Dis. 11:e0006063
    [Google Scholar]
  30. 30.
    Fatouros NE, Cusumano A, Bin F, Polaszek A, van Lenteren JC. 2020. How to escape from insect egg parasitoids: a review of potential factors explaining parasitoid absence across the Insecta. Proc. R. Soc. B 287:20200344
    [Google Scholar]
  31. 31.
    Fatouros NE, Lucas-Barbosa D, Weldegergis BT, Pashalidou FG, van Loon JJA et al. 2012. Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels. PLOS ONE 7:e43607
    [Google Scholar]
  32. 32.
    Finch G, Nandyal S, Perretta C, Davies B, Rosendale AJ et al. 2020. Multi-level analysis of reproduction in an Antarctic midge identifies female and male accessory gland products that are altered by larval stress and impact progeny viability. Sci. Rep. 10:19791
    [Google Scholar]
  33. 33.
    Fischer K, Brakefield PM, Zwaan BJ. 2003. Plasticity in butterfly egg size: why larger offspring at lower temperatures?. Ecology 84:3138–47
    [Google Scholar]
  34. 34.
    Flórez LV, Kaltenpoth M. 2017. Symbiont dynamics and strain diversity in the defensive mutualism between Lagria beetles and Burkholderia. Environ. Microbiol. 19:3674–88
    [Google Scholar]
  35. 35.
    Flórez LV, Scherlach K, Gaube P, Ross C, Sitte E et al. 2017. Antibiotic-producing symbionts dynamically transition between plant pathogenicity and insect-defensive mutualism. Nat. Commun. 8:15172
    [Google Scholar]
  36. 36.
    Flórez LV, Scherlach K, Miller IJ, Rodrigues A, Kwan JC et al. 2018. An antifungal polyketide associated with horizontally acquired genes supports symbiont-mediated defense in Lagria villosa beetles. Nat. Commun. 9:2478
    [Google Scholar]
  37. 37.
    Fox CW, Czesak ME. 2000. Evolutionary ecology of progeny size in arthropods. Annu. Rev. Entomol. 45:341–69
    [Google Scholar]
  38. 38.
    Fraga A, Ribeiro L, Lobato M, Santos V, Silva JR et al. 2013. Glycogen and glucose metabolism are essential for early embryonic development of the red flour beetle Tribolium castaneum. PLOS ONE 8:e65125
    [Google Scholar]
  39. 39.
    Freitak D, Schmidtberg H, Dickel F, Lochnit G, Vogel H, Vilcinskas A. 2014. The maternal transfer of bacteria can mediate trans-generational immune priming in insects. Virulence 5:547–54
    [Google Scholar]
  40. 40.
    Gegner J, Baudach A, Mukherjee K, Halitschke R, Vogel H, Vilcinskas A. 2019. Epigenetic mechanisms are involved in sex-specific trans-generational immune priming in the lepidopteran model host Manduca sexta. Front. Physiol. 10:137
    [Google Scholar]
  41. 41.
    González-Tokman D, Córdoba-Aguilar A, Dáttilo W, Lira-Noriega A, Sánchez-Guillén RA, Villalobos F. 2020. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biol. Rev. 95:802–21
    [Google Scholar]
  42. 42.
    Gorman MJ, Kankanala P, Kanost MR. 2004. Bacterial challenge stimulates innate immune responses in extra-embryonic tissues of tobacco hornworm eggs. Insect Mol. Biol. 13:19–24
    [Google Scholar]
  43. 43.
    Griese E, Caarls L, Bassetti N, Mohammadin S, Verbaarschot P et al. 2021. Insect egg-killing: a new front on the evolutionary arms-race between brassicaceous plants and pierid butterflies. New Phytol. 230:341–53
    [Google Scholar]
  44. 44.
    Griese E, Dicke M, Hilker M, Fatouros NE. 2017. Plant response to butterfly eggs: Inducibility, severity and success of egg-killing leaf necrosis depends on plant genotype and egg clustering. Sci. Rep. 7:7316
    [Google Scholar]
  45. 45.
    Guerra-Grenier E. 2019. Evolutionary ecology of insect egg coloration: a review. Evol. Ecol. 33:1–19
    [Google Scholar]
  46. 46.
    Guo L, Liu F, Zhang S, Kong X, Zhang Z. 2019. Egg deposition of Micromelalopha sieversi (Staudinger) on clones of Populus from section Aigeiros induces resistance in neighboring plants. Forests 10:110
    [Google Scholar]
  47. 47.
    Halbritter DA. 2020. Exposed Neophasia terlooii (Lepidoptera: Pieridae) eggs are resistant to desiccation during quiescence. Environ. Entomol. 49:918–23
    [Google Scholar]
  48. 48.
    He J, Chen Q, Wei Y, Jiang F, Yang M et al. 2016. MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts. PNAS 113:584–89
    [Google Scholar]
  49. 49.
    Hilker M 1994. Egg deposition and protection of eggs in Chrysomelidae. Novel Aspects of the Biology of Chrysomelidae PH Jolivet, ML Cox, E Petitpierre 263–76 Amsterdam: Kluwer Acad.
    [Google Scholar]
  50. 50.
    Hilker M, Fatouros NE. 2015. Plant responses to insect egg deposition. Annu. Rev. Entomol. 60:493–515
    [Google Scholar]
  51. 51.
    Hilker M, Fatouros NE. 2016. Resisting the onset of herbivore attack: Plants perceive and respond to insect eggs. Curr. Opin. Plant Biol. 32:9–16
    [Google Scholar]
  52. 52.
    Hilker M, Meiners T. 2002. Chemoecology of Insect Eggs and Egg Deposition Oxford, UK: Blackwell
    [Google Scholar]
  53. 53.
    Hinton HE. 1981. Biology of Insect Eggs Oxford, UK: Pergamon
    [Google Scholar]
  54. 54.
    Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T. 2006. Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLOS Biol. 4:e337
    [Google Scholar]
  55. 55.
    Hundacker J, Bittner N, Weise C, Bröhan G, Varama M, Hilker M. 2022. Pine defense against eggs of an herbivorous sawfly is elicited by an annexin-like protein present in egg-associated secretion. Plant Cell Environ. 45:1033–48
    [Google Scholar]
  56. 56.
    Jacobs CGC, Rezende GL, Lamers GEM, van der Zee M. 2013. The extraembryonic serosa protects the insect egg against desiccation. Proc. R. Soc. B 280:20131082
    [Google Scholar]
  57. 57.
    Jacobs CGC, Spaink HP, van der Zee M. 2014. The extraembryonic serosa is a frontier epithelium providing the insect egg with a full-range innate immune response. eLife 3:e04111
    [Google Scholar]
  58. 58.
    Jacobs CGC, van der Zee M. 2013. Immune competence in insect eggs depends on the extraembryonic serosa. Dev. Comp. Immunol. 41:263–69
    [Google Scholar]
  59. 59.
    Jacobs CGC, Wang Y, Vogel H, Vilcinskas A, van der Zee M, Rozen DE. 2014. Egg survival is reduced by grave-soil microbes in the carrion beetle, Nicrophorus vespilloides. BMC Evol. Biol. 14:208
    [Google Scholar]
  60. 60.
    Jia D, Ji Z, Yuan X, Zhang B, Liu Y et al. 2020. Molecular cloning and expression profiles of thermosensitive TRP genes in Agasicles hygrophila. Insects 11:531
    [Google Scholar]
  61. 61.
    Johner A, Stettler P, Gruber A, Lanzrein B. 1999. Presence of polydnavirus transcripts in an egg-larval parasitoid and its lepidopterous host. J. Gen. Virol. 80:1847–54
    [Google Scholar]
  62. 62.
    Jones AC, Felton GW, Tumlinson JH. 2022. The dual function of elicitors and effectors from insects: reviewing the “arms race” against plant defenses. Plant Mol. Biol. 109:42745
    [Google Scholar]
  63. 63.
    Kahoro H, Odongo H, Saini RK, Hassanali A, Rai MM. 1997. Identification of components of the oviposition aggregation pheromone of the gregarious desert locust, Schistocerca gregaria (Forskal). J. Insect Physiol. 43:83–87
    [Google Scholar]
  64. 64.
    Kaiwa N, Hosokawa T, Nikoh N, Tanahashi M, Moriyama M et al. 2014. Symbiont-supplemented maternal investment underpinning host's ecological adaptation. Curr. Biol. 24:2465–70
    [Google Scholar]
  65. 65.
    Kang Y, Kulakosky PC, van Antwerpen R, Law JH. 1995. Sequestration of insecticyanin, a blue hemolymph protein, into the egg of the hawkmoth Manduca sexta: evidence for receptor-mediated endocytosis. Insect Biochem. Mol. Biol. 25:503–10
    [Google Scholar]
  66. 66.
    Karunakar P, Bhalla A, Sharma A. 2019. Transgenerational inheritance of cold temperature response in Drosophila. FEBS Lett. 593:594–600
    [Google Scholar]
  67. 67.
    Kellner RLL, Dettner K. 1996. Differential efficacy of toxic pederin in deterring potential arthropod predators of Paederus (Coleoptera: Staphylinidae) offspring. Oecologia 107:293–300
    [Google Scholar]
  68. 68.
    Kikuchi Y, Hosokawa T, Nikoh N, Meng X-Y, Kamagata Y, Fukatsu T. 2009. Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs. BMC Biol. 7:2
    [Google Scholar]
  69. 69.
    Knorr E, Schmidtberg H, Arslan D, Bingsohn L, Vilcinskas A. 2015. Translocation of bacteria from the gut to the eggs triggers maternal transgenerational immune priming in Tribolium castaneum. Biol. Lett. 11:20150885
    [Google Scholar]
  70. 70.
    Kreß A, Kuch U, Oehlmann J, Müller R. 2016. Effects of diapause and cold acclimation on egg ultrastructure: new insights into the cold hardiness mechanisms of the Asian tiger mosquito Aedes (Stegomyia) albopictus. J. Vector Ecol. 41:142–50
    [Google Scholar]
  71. 71.
    Lam K, Thu K, Tsang M, Moore M, Gries G 2009. Bacteria on housefly eggs, Musca domestica, suppress fungal growth in chicken manure through nutrient depletion or antifungal metabolites. Naturwissenschaften 96:1127–32
    [Google Scholar]
  72. 72.
    Le Hesran S, Groot T, Knapp M, Bukovinszky T, Nugroho JE et al. 2020. Maternal effect determines drought resistance of eggs in the predatory mite Phytoseiulus persimilis. Oecologia 192:29–41
    [Google Scholar]
  73. 73.
    Lemaitre B, Hoffmann J. 2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25:697–743
    [Google Scholar]
  74. 74.
    Li X, Guo W, Ding J. 2012. Mycangial fungus benefits the development of a leaf-rolling weevil, Euops chinesis. J. Insect Physiol. 58:867–73
    [Google Scholar]
  75. 75.
    Lockwood BL, Julick CR, Montooth KL. 2017. Maternal loading of a small heat shock protein increases embryo thermal tolerance in Drosophila melanogaster. J. Exp. Biol. 220:4492–501
    [Google Scholar]
  76. 76.
    Lortzing T, Kunze R, Steppuhn A, Hilker M, Lortzing V. 2020. Arabidopsis, tobacco, nightshade and elm take insect eggs as herbivore alarm and show similar transcriptomic alarm responses. Sci. Rep. 10:16281
    [Google Scholar]
  77. 77.
    Luhring KA, Millar JG, Paine TD, Reed D, Christiansen H 2004. Ovipositional preferences and progeny development of the egg parasitoid Avetianella longoi: factors mediating replacement of one species by a congener in a shared habitat. Biol. Control 30:382–91
    [Google Scholar]
  78. 78.
    Luna MG, Desneux N, Schneider MI. 2016. Encapsulation and self-superparasitism of Pseudapanteles dignus (Muesebeck) (Hymenoptera: Braconidae), a parasitoid of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). PLOS ONE 11:e0163196
    [Google Scholar]
  79. 79.
    Ma C-S, Ma G, Pincebourde S 2021. Survive a warming climate: insect responses to extreme high temperatures. Annu. Rev. Entomol. 66:163–84
    [Google Scholar]
  80. 80.
    Majewska MM, Suszczynska A, Kotwica-Rolinska J, Czerwik T, Paterczyk B et al. 2014. Yolk proteins in the male reproductive system of the fruit fly Drosophila melanogaster: spatial and temporal patterns of expression. Insect Biochem. Mol. Biol. 47:23–35
    [Google Scholar]
  81. 81.
    Mäntylä E, Kleier S, Lindstedt C, Kipper S, Hilker M. 2018. Insectivorous birds are attracted by plant traits induced by insect egg deposition. J. Chem. Ecol. 44:1127–38
    [Google Scholar]
  82. 82.
    Matsuura H, Sokabe T, Kohno K, Tominaga M, Kadowaki T. 2009. Evolutionary conservation and changes in insect TRP channels. BMC Evol. Biol. 9:228
    [Google Scholar]
  83. 83.
    May ML. 1979. Insect thermoregulation. Annu. Rev. Entomol. 24:313–49
    [Google Scholar]
  84. 84.
    McCall PJ. 2002. Chemoecology of oviposition in insects of medical and veterinary importance. See Ref. 52 265–89
  85. 85.
    Mirth CK, Saunders TE, Amourda C. 2021. Growing up in a changing world: environmental regulation of development in insects. Annu. Rev. Entomol. 66:81–99
    [Google Scholar]
  86. 86.
    Mousseau TA, Fox CW. 1998. The adaptive significance of maternal effects. Trends Ecol. Evol. 13:403–37
    [Google Scholar]
  87. 87.
    Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR. 2005. The evolution of agriculture in insects. Annu. Rev. Ecol. Evol. Syst. 36:563–95
    [Google Scholar]
  88. 88.
    Nakabachi A, Ueoka R, Oshima K, Teta R, Mangoni A et al. 2013. Defensive bacteriome symbiont with a drastically reduced genome. Curr. Biol. 23:1478–84
    [Google Scholar]
  89. 89.
    Nazari P, Poorjavad N, Izadi H. 2020. Simultaneous occurrence of diapause and cold hardiness in overwintering eggs of the apple oystershell scale, Lepidosaphes malicola Borchsenius (Hem.: Diaspididae). Zool. Stud. 59:e25
    [Google Scholar]
  90. 90.
    Niehs SP, Kumpfmuller J, Dose B, Little RF, Ishida K et al. 2020. Insect-associated bacteria assemble the antifungal butenolide gladiofungin by non-canonical polyketide chain termination. Angew. Chem. 59:23122–26
    [Google Scholar]
  91. 91.
    Nyffeler M, Breene RG, Dean DA, Sterling WL. 1990. Spiders as predators of arthropod eggs. J. Appl. Entomol. 109:490–501
    [Google Scholar]
  92. 92.
    Oliver KM, Degnan PH, Hunter MS, Moran NA. 2009. Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 325:992–94
    [Google Scholar]
  93. 93.
    Önfelt Tingvall T, Roos E, Engstrom Y 2001. The GATA factor Serpent is required for the onset of the humoral immune response in Drosophila embryos. PNAS 98:3884–88
    [Google Scholar]
  94. 94.
    Orlovskis Z, Reymond P. 2020. Pieris brassicae eggs trigger interplant systemic acquired resistance against a foliar pathogen in Arabidopsis. New Phytol. 228:1652–61
    [Google Scholar]
  95. 95.
    Panfilio KA. 2008. Extraembryonic development in insects and the acrobatics of blastokinesis. Dev. Biol. 313:471–91
    [Google Scholar]
  96. 96.
    Park Y, Kim Y. 2013. RNA interference of glycerol biosynthesis suppresses rapid cold hardening of the beet armyworm, Spodoptera exigua. J. Exp. Biol. 216:4196–203
    [Google Scholar]
  97. 97.
    Pashalidou FG, Eyman L, Sims J, Buckley J, Fatouros NE et al. 2020. Plant volatiles induced by herbivore eggs prime defences and mediate shifts in the reproductive strategy of receiving plants. Ecol. Lett. 23:1097–106
    [Google Scholar]
  98. 98.
    Pasteels JM, Daloze D, Rowell-Rahier M. 1986. Chemical defence in chrysomelid eggs and neonate larvae. Physiol. Entomol. 11:29–37
    [Google Scholar]
  99. 99.
    Paul SC, Pell JK, Blount JD. 2015. Reproduction in risky environments: the role of invasive egg predators in ladybird laying strategies. PLOS ONE 10:e0139404
    [Google Scholar]
  100. 100.
    Paul SC, Stevens M, Pell JK, Birkett MA, Blount JD. 2018. Parental phenotype not predator cues influence egg warning coloration and defence levels. Anim. Behav. 140:177–86
    [Google Scholar]
  101. 101.
    Pennacchio F, Strand MR. 2006. Evolution of developmental strategies in parasitic Hymenoptera. Annu. Rev. Entomol. 51:233–58
    [Google Scholar]
  102. 102.
    Peri E, Moujahed R, Wajnberg E, Colazza S 2018. Applied chemical ecology to enhance insect parasitoid efficacy in the biological control of crop pests. Chemical Ecology of Insects: Applications and Associations with Plants and Microbes J Tabata 234–67 London: Taylor & Francis
    [Google Scholar]
  103. 103.
    Piel J. 2002. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. PNAS 99:14002–7
    [Google Scholar]
  104. 104.
    Piel J, Höfer I, Hui D. 2004. Evidence for a symbiosis island involved in horizontal acquisition of pederin biosynthetic capabilities by the bacterial symbiont of Paederus fuscipes beetles. J. Bacteriol. 186:1280–86
    [Google Scholar]
  105. 105.
    Potter K, Davidowitz G, Woods HA. 2009. Insect eggs protected from high temperatures by limited homeothermy of plant leaves. J. Exp. Biol. 212:3448–54
    [Google Scholar]
  106. 106.
    Potter KA, Woods HA. 2012. No evidence for the evolution of thermal or desiccation tolerance of eggs among populations of Manduca sexta. Funct. Ecol. 26:112–22
    [Google Scholar]
  107. 107.
    Potter KA, Woods HA. 2013. Immobile and tough versus mobile and weak: effects of ultraviolet B radiation on eggs and larvae of Manduca sexta. Physiol. Entomol. 38:246–52
    [Google Scholar]
  108. 108.
    Reed DA, Luhring KA, Stafford CA, Hansen AK, Millar JG et al. 2007. Host defensive response against an egg parasitoid involves cellular encapsulation and melanization. Biol. Control 41:214–22
    [Google Scholar]
  109. 109.
    Refsnider JM, Janzen FJ. 2010. Putting eggs in one basket: ecological and evolutionary hypotheses for variation in oviposition-site choice. Annu. Rev. Ecol. Evol. Syst. 41:39–57
    [Google Scholar]
  110. 110.
    Reymond P. 2021. Receptor kinases in plant responses to herbivory. Curr. Opin. Biotechnol. 70:143–50
    [Google Scholar]
  111. 111.
    Roth O, Joop G, Eggert H, Hilbert J, Daniel J et al. 2010. Paternally derived immune priming for offspring in the red flour beetle, Tribolium castaneum. J. Anim. Ecol. 79:403–13
    [Google Scholar]
  112. 112.
    Sadd BM, Schmid-Hempel P. 2007. Facultative but persistent trans-generational immunity via the mother's eggs in bumblebees. Curr. Biol. 17:R1046–47
    [Google Scholar]
  113. 113.
    Sakurai K. 1985. An attelabid weevil (Euops splendida) cultivates fungi. J. Ethol. 3:151–56
    [Google Scholar]
  114. 114.
    Salem H, Bauer E, Kirsch R, Berasategui A, Cripps M et al. 2017. Drastic genome reduction in an herbivore's pectinolytic symbiont. Cell 171:1520–31
    [Google Scholar]
  115. 115.
    Salem H, Flórez L, Gerardo N, Kaltenpoth M. 2015. An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. Proc. R. Soc. B 282:20142957
    [Google Scholar]
  116. 116.
    Salmela H, Amdam GV, Freitak D. 2015. Transfer of immunity from mother to offspring is mediated via egg-yolk protein vitellogenin. PLOS Pathog. 11:e1005015
    [Google Scholar]
  117. 117.
    Sato A, Sokabe T, Kashio M, Yasukochi Y, Tominaga M, Shiomi K. 2014. Embryonic thermosensitive TRPA1 determines transgenerational diapause phenotype of the silkworm, Bombyx mori. PNAS 111:E1249–55
    [Google Scholar]
  118. 118.
    Schmidt S, Kildgaard S, Guo H, Beemelmanns C, Poulsen M. 2022. The chemical ecology of the fungus-farming termite symbiosis. Nat. Prod. Rep. 39:231–48
    [Google Scholar]
  119. 119.
    Seong K-H, Li D, Shimizu H, Nakamura R, Ishii S. 2011. Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell 145:1049–61
    [Google Scholar]
  120. 120.
    Skibsted LH. 2012. Carotenoids in antioxidant networks: colorants or radical scavengers. J. Agric. Food Chem. 60:2409–17
    [Google Scholar]
  121. 121.
    Soni K, Choudhary A, Patowary A, Singh AR, Bhatia S et al. 2013. miR-34 is maternally inherited in Drosophila melanogaster and Danio rerio. Nucleic Acids Res. 41:4470–80
    [Google Scholar]
  122. 122.
    Stahl E, Hilfiker O, Reymond P. 2018. Plant-arthropod interactions: Who is the winner?. Plant J 93:703–28
    [Google Scholar]
  123. 123.
    Strand MR, Burke GR. 2012. Polydnaviruses as symbionts and gene delivery systems. PLOS Pathog. 8:e1002757
    [Google Scholar]
  124. 124.
    Strohm E, Herzner G, Ruther J, Kaltenpoth M, Engl T. 2019. Nitric oxide radicals are emitted by wasp eggs to kill mold fungi. eLife 8:e43718
    [Google Scholar]
  125. 125.
    Su H-A, Bai X, Zeng T, Lu Y-Y, Qi Y-X. 2018. Identification, characterization and expression analysis of transient receptor potential channel genes in the oriental fruit fly, Bactrocera dorsalis. BMC Genom. 19:674
    [Google Scholar]
  126. 126.
    Tadros W, Lipshitz HD. 2009. The maternal-to-zygotic transition: a play in two acts. Development 136:3033–42
    [Google Scholar]
  127. 127.
    Tait G, Park K, Nieri R, Crava MC, Mermer S et al. 2020. Reproductive site selection: evidence of an oviposition cue in a highly adaptive dipteran, Drosophila suzukii (Diptera: Drosophilidae). Environ. Entomol. 49:355–63
    [Google Scholar]
  128. 128.
    Tan C-W, Peiffer M, Hoover K, Rosa C, Acevedo FE, Felton GW. 2018. Symbiotic polydnavirus of a parasite manipulates caterpillar and plant immunity. PNAS 115:5199–204
    [Google Scholar]
  129. 129.
    Tan KL, Vlisidou I, Wood W. 2014. Ecdysone mediates the development of immunity in the Drosophila embryo. Curr. Biol. 24:1145–52
    [Google Scholar]
  130. 130.
    Teng ZW, Wu HZ, Ye XH, Fang Q, Zhou HX, Ye GY. 2022. An endoparasitoid uses its egg surface proteins to regulate its host immune response. Insect Sci. 29:103046
    [Google Scholar]
  131. 131.
    Tetreau G, Dhinaut J, Galinier R, Audant-Lacour P, Voisin SN et al. 2020. Deciphering the molecular mechanisms of mother-to-egg immune protection in the mealworm beetle Tenebrio molitor. PLOS Pathog. 16:e1008935
    [Google Scholar]
  132. 132.
    Trauer-Kizilelma U, Hilker M. 2015. Impact of transgenerational immune priming on the defence of insect eggs against parasitism. Dev. Comp. Immunol. 51:126–33
    [Google Scholar]
  133. 133.
    Trauer-Kizilelma U, Hilker M. 2015. Insect parents improve the anti-parasitic and anti-bacterial defence of their offspring by priming the expression of immune-relevant genes. Insect Biochem. Mol. Biol. 64:91–99
    [Google Scholar]
  134. 134.
    Trougakos IP, Margaritis LH. 2002. Novel morphological and physiological aspects of insect eggs. See Ref. 52 3–36
  135. 135.
    Urbanski JM, Benoit JB, Michaud MR, Denlinger DL, Armbruster P. 2010. The molecular physiology of increased egg desiccation resistance during diapause in the invasive mosquito, Aedes albopictus. Proc. R. Soc. B 277:2683–92
    [Google Scholar]
  136. 136.
    Vargas HC, Farnesi LC, Martins AJ, Valle D, Rezende GL. 2014. Serosal cuticle formation and distinct degrees of desiccation resistance in embryos of the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus. J. Insect Physiol. 62:54–60
    [Google Scholar]
  137. 137.
    Vastenhouw NL, Cao WX, Lipshitz HD. 2019. The maternal-to-zygotic transition revisited. Development 146:dev161471
    [Google Scholar]
  138. 138.
    Vasudeva R, Sutter A, Sales K, Dickinson ME, Lumley AJ, Gage MJ. 2019. Adaptive thermal plasticity enhances sperm and egg performance in a model insect. eLife 8:e49452
    [Google Scholar]
  139. 139.
    Vlisidou I, Dowling AJ, Evans IR, Waterfield N, ffrench-Constant RH, Wood W 2009. Drosophila embryos as model systems for monitoring bacterial infection in real time. PLOS Pathog. 5:e1000518
    [Google Scholar]
  140. 140.
    Wakamatsu K, Ito S. 2002. Advanced chemical methods in melanin determination. Pigment Cell Res. 15:174–83
    [Google Scholar]
  141. 141.
    Wang L, Feng Y, Tian J, Xiang M, Sun J et al. 2015. Farming of a defensive fungal mutualist by an attelabid weevil. ISME J. 9:1793–801
    [Google Scholar]
  142. 142.
    Wheeler DE 2009. Reproduction. Female. Encyclopedia of Insects VH Resh, RT Carde 880–82 London: Academic Press
    [Google Scholar]
  143. 143.
    Wilson MC, Mori T, Rückert C, Uria AR, Helf MJ et al. 2014. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506:58–62
    [Google Scholar]
  144. 144.
    Wood W, Jacinto A 2007.. Drosophila melanogaster embryonic haemocytes: masters of multitasking. . Nat. Rev. Mol. Cell Biol. 8::542–51
    [Google Scholar]
  145. 145.
    Woods AH. 2010. Water loss and gas exchange by eggs of Manduca sexta: trading off costs and benefits. J. Insect Physiol. 56:480–87
    [Google Scholar]
  146. 146.
    Xiao R, Xu XZS. 2021. Temperature sensation: from molecular thermosensors to neural circuits and coding principles. Annu. Rev. Physiol. 83:205–30
    [Google Scholar]
  147. 147.
    Yoder JA, Denlinder DL. 1992. Water vapour uptake by diapausing eggs of a tropical walking stick. Physiol. Entomol. 17:97–103
    [Google Scholar]
  148. 148.
    Zanchi C, Troussard J-P, Moreau J, Moret Y. 2012. Relationship between maternal transfer of immunity and mother fecundity in an insect. Proc. R. Soc. B 279:3223–30
    [Google Scholar]
  149. 149.
    Zhu F, Cusumano A, Bloem J, Weldegergis BT, Villela A et al. 2018. Symbiotic polydnavirus and venom reveal parasitoid to its hyperparasitoids. PNAS 115:5205–10
    [Google Scholar]
  150. 150.
    Ziegler R, Van Antwerpen R. 2006. Lipid uptake by insect oocytes. Insect Biochem. Mol. Biol. 36:264–72
    [Google Scholar]
  151. 151.
    Zvereva EL. 1987. The effect of ecological factors on competition between house fly larvae (Musca domestica L., Muscidae, Diptera) and microscopic fungi. Entomol. Rev. 66:36–42
    [Google Scholar]
/content/journals/10.1146/annurev-ento-120120-100746
Loading
/content/journals/10.1146/annurev-ento-120120-100746
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error